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Summary

An upper bound for the remainder term of the Edgeworth expan-
sion for the distribution of the normalized sum of independent and
identically distributed random variables is given in terms of 3rd and
4th order moments, together with the total variation of the probability
density function of the underlying distribution.

1. Inequalities

Let F' be an absolutely continuous distribution with the finite mo-
ments up to 4th order: a;=0, a,=1, a;, and a,, and with the density
f(x) which is of bounded variation: total variation of f(x)=M< .
Let F,(x) be the distribution function for the normalized sum of a sam-
ple of size n from F. Consider the remainder term,

(1) B,(x) = F\{a) = 0(2)— < 5 (1-2)(@)

of the Edgeworth expansion for F,. We shall show that the following
inequalities hold.

(2) sup | naR,(x) | =2[2¢(1—2¢) 2 +-¢ ],
+[203/9+ V2 || || [4V 0 ]
+min [2(V &, M)*, 6a,M*L7] ,

where c=c(a,)=a, log (2a,/(2a,—1))—11/24<1/4, L,=(M+~/'3a,/(k+1))"*, and
k=maximum integer not greater than 3a,M%: When F is symmetric,

(3) sup|nxR,(x)|=<[2¢(1—2¢)*+e " ]ay+min [(Va, M), 8a,M*L7] .

A similar inequality for the density is given in Section 6.
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2. An upper bound for |R,(x)|
Let

g.(t)= So_:o e dG,(x) :e"’”(l _i_é_:/f%ts)

be the Fourier-Stiltjes transform of

— [44] "}
G,.(w)—fl)(av)+6 e (1—z")g(2) ,

and let ¢(t) be the characteristic function of F. Since,

&) 1gl=|| es@ia|=| -4 |7_ewds@| s

for all t+0,

the inversion formula gives, for any real z and v,

(5)  R@-R@=o | = pr()—n0)]at .

It follows that
(6) IRn(x)Iésgp | Bo(@)— R.(y)|

<% S: ¢! ¢"<—-/%>—g..(t)|dt
[ le—-amoldt

=

CNTCEE NI

(LntLat L)

where

=1

ag /2
L=\ e O-aWmblde,
L.=" t'lg@lde,  and

L= S“’/ g (VT t)|dt .

If F' is symmetric,

() 1R@)|=| R = ROl =o=| | 222 () —utt)] ]
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_1

=gV = o) o)

g%m,ﬁzz,ﬂmn) :

3. Estimation of I,
LEMMA 1. For 0=t=<a;"? ¢(t) can be put in the form,

(8) H(t)=exp (—-tzi-—i%ﬂ-twAm#) ,

where | A|Zc(a)=a,log (2a,/(2a,—1))—11/24.
ProoF. We can write ¢(f) in two ways:

1

(9) ¢(t):1_§01t2

10 =1-Y _jJpy G gp,
( ) 2 746 +24 P

where [6,]<1, and |6,|<1. Put a(t)=¢(t)—1. In this case, because
la(t) | St /2<a;![2<1/2, for 0=t=<a;'?, we have,

log ¢(t)=log (1+a(t))=a(t)+()B(?) ,

where, of course,

1,1 1

=——+—at)—=a@t)+--- .

D Blty=——+gal) =T o(t)+
Therefore, (8) holds if we take

— ﬁ_ —13—4

A= 24 +a(t)B(t)ai 't

with

1 —-2(2,-1 .
| Al o+l att)t o A

1.1 /1.1 1
< - _;1<_ el = 2 )
_24+4a 2-|-3lat(t)|-|—4|0f(l‘l)|+
(3o e )
Sorte\g\em) T3lem) T

2, 11

1 ed.
2a—1 24 a.e

=a, log




198 RYOICHI SHIMIZU

Note that c¢(e) is monotone decreasing and tends to 1/24 as a, tends
to infinity, while ¢(1)<1/4 and ¢(9/5)<1/7.

It follows, from the lemma and the inequalities |e**v—1|<|x+1y|-
"l |e"—1—1iy|<y*/2 which are valid for any real z and y, that,

—1/2
4

(12) L= dt

t—le—nt’/z | e—i(ag/s)m’-uam# -1 -I—’b%i nts

0

o173
és ‘ t“e"‘"”le“’t""—l[dt
0

a‘—llﬂ
[ g ,
0

g ilas/®ni3 _ 1+1 %g_ nt

<cney S: tae"‘“"m"/zdt-l-%(%)zn” S:’ et

=2¢(1—2¢) ’a,/n+a3/In .

4. Estimation of I,

Inequality (4) gives,
(13) L., (it de=(a Myn. .

This estimate of I,, is useful only when va,M<1. In order to derive
another estimate which covers the case v, M>1, we need the following

LEMMA 2. The total variation of f*"<v3[n+1)M.

ProOOF. Let Uy(x) be the density of the uniform distribution on
the interval (—1/M, 1/M). According to Rogozin [3], the left-hand side
of the above inequality is bounded by the total variation 2U}"(0) of
the density Uj™(x). For n<3, therefore, the lemma is clear from
UF'(0)=UF¥0)=M/2 and Ui*0)=38M/8. If n=4, using the inversion
formula, we obtain,

0<Uz "(0)=§L S"" (sin tMJtMy'dt
T —oco

IA

MS‘”

-l
d,. M
n+1l 2

sint I“dt
t

IA
= =

[]

z/2 N oo
erut+ | trdt]

0 x

2

A

where
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d,= \/3(n+1) x/ n+1 (E)"}z
v n—1 \=x )
We have only to show that d,<3. But d, is decreasing and d,<2.781.

q.e.d.
If k is the greatest integer less than or equal to 3a,M, then

(15) k<3aM?,
and
3a,
16 L= L M<1.
s JEne
Since for n=1,2, ..., |¢"(t)|=|¢"@)|"*< {La;'*/|t|}"”* (using Lemma 2

and an inequality similar to (4)), we obtain,

(17) Iz,n_S (La )n/kt— -n/kdt k Ln/k< 3“4M

—1/2 ’

where L,=L"Y*<1. Since both inequalities (13) and (17) hold for any
case, we can use as the estimate of I,,, the smaller one.

(18) L, <min (Wa; MY'/n, 3a,M*Li/n) .

5. Estimation of I, and the proof of (2) and (3)

I, is directly evaluated as,

19 L=\

—1/2
4/

t-‘e-"“”(l+|—‘§]—nt3>dtga4e-"/2n/n+«/§|a3|a4/4n3/2.
The desired inequalities are obtained from (12), (18) and (19).

6. Remainder term for density and some special cases

The same method as above is applied to evaluate the remainder
term,

Sa() = fu() — p() — (2’ —3x)¢(x)

1/_
for the density f.(x)=+vn f*(Vn ).
Using the inversion formula we obtain,

18:@1=| o= |~_eo(97( ) o) dt|



200 RYOICHI SHIMIZU

<Y " |yt -amolds,  for nz2,

and
(20) sup |(n—2)zS,(x)|

§1/2_zr'[—2—c(1—2c)'5’2a4+ 11554 a§] + (ai/’+—(15—|asl>/ﬁ

+min [(Va; M)"*M, 3a,M*L27"] , n=3.

An important special case is when F is unimodal with the mode at
£=0. The corresponding characteristic function ¢(t) can be written in
the form,

)=t e)ds

where £(t) is a characteristic function. Multiplying both sides by ¢ and
differentiating at x=0, we have (if ¢***P(0) exists),

T+ ?0)=£0), j5=0,---,2k.
The well known sequence of inequalities for absolute moments, viz

16(2)(0) ll/Zg I E(l)(o) ll/4§ e

implies,

[+ D)) Z[(25 — ey o] ¥ >, or
(21) )

azjg 2.1+1 [(Zj—].)au_z].f/(j—l) s j=2, cen, k .

Therefore, if 5th moment does exist, then «,=9/5, c¢(a)=c(9/5)=
1/7, and ¢(1—2¢)7*<7/25. If F'is a symmetric unimodal distribution with
the finite 5th moment, and if va, M<1, (3) reduces to

sup | naR,(x) | < (39/25)as+(v oy M)" .

Example. For the symmetric uniform distribution with the vari-
ance 1 (f(x)=+v3/6, if |x|<+3, =0, otherwise), &,=12/5, M=2f(0)=
1/4#/3, and (3) becomes,

sup R,(¢)<R,=[2.4(2c(1—2¢) 2+ e ")+ 0.9"]/nx .

A computer calculation shows that E,=0.5027, R;=0.2946, R,=0.1957,
R;=0.1898, R,,=0.0447, R;;=0.0227, R, =0.01466, R;=0.00866, and R
=0.004969.

THE INSTITUTE OF STATISTICAL MATHEMATICS



[1]
[2]
[3]

REMAINDER TERM FOR THE CENTRAL LIMIT THEOREM 201

REFERENCES

Feller, W. (1966). An Introduction to Probability Theory and its Applications II, John
Wiley, New York.

Gnedenko, B. V. and Kolmogorov, A. N. (1967). Limit Distributions for Sum of In-
dependent Random Variables (English translation), Addison-Wesley, Cambridge, Mass.
Rogozin, B. A. (1965). On the maximum of the density of the sum of random vari-
ables with unimodal distribution, Litovsk. Mat. Sbh., 5, 499-503, English translation:
Selected Transl. Math. Statist. and Prob., 9, 69-74, 1970.



