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1. Introduction

Let {X,, n=1} be an iid (independent and identically distributed)
stochastic sequence assumed to be governed by a member of a count-
able family of probability measures @={P,: 8 € 2} where P, are defined
on an appropriate probability space and 2 is countable. Observing se-
quentially the stochastic sequence {X,, n=1} we want to stop at some
finite stage and decide in favour of a member of the family @ with
a uniformly small probability of error. The family @ is said to be
“Sequentially Distinguishable” if for any given ¢ (0<e<1) there exists
a stopping time ¢ and a terminal decision function #(X;,:--, X;) such
that P, (t<o0)=1vf e and sup P, (0(Xi,- -+, X)) #0)<e.

The family @ being countable, there is no loss of generality in
assuming the existence of probability densities {f,: 6 ¢ 2} with respect
to some o-finite measure p. To simplify notations we write f,=f,,, and
P,=P,, etc. Further, let f;, be the joint probability density function
of (Xi, X;,---, X,) with respect to g, (the g-measure in n-dimensions).
In what follows we shall take a doubly indexed sequence of constants
{a;;} such that a;;>1 and > a;'<e for a given ¢ (0<e¢<1) and vj.

i

Motivated by Wald’s sequential probability ratio test (SPRT) Robbins
[7] defined a general stopping time for the sequential distinguishability
problem as follows:

1.1) N=inf {n=1: ﬂ,,,_>_=sjup a;;f;. for some 4}
#1
=00 if no such =,

and assert P, (&46,) if N stops with . Let a,={accept 6,}. By as-
suming N terminates, it follows that

P, (3(X,,- - -, Xu)#0,)
=5iP@=3 3|  fudns3eP@)se v
i#tJ i#] (N=n,ui) i#j

n=1

* Part of this paper was written while the author was at Columbia University.
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This stopping time has been studied by the author ([5], [6]) and a
number of results have been obtained. The object of this paper is to
generalize some of the specific examples of [6] to the case where f, is
the one parameter exponential probability density function. In Section
2 we give some definitions and results from [6] which are essential for
the succeeding main sections.

2. Preliminaries

Let I(f;:f;) denote the Kullback-Leibler information measure be-
tween P, and P,, and is defined as

I, £)=Eulog (£if)= f.log (Fif)dp

We assume that 0<inf I(f;:f;)<cov<. It has been shown in [6] that
Jj#i
2.1) E;N 28up {(og a.)/I(fi: f)} -

This inequality is universal for the stopping time (1.1).

We note that the problem of sequential distinguishability can be
done (at least in principle) by a sequence of SPRT’s. Consequently,
let t;; denote the stopping time of an SPRT for testing H,: f=f; against
H,: f=f,, when the error probabilities are a=8=e¢. The following de-
finition is due to Robbins [7].

DEFINITION. The stopping rule N is said to be asymptotically op-
timal if

m_ BN
€0 Sup Ei t¢j
F#i

The definition is interesting because of the known optimality of SPRT.
In [6] we proved the following elementary lemma.
LEMMA 2.1. The stopping rule N is asymptotically optimal if
E; N~(——loge)/ijan(f,:f,) as ¢—0 .
s

We now proceed with the main problem of this paper.

3. The problem and the stopping rule

Let f(x, §)=exp (fx—b(6)) be the p.d.f. of a random variable X with
respect to some o-finite measure p. It is known that the natural pa-
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rameter set @={0: S exp (fx—b(#))du(x)< oot is a convex set. Further,

it is well known that b(¢) is differentiable on the interior of ©, and
E, X=b'(0), 6%(0)=b"(6)>0, so that b'(f) is strictly increasing and b(#)
is a strict convex function. Let 2={6,: 1€ Z}, where 6,’s are the in-
terior points of 6, and Z is the set of integers. With no loss of gen-
erality we can assume that @ is an ordered set in the usual direction,
ie. «--<6;,_,<6,<0,,,<---. Let P, denote the probability measure per-
taining to f(z,6), and set &d={P,: 6 2}. Let X, X,,--- be an iid
sequence assumed to be governed by a member of #. We want to find
a sequential procedure (N, 6) where N is a stopping rule and § a termi-
nal decision function which accepts a member 6, € 2 such that (i) P,
(N<o0)=1v8, € 2, and (ii) sup P,. (error)<e for a given ¢ (0<e<1).
First we make some uséful observations. We write P,=P,, E,=

E., fi=f(X,6;), and 1(0,:0,)=I(f.:f;), ete. without any further com-
ment. The Kullback-Leibler information measure is

3.1) I(6. : 0,)=E;log (filf))
= {(6:—0,)6'(6:)— (b(6:)—b(6,))} >0 .

If we set F(0,)=(b(8,)—b(6.))/(0;—0,), j+1, (6, fixed), then 9F/a8,=(I(8, :
0,)/(0;—0;)’>0. Hence F(f,) is increasing in 4, for each fixed 6,. It
follows from (38.1) that 81/66;=0 according as 6,>6; or 6,<0, (since b'(-)
is increasing). Thus I(6,: 6;) is increasing (decreasing) in 6, according
as 6;,>0; or 6;<0;. Before choosing a,; for the proposed stopping time
(1.1) we make the following assumptions.
Let g(x) be a real function such that
(i) d'®)>0, g’(x)=0, so that g(-) is a strictly increasing convex fune-
tion and ¢'(-) is non-decreasing.
(i) 9(6:11)—90)21vieZ
(iii) ¢(8,)={(b(8,)—b(6:))/(6;—06:)—(9(6,) —9(6.)) (log @)/n(0,—6.)} (a>1), is
increasing in 6,>6; for some n=m<oo.
(iv) d(, 0,)=(I(0; : 0,))/(9(6,—g(6) is increasing in 6,>4,.
We now choose a;;=a'?“?~9“?!, ¢>1. Assumption (i) =|g(8,)—g(4,)|=
|j—1|, and hence
3.2) 3 a;,‘gig a1 L2/(a—1) .
J

i%j
Recalling the stopping time (1.1) we have
8.3) N=inf{n>1: f;,n;sju? a.;f;. for some 4}
#*
=inf {n>1: 0=max [sup R,(7, j), sup R.(%, j)] for some %},
j>i i<i

where R.(i, j) =19(6:) — 9(6,) | (log @)/n + (6, — 6.)S./n — (b(8,) — b(8,)), and
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where S,=X,4+X,+--+X,. Using assumptions (i) and (iii), simple
computations simplify (3.3) to as follows:

(3.4) N=inf {ngm . b(6.)—b(0:-1) + g(6:)—96;_,) loga éi

0,;—01;_1 0‘—05_1 n n
< b(0:4)—b(8) _ 9(0:41)—9(6:) log a for some 'i} ,
0¢+1—0i 0t+1—0¢ n

and accept 6; (a;) if N stops with 7. First we have the following.

LEMMA 3.1. (i) P,(N<o)=1vieZ, and (ii) P, (error)<2/(a—1)
vi€Z.

ProOF. Since by the strong law of large numbers S,/n—b'(0;) a.s.
P, (as n—o0), (i) follows from the fact that b'(-) is increasing. To
prove the second part, we have

P; (error) =#§]j P; (a)

, Jinpt

i#j n=1 S{N:n,ai

=33

i< n=1 S (N=n,a;

Note that f;./f..=exp ((6,—0,)S.—n(b(8,)—b(8:))). Consider i<j=0;<
6;,. On {N=mn,a}, S,/ < (b(6:1.)—b(8:))[(0:41—0:) — (9(6:1.1) — 9(6:)) (log a)/
n(0;,,—0;), and note that the right-hand side of this inequality is the

infinum (assumption (iii)) of ¢(8,) = (b(6;)—b(6.))/(0,—6:)—(9(0,)—9(6.))-
(log a)/n(8;—6,) over 6,>6,. Hence on the set {N=n,a;} we have

Sinlfin=exp (—(g(8,)—g(6,)) log a) Sa™ @700,
The case i>J can be considered in a similar fashion. At any rate

P, (error) <3 a 0000021 < 31 7171 <2/(a—1) .
i#j it

FonlpatS S yallptn -
} {N=n,a;}

i>j n=1

4. Bounds for E; N and an asymptotic expression
From (2.1) we have

E.N zsgg [(log a;;)/1(6; : 8,)]

where I(6;:6,) is the Kullback-Leibler information measure. It follows
from the choice of a;; that

(4.1) E: N2 (log o)/min [inf (6., 6,), inf d(0:, 6,)]
> <i

where d(8;, 8,)=(1(0; : 0,))/9(6:)—9(,)|, i#j. It follows from assump-
tion (iv) that
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I}g d(0;, 0,)=d(0;, 0:1)=1(0; : 01,1)(9(0:11) —9(0:))" .
For j<i, 0d/o6;=—[(b(6:) — b(0,))(9(6:) — 9(0,)) — I9(6,)] (9(6:) — 9(6,)) 2.
Since ¢'(-) is increasing, hence
ad /o8, < —[(b(6:)—b(8,)) (9(6:) —9(8,)) — 19(8.)] (9(6:) —9(6,)) % .

By assumption (iv) it follows that ad/o,<0 for j<<%, so that 1jnif d,,
<
0;)=d(®,, 0;_;). Thus from (4.1) we have

E; N>(log &)/min {d(6,, 6.,,), d(0;, 6;_))} ,

i.e.
(4.2) E;:Nz2K;'loga
where
(4.3)  Ki=min [I(6; :0,,1)/(9(0:1.)—9(6.)), 1(6; : 6:_1)/(9(6:)—9(0;-1)] -
Hence
(4.4) !,112 inf (K; E; N)/(loga)=1 .

Now we want to find an upper bound and an asymptotic expression
for E; N. To this end, we set r=mloga, where m>K;! and assume

for simplicity that r is an integer. From the stopping rule (3.4) we
have

(4.5) P, (N>7)<P,(S,/r>a)+P, (S,/r<c)

where a=(b(0:1) —b(0.))/(0c11—0;) — (9(0:..1) — 9(8.))m (6., —0,), and ¢=(b(6;)
—b(6:-1))/(0:—0:-1)+(9(6.) — 9(0:-.)ym™"[(0;—0;_,). 1t follows from the Defi-
nition (4.3) that m > K™ > (9(6::1) — 9(6))/1(6; : 0:.1)=>a > (b(8:11) — b(6.))/
0s1—0)—1(6;:6,,)/(0;.,—0;). On substituting the value of I we see
that a>b'(6,)=E; X, and hence a theorem of Chernoff [1] implies

P, (S,/r>a)<p]

where p,=p,(a)=inf e *M(t), M(t)=E, e =e*®*9-2%>_ (One can show that
t

0<p;<1. A similar argument shows that
P, (S,/’r<0)§p§ ’ 0<p,<1
where p,=p,(c)=infe*M(t). It follows from (4.5) that

p:+.0; ’ 0<P11 Pz<1
(4.6) P,(N>r)<
207, p=max (p;, p) .
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Note that (4.6) is sufficient to imply: (i) E; N<oov4i, and (ii) E;e"<
oo for some t>0 (v1i). Moreover, N~K,'loga in probability P; (as
a— o). To get the bound for E; N we have

E, N=§‘lnP¢ (N=n)=3 nP,(N=n)+ 3 nP;(N=n)
Sr+@r+)P.(N>n+3 P, (N>n)
<r+@r+1){oi+p5} +§r {oi+p3} .

Since r=m log a, the last series —0 as a—o. Thus we have

4.7 E; NEmlog a+(m log a+1){p" 5“4+ o7 ¢} +-0(1) ,
so that
4.8) lim sup (K, E; N)/(log a)=1 .

a—oo

From (4.4) and (4.8) we have
(4.9) E;N~K,loga as a— oo,

5. Asymptotic optimality and special cases
Regarding the asymptotic optimality we have the following theorem.

THEOREM 5.1. If g(0:.1)—90:)=1V k€ Z, then the stopping rule de-
fined by (3.4) is asymptotically optimal.

PRoOOF. Recall that the uniform bound on the error probability is
¢e=2/(a—1). By using the condition g(6..,)—9(0)=1vke Z, it follows
from (4.83) and (4.9) that

(5.1)  E, N~(—log a)/min [I(6; : 6,,.), I(6,:6,_)] as a—oo.

But since I(0;:6,) is increasing in 6,>6, and decreasing in 6,<6;, hence
we have

(5.2) E; N~(—log ¢)/inf I(9, : 6,) as a—oo .
J#i

Hence the conclusion follows from Lemma 2.1.

COROLLARY 1. Let Q=1{60;: 1€ Z} be an ordered set in the usual
direction with positive minimum spacing 6 (6>0). Then a possible choice
of g(x) is g(x)=x/3. Moreover, if there is uniform spacing, then the
corresponding rule N is asymptotically optimal.

COROLLARY 2. If 6,=ak-+ec, a>0, then we can take g(x)=(x—c)/a,
and the rule would be assymptotically optimal.
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Remark. Theorem 5.1 gives asymptotically optimal rules for the
sequences which are uniformly spaced relative to g(:). However, we
can always modify our choice of a;; to overcome this restriction. As-
sume for simplicity that 2=(0,<6,<---), and modify a,; as follows:

85— i+1)—g(o, N
a(a( ) —g(8i))/(g(Bi+1)—g(8:)) , J>’b

aU: (g8:d—g(85))/Cg(8:)—g(8i—12) y y
ag 1)—gloj g0 —=gldi—1 , J<'L-

Then it is easy to show that the modified rule (3.4) is asymptotically
optimal under mild conditions ensuring E, a7 =2/a+o(a”'). For example,
i*

let g(-) satisfy the previous conditions and the following :
(1) intinf|g(6)—g(0,)|=5>0

(2) 9(6:1)—g(0:)<4, 4>0, i>1.
Then, Zj a;} <2/a+2[/a(a”*—1)=2[a+o(a"*). That the associated stopping
i*

rule for the modified choice of a,, is asymptotically optimal follows from
the fact that E; N~(—log e)/ijnif I(0,:0,), as a— oo, where e=2a7".
+*
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