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For a kernel belonging to L*-space, p>1, the rate of convergence
of Hoeffding’s [5] U-statistic to its expectation is studied ; this includes
as a special case a similar result on the sample mean previously studied
by Chung [3]. Also, an L*-convergence result of Pyke and Root [8] on
the sample partial sum is extended to U-statistics. :

1. Statement of the results

Let {X;, =1} be a sequence of independent and identically distrib-
uted random variables (i.i.d.r.v.) with a distribution function F(x), de-

fined on the real line R. For the sequence {X’,,zn“i}X,, n=1} of

sample means, using an inequality of Marcinkiewicz and Zygmund [7],
Chung [3] has shown that if X;€L?, p>1, then for every >0, there
exists a positive C(e)< oo, such that

p_ly 1<p<2 s
p/2, p=2.
It is also known [viz., Pyke and Root [8]] that for X, e L?, 0<p<2,

(1.1) P{X,—E X,|>c}<Cle)n™*; s=

1.2) n® /2| X, —a|— 0 almost surely (a.s.) and in L?,

as m — oo, where a=0 for p<1, and a=E X, for p=1. Our contention
is to show that similar results also hold for Hoeffding’s [5] U-statistics.

For a Borel-measurable kernel ¢(X;, ---, X,), symmetric in its
arguments, of degree m (=1), the U-statistic based on a sample of
size n (=m) is defined by

-1
3) U=(") D9y X,)i Con= (IS0 <insim).

Thus, if ¢ € L™!, then U, unbiasedly estimates the functional of the dis-
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tribution F' defined by

(1.4) (F)= Skm- - S 3y, -+, T)AF(@)- - -dF () .
Also, for ¢ € L', {U,, n=m} forms a reverse martingale sequence [cf.
Berk [1]], and hence, U,— 6(F') a.s. as m— oo ; however, no specific
rate of convergence is known. If ¢ € L?, it follows from Hoeffding [5]
that if 6(F) is stationary of order d (=0), then var {U,} =0(n"“*?), so
that by the Chebychev inequality, P {|{U,—6(F)|>¢} =Cle)n~2, s=(d+1)/2.
On the other hand, when p is not an even integer, the usual difficul-
ties associated with the computation of the p-th moment of |U,—6(F)|
introduces complications in the proof of (1.1) [or (1.2)]. This leads us
to prove formally the following theorem which is useful in the study
of sequential procedures based on U-statistics.

THEOREM 1. If ¢ € L?, p>1, then for every ¢>0, there exists a posi-
tive C(e) (<o), such that for all n=m,

p—l ’ 1<p<2 ’
(1.5) P{U,—O(F)| >} =Cleyn™*; s=

p/2, pP=2.
Also, for ¢ € L, 0<p<2, as n— oo,
(1.6) n®|U,—al— 0 a.s. and in L?,

where r(p)=mA—p™"), a=0 for p<1, and r(p)=1—p7', a=0(F) for p=1.

Note that for p<1, whereas | X,|=o(n*"'"") a.s. (and in L?), our |U,|
=o(n™*'-Y) a.s. (and in L?); we have not been able to equalize the
rates for p<1. Also, for 1<p<2, using the L*-convergence in (1.6)
along with the Markov inequality, we have for every >0, P {|U,—6(F)|
>¢}=o0(n"?*!), whereas in (1.5), we have o(n~?*'). Our proof is based
on a decomposition of U,, essentially due to Hoeffding [6], and certain
other L*-convergence results on martingales in Chatterji [2] and Dhar-
madhikari, Fabian and Jogdeo [4]. The theorem remains good when
the X, are ¢-dimensional stochastic vectors, for ¢=1.

2. The proof of the theorem
For every h (1=h<m), we let for ¢ € L?, p=1,

(2-1) ¢h(xlr ] wh)zE ¢(xn sy Ty Xh+1, M Xm) ’ ¢0=0(F);

-1
2.2) W,S")=<Z> DXy oo X); WO=0(F);
n,h
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R h
2.3) Um=3 (—1)*( k>W,E"""; U©@=0(F) .
k=
Then, by (1.3), (1.4), (2.2) and (2.8), for ¢ € L?, p=1, we have
(2.4) [Un—a(F)]=il(’,’:)Uﬂ>, nzm.
h=

Since ¢ € L?, p=1= ¢, € L?, p=1 for all h<m, in order to prove (1.5),
it suffices to show that for every A(1<h<m) and ¢, >0, there exists
a positive C(s,) (<o), such that for all n=h,

(2.5) p ”Ursh)|>5n} <Cle)n™*; h=1,---,m,

where s is defined in (1.5). Since U®=n"'3[¢(X,)—0(F)] involves
i=1

ii.d.r.v., by (1.1), (2.5) holds for h=1. So, we require only to prove
(2.5) for h=2. Let us now define
(2.6) V,S’”:(Z)U,S’”, h=2, -, m,
and let B, be the ¢-field generated by the order statisties correspond-
ing to X, ---, X, so that B, is 1 in n (21).

LEMMA 2. For every h Q=<h=m), {V®, B,; n=h} is a martingale.

The proof readily follows from (2.2), (2.3), (2.6) and some standard
computations; for details, we may refer to Hoeffding [6].

LEMMA 8. If ¢ L?, p=l, then E|VH-V®PICn** P, 2<h<m,
where C (<o) does not depend on n.

Proor. By (2.2), (2.3) and (2.6), V% —V,™ involves a sum over
2n(hf1> terms of the type g,(X,, -+ -, X, ), 1<i,< -+ <i,<n+1, 0=g<h,
and hence, the lemma follows directly by using the generalized C,-in-
equality \jﬁ_lcjr’gm-lé IC,|?, for p=1 along with E|g,|<E|¢|<oco for

all 0=g<h<m, when ¢ ¢ L.
LEMMA 4. If ¢eL?, 1<p<2, then
2.7 E|UMPLSC*n~*?, (C*<co, for all 2sh=m.

PROOF. By our Lemma 3 and Lemma 1 of Chatterji [2], we have
for every h (2=<h<m) and n=h,

(2.8) E|V,S")|P§2{E]V,E”> |v+j$ E[VP-V3 |P}
=h+
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s2c{1+3 jw-n} <CHp-; C*<oo.
j=h
Hence, the lemma directly follows from (2.6) and (2.8).
LEMMA 5. If ¢€ L?, p=2, then for every h 2<h=<m),
(2.9) E|UP|IP<C*n 72, C*< o,

PROOF. By our Lemma 3 and a theorem in Dharmadhikari, Fabian
and Jogdeo [4], for ¢ € L?, p=2,

(2.10) E|V®lP<Cnfl,, Cp,<co; 2=h=m,
where
2.11) ® = {E | V,s~>|p+:2:E VR=Vl| [nsCrnms,

C*<oo (as in (2.8)), 2<h=m.
Hence the lemma follows directly from (2.6), (2.10) and (2.11).
Now, by the preceding two lemmas, we have for every h: 2<h=<m,
(2.12) E|UPP<C*n~, ¢eLl?, p>1,

where s is defined in (1.5). Hence, (2.5) directly follows from (2.12)
and the Markov inequality.
To prove (1.6), we first consider the case 0<p<l. We let Z,=

#(Xy, - -+, Xn), and for k>m, the set of <1I:1,—11> kernels #(X,, X, -+,

X; ), 1=1,<.--<t <k—1 is indexed in an arbitrary order as Zg-y,,,

j=1, M) <k_]i>, so that

(2.13) Uy=N-'3"2,; N=<">, azm.
j=1 m

The Z; are marginally identically distributed and S[Z,|P<oo for ¢ € Lr.

So the conditions of the theorem of Chatterji [2] are satisfied, and
hence,

—_p—1
(2.14) N“/P‘{‘IZ,=<">1 " U,—0 as. and in L7, as n— oo.
j= m

This completes the proof for p<1. The case of p=1 follows readily

by using the reverse martingale property of U,, as mentioned in Seec-

tion 1. So, in the remaining, we confine ourselves only to 1<p<2.
We are entitled here to use (2.4), where by Pyke and Root [8],
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(2.15) lim {»"?"'U®} =0 a.s. and in L?, 1<p<2.
Also, by (2.2) and (2.3), for every h (2<h<m), n<h,

(2.16) U»= < Z >_102 (X -1 X))

(2.17) (X, -+, X)
R
=¢n(X1, tt Xn)“% ¢n—1(X1’ tty Xj—l! Xj+ly ttty Xn)
+ 2 ¢n-—z(Xn ct Xj—l’ Xj+1) ct Xk—ly Xk+1? Sty Xn)' *
1sj<ksh

+(—=1)6(F).
Note that ¢ € L?= ¢y € L* for all h<m, and by (2.17),
(2.18) E|g¥|P<2r D E|g|P<co for $eL?, 1<p<2; h<m.

Thus, if we write for n=h

219) £o=("71) S Xy - X)= (1T V-V,

%
where the summation > extends over all 1<4,<---<4,<n—1, we have

(2.20) sup E|f|’SE|gi(X,, - -+, X,)[’<2"-E|g|?’<c0,  $eL?;

(2.21) E{f™|B,.;} =0 a.s., by Lemma 2 and (2.19).
Finally, writing for j<n (=h)

j—1\/n—1\"!
2.22 bS,"?zh(-’ >< ) . 2<h=m,
®.22) M -1/ \n—1 ==

we have from (2.16), (2.19) and (2.22),
(2.23) WP U =0 P STARFP . nzh, 2<h=m.
Jj=h

Let us then consider the following lemma.
LEMMA 6. Let {Z, n=1} be a martingale difference sequence, {a.;
1<j7<n}, n=1 be sequences of real numbers such that sup max |a,;|< oo,
n 1sjsn
and for 1<p<2, sup E|Z,|?<co. Then

n—00

(2.24) lim {n‘“f’jE;a,,,Z,}:O a.s. and in L*.

The proof follows virtually on the same lines as in the second part
of the proof of the theorem in Chatterji ([2], p. 1069), and hence, is
omitted.
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Now, by (2.22), sup max [b{?|=h, and hence, by (2.20), (2.21), (2.23)
. n 1=5jsn

and Lemma 6, we obtain that for ¢ € L?, 1<p<2

(2.25) lim {n'?7'U®} =0 a.s. and in L?, for all h<m.

From (2.4), (2.15) and (2.25) the a.s. result in (1.6) follows directly,
while using, in addition, the Minkowski inequality, the L*-convergence
in (1.6) follows. Q.E.D.
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