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Introduction and summary

In the linear regression model Y;=a+ fz;+Z, many point estimates
of a and B, other than the classical least squares estimates, have been
proposed see [8], [12], and [1] and variants of [12] proposed in [3], [11]
and [9] among others. All these estimates are generally called “ robust ”,
a description which has a rather vague interpretation. In a recent paper,
Huber [7], has drawn attention to the various forms that “ robustness”
can take and to the necessity for specifying what aspect of robustness
one is discussing.

In this paper, we shall study the asymptotic behaviour, in the
sense of the relative efficiency, of the “rank score” estimates defined
by Adichie [1], under small variations of, and departures from the
underlying distribution of the observations. The main results are pre-
sented in Section 2.

1. Preliminaries
Let Yy, Y, --+, Y, be independent random variables with distributions
(1.1) P, Y, =yl=G;(y)=F(y—Px;) j=1,---,n

where P, denotes the probability computed for the parameter value B,
and F;’s belong to a class of continuous distribution functions, with

bounded derivatives. “Rank Score” estimates f(¢) of g can be defined
as in [1] without extra conditions on the F,’s. Let

L2 B)=5 (B +6*)
where
p*=inf {b: T (Y —bx)<0} and
g**=sup {b: T,(Y —bx) >0}
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(1.3)
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with

R;
n+1

(1.4 T(V)=1 5 @, - D).
n

R, is the rank of Y;, while ¢ is a smooth non decreasing weight func-
tion (score function) defined on [0, 1]; T, (Y —bx) denotes the statistics
(1.4) when the observations Y, are replaced by Y,—bx;, where b is
a real number.

Assume that the regression constants satisfy the boundedness con-
dition :

(1.5a) lim[n! 3] (z;—2)}] <0, Szis<M %} (z;—z)

n J
for some M and Noether condition

)2
1.5b 1i [M)_]:o.
(1-0) WIS -y
J

While the distribution functions are such that
(1.6) max | Fi(y)— Hy(y) | = w(y)

where
wawaraname)| <[5 @-2r|"
and
H@)=- S F,y).

Also let H,(y) — H(y) a distribution function such that

(1.7 lHn(y)—H(y)l<£{—7(f’—)
where
| K E@WHG) <o .

Observe that Assumption (1.6) is fundamental as it expresses the
“smallness ” of the variations of F,’s from some underlying distribu-
tion H. In [5], Hajek expressed a similar condition by

max |F(y)—Fy(y)| <o

where also
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(z;,—x)
m?.x[ p (x,—:i)’]<5 )
2. The main results
THEOREM 2.1. Let B(¢) be as defined in (1.2), and let
(2.1) l¢"(w)|<c.
Then under (1.5), (1.6) and (1.7),

2.2) lim P [v7 (4(¢)—p)sbl=0( 22 )

with

@3  Ba=1 3 (@2 | L g HE)HW); B=lim B,
nJ dy n

(2.4) A3,=-l— > (w,—i:)’[s S(uydu— (S gb(u)du)z} ; Al=lim A}
n Ji n

and @ stands for the distribution function of the standard Normal.

Proor. Hajek (Theorem 4.2 of [5]) has in fact proved that under
the assumptions (1.4), (1.5a) and (2.1),

(25) lim P [V (s ) Syl = 0(0)
where

(2.6) =1 3 (@) | #CWMG,W)
and

@7) =205 5 (-0 || G0) (1 G CW) (GG WG 2)
with -
Gy)=n"" 33 G,(w).

To prove our theorem we need to find the limiting distribution

[ L) <,

Tn
where P, denotes the probability computed for the parameter value

4,=—bn"1n,
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On writing
G1=Hn+(Gi—Fi)+(Fi_Hn)

and noting that under 4,,

Gw=H@—-2E0LOT0 ; ang G)-F)=-LLLED,

we have that under 4,

| GG, = | Hg/ (H)AH,+CitCy+Cuy
+Dy;+Dyj+Dyj+ Dyij+ Dy + O(n™)

where

(Fi—H,)¢'(H,)dH,

H.¢'(H,)d(F;— H.,)

CZi

(F i n)¢’(Hn)d(F J n)

H,¢'(H,)d(G;—F;)
Dyy=\ (G:—Fy)¢/(H,)d(F,— H,)

G|

6=

|

D=\ (G~ Fog/(H)H,
D=|

|

Dy = (G~ F)¢'(H)IUG,~F)

D= (P H)p/(H)UG,~F)).

Integrating the C and D terms by parts and making use of (1.5a) and
(1.5b) on the D terms, and (1.6) on the C terms, we get that under 4,

| 64/(@)dG,= | H.g'(H)AH, + R
where
1t
| Ru| < M[ 5 (s, 3

It follows then that



SOME ROBUST PROPERTIES OF REGRESSION 227
28 w(d)=20" 5 S @—a,)
|| B@ - RewE@ HEREWIHEE+0m

v<z

=S (a,— 32 SS WL — o) (W) (v)du dv+0(n-")

=[{ #du—({ swdu) Jn- 53 @27+ 0
= A2+-0(n"Y).
Now under 4,, the expression ¥ n (T,—p,) can be written as
V1 (To(4)— 11(0)) =V 1 (2 4,) — £1(0))
where
V(e 4)— 1 0)) =11 3 (2, —Z) S P(H(y))A(G,(y)— F(y)+O0(n""")

and on integrating by parts, this reduces to
n™t 53 (@~ 2 | £, (L )H, @)+ 0.
Furthermore, on writing
1) =h)+ () —hw)) where —LH@)=h)
apd making use of (1.6) and (1.7), it is found that under 4,
tim o/ (1 (4) — () =lim bn™* 3 (&~ ) |- g HO)AH@)=bB.
On making use of Slutsky’s Theorem, it then follows that under 4,,

lim P, [V 7 (T, — ) Syl=0( LEPB )

where A and B are given in (2.3) and (2.4). The rest of the proof
follows from the result of Hodges and Lehmann (Theorem 4 of [6]).

The asymptotic variance of the estimates ﬁ is thus deduced from
Theorem 2.1, and is given by

2.9) Asymptotic Var (v f)
=£r={v00—({ s [[| L sawanw)

2

The least squares estimate ﬁ is obtained from (1.2) and (1.83) but with



228 J. N. ADICHIE
T:,:(Y) =n_1 ? (xj "‘E)Yj

for details see [1]. It is also known that under very general condi-
tions, (see e.g. Eicker [4]),

tim p [ YT =) <y o)
where
y,=n"! ; (x,—7) S ydG,(y); and (Vncl)i=n"! ; (x¢,—x) Vary,,
and in particular

(2.10) lim P, (W7 (T —v)<y]= ( y*}B’ )

where
B' =limn™' 3 (x;—%)*; and

(2.11) n 7
A*=limn™ ? (x;— %) 07+ (67 —07)]

with

si=|varw-(|vrw)
and
(2.12) si=|varw-({wrw) .

On using (1.6) on (¢%—0;), We obtain
(2.13) Ar=mn"! EJ} (x;—x)ar+0(n™"), lim A?=A".

From (2.10), it follows that under the conditions of Theorem 2.1, the
limiting distribution of the least squares estimate is given by

(2.14) lim P, [v'n (8—B)<b] =¢<£f,—'>

where B’ and A’ are given by (2.11) and (2.13). From (2.14), it is

clear that the asymptotic variance of the least squares estimate ﬁ, is
given by

(2.15) Asymptotic Var (vVn f)=a*=lim 7* .

We have therefore obtained the following result :
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THEOREM 2.2. Under the assumptions of Theorem 2.1, the asympto-
tic efficiency of the “rank score” estimates relative to the least squares
estimates is given by

@16) o, fgp)=a|| L orwunw) ||| pedu—({seau) |

In his study of the one sample problem, Sen [10] obtained the
same result for the special case ¢(u)=u, and showed that for a class
G, of distribution functions containing the normal and the exponential,
among others,

(2.17) ef, B(H)=ep, f(F).

It is easy to see that the same result holds for the efficiency expres-
sion (2.16). More precisely one can show following Sen, that for con-
vex ¢(u) or for ¢(u) defined through a strongly unimodal distribution,

(2.18) ob, B(¢(H))zeb, Ap(F)) |
where the right-hand side of the inequalities (2.17) and (2.18) are effi-
ciencies computed on the assumption that Fi=F,=--.-=F,=F.

Remark: Observe that neither in the definition nor in the limit-
ing distribution of /§ is the symmetry of F,’s necessary. Its use is,

however, in the small sample property of unbiasedness of ﬂ (see Lemma
4.2 of [1]).

In the next two sections, we give a few examples of the common
models of departures from the underlying distributions.

3. Robustness against shifts

Model 1. Let F(y)=F(y—a,).

This could happen, for example if the outcome Y; of the observa-
tions, taken under different experimental conditions, depends not only
on the z,’s but also on the time a; when taking the jth observation. In
this set up, the estimates of g naturally depend on the unknown «;.
Neither the least squares nor the rank scores estimates are unbiased.
In fact,

B (=g Lo

e
and the estimates of a; are not available, unless we take replicated ob-
servations for each value of z,. If, however, the «,’s differ only slight-
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ly, then the efficiency expression (2.16) is attained with
g,=d'=var (Y}).

To see this, write
P~ B )|=|G—a) f)+ L (a1 53 ed) 40|
n J

él&—aflf(y)+—é—f’(y+0)l(a§—'2)1-

Suppose a;=j7? then
_ 1 1 1 1
— == — < -1 p—
mja,xla %] ln<%" k? n>l=’n ; k2

<|n~t 33 (el +1) =1~ (1)
=0(n")
and the rest follows.

Model 1I. The case of non linear regression.

In Model I, put a;=72? and obtain the polynomial regression model.
Ordinarily one estimates both g and y by the method of least squares.
The rank score estimates of y are also available, for example, through
the use of the test statistic defined in [2]. For this model to come
within our frame work, y will be small; for example, if

max [naj—>] i<y
J

then assumption (1.6) is satisfied.

4. Robustness against changes in scale

Model TI1.  Let F,(y)=F(y/s,).

This corresponds to the important case of non uniformity of ex-
perimental conditions, where the effects of such non uniformity are
multiplicative rather than additive (Model I). In this model,

)~ B @l={uf @) o' =17 S o7 |+ 247 O)] o7 -1 51 o7']

él[a}l—n" 5 o7 [yf(0)+%y2f '0)(o7+n Sa; 2)]

If we put either ¢;=0+¢; or o,=ce;' where ¢, is small, such that |(e,
—€)|=0(n""), then it can easily be shown that assumption (1.6) is satis-
fied :
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Model IV. In the Gross error model
Fi(y)=(1—€,)F(y)+¢,Q(H)

if |(e;—€)|=0(n""), (1.6) is also satisfied.
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