ON L^p -CONVERGENCE OF U-STATISTICS*

PRANAB KUMAR SEN

(Received Oct. 21, 1971; revised Dec. 16, 1972)

For a kernel belonging to L^p -space, p>1, the rate of convergence of Hoeffding's [5] U-statistic to its expectation is studied; this includes as a special case a similar result on the sample mean previously studied by Chung [3]. Also, an L^p -convergence result of Pyke and Root [8] on the sample partial sum is extended to U-statistics.

1. Statement of the results

Let $\{X_i, i \ge 1\}$ be a sequence of independent and identically distributed random variables (i.i.d.r.v.) with a distribution function F(x), defined on the real line R. For the sequence $\{\bar{X}_n = n^{-1} \sum_{i=1}^n X_i, n \ge 1\}$ of sample means, using an inequality of Marcinkiewicz and Zygmund [7], Chung [3] has shown that if $X_i \in L^p$, p > 1, then for every $\varepsilon > 0$, there exists a positive $C(\varepsilon) < \infty$, such that

(1.1)
$$P\{|\bar{X}_n - E \bar{X}_n| > \varepsilon\} < C(\varepsilon)n^{-s}; \quad s = \begin{cases} p-1, & 1 < p < 2, \\ p/2, & p \ge 2. \end{cases}$$

It is also known [viz., Pyke and Root [8]] that for $X_i \in L^p$, 0 ,

(1.2)
$$n^{(p-1)/p}|\bar{X}_n-\alpha| \to 0$$
 almost surely (a.s.) and in L^p ,

as $n \to \infty$, where $\alpha = 0$ for p < 1, and $\alpha = \mathbf{E} \, \bar{X}_n$ for $p \ge 1$. Our contention is to show that similar results also hold for Hoeffding's [5] *U*-statistics.

For a Borel-measurable kernel $\phi(X_1, \dots, X_m)$, symmetric in its arguments, of degree $m \ (\geq 1)$, the *U*-statistic based on a sample of size $n \ (\geq m)$ is defined by

$$(1.3) U_n = \left(\frac{n}{m}\right)^{-1} \sum_{C_{n,m}} \phi(X_{i_1}, \cdots, X_{i_m}); C_{n,m} = \{1 \leq i_1 < \cdots < i_m \leq n\}.$$

Thus, if $\phi \in L^{-1}$, then U_n unbiasedly estimates the functional of the dis-

^{*} Work supported by the Army Research Office, Durham, Grant DA-ARO-D-31-124-70-G6.

tribution F defined by

(1.4)
$$\theta(F) = \int_{\mathbb{R}^m} \cdots \int \phi(x_1, \dots, x_m) dF(x_1) \cdots dF(x_m) .$$

Also, for $\phi \in L^1$, $\{U_n, n \ge m\}$ forms a reverse martingale sequence [cf. Berk [1]], and hence, $U_n \to \theta(F)$ a.s. as $n \to \infty$; however, no specific rate of convergence is known. If $\phi \in L^2$, it follows from Hoeffding [5] that if $\theta(F)$ is stationary of order $d \in [0]$, then $\operatorname{var}\{U_n\} = O(n^{-(d+1)})$, so that by the Chebychev inequality, $\operatorname{P}\{|U_n - \theta(F)| > \varepsilon\} \le C(\varepsilon)n^{-s}$, s = (d+1)/2. On the other hand, when p is not an even integer, the usual difficulties associated with the computation of the p-th moment of $|U_n - \theta(F)|$ introduces complications in the proof of (1.1) [or (1.2)]. This leads us to prove formally the following theorem which is useful in the study of sequential procedures based on U-statistics.

THEOREM 1. If $\phi \in L^p$, p>1, then for every $\varepsilon>0$, there exists a positive $C(\varepsilon)$ ($<\infty$), such that for all $n \ge m$,

(1.5)
$$P\{|U_n - \theta(F)| > \varepsilon\} \leq C(\varepsilon)n^{-\varepsilon}; \quad s = \begin{cases} p-1, & 1$$

Also, for $\phi \in L^p$, $0 , as <math>n \to \infty$,

(1.6)
$$n^{r(p)}|U_n-\alpha|\to 0 \text{ a.s. and in } L^p,$$

where $r(p) = m(1-p^{-1})$, $\alpha = 0$ for p < 1, and $r(p) = 1 - p^{-1}$, $\alpha = \theta(F)$ for $p \ge 1$.

Note that for p<1, whereas $|\bar{X}_n|=o(n^{p^{-1}-1})$ a.s. (and in L^p), our $|U_n|=o(n^{m(p^{-1}-1)})$ a.s. (and in L^p); we have not been able to equalize the rates for p<1. Also, for 1< p<2, using the L^p -convergence in (1.6) along with the Markov inequality, we have for every $\varepsilon>0$, $P\{|U_n-\theta(F)|>\varepsilon\}=o(n^{-p+1})$, whereas in (1.5), we have $o(n^{-p+1})$. Our proof is based on a decomposition of U_n , essentially due to Hoeffding [6], and certain other L^p -convergence results on martingales in Chatterji [2] and Dharmadhikari, Fabian and Jogdeo [4]. The theorem remains good when the X_i are q-dimensional stochastic vectors, for $q\ge 1$.

2. The proof of the theorem

For every h $(1 \le h \le m)$, we let for $\phi \in L^p$, $p \ge 1$,

(2.1)
$$\phi_h(x_1, \dots, x_h) = \mathbb{E} \phi(x_1, \dots, x_h, X_{h+1}, \dots, X_m); \quad \phi_0 = \theta(F);$$

(2.2)
$$W_n^{(h)} = {n \choose h}^{-1} \sum_{C_{n,h}} \phi_h(X_{i_1}, \dots, X_{i_h}); \quad W_n^{(0)} = \theta(F);$$

(2.3)
$$U_n^{(h)} = \sum_{k=0}^h (-1)^k \binom{h}{k} W_n^{(h-k)}; \quad U_n^{(0)} = \theta(F).$$

Then, by (1.3), (1.4), (2.2) and (2.3), for $\phi \in L^p$, $p \ge 1$, we have

$$[U_n - \theta(F)] = \sum_{h=1}^m \binom{m}{h} U_n^{(h)}, \qquad n \ge m.$$

Since $\phi \in L^p$, $p \ge 1 \Rightarrow \phi_h \in L^p$, $p \ge 1$ for all $h \le m$, in order to prove (1.5), it suffices to show that for every $h(1 \le h \le m)$ and $\varepsilon_h > 0$, there exists a positive $C(\varepsilon_h)$ ($<\infty$), such that for all $n \ge h$,

(2.5)
$$P\{|U_n^{(h)}| > \varepsilon_h\} \leq C(\varepsilon_h)n^{-s}; \quad h=1, \dots, m,$$

where s is defined in (1.5). Since $U_n^{(1)} = n^{-1} \sum_{i=1}^n [\phi_i(X_i) - \theta(F)]$ involves i.i.d.r.v., by (1.1), (2.5) holds for h=1. So, we require only to prove (2.5) for $h \ge 2$. Let us now define

$$(2.6) V_n^{(h)} = {n \choose h} U_n^{(h)}, h=2, \cdots, m,$$

and let \mathcal{B}_n be the σ -field generated by the order statistics corresponding to X_1, \dots, X_n , so that \mathcal{B}_n is \uparrow in $n \ (\geq 1)$.

LEMMA 2. For every h $(2 \le h \le m)$, $\{V_n^{(h)}, \mathcal{B}_n; n \ge h\}$ is a martingale.

The proof readily follows from (2.2), (2.3), (2.6) and some standard computations; for details, we may refer to Hoeffding [6].

LEMMA 3. If $\phi \in L^p$, $p \ge 1$, then $E |V_{n+1}^{(h)} - V_n^{(h)}|^p < Cn^{p(h-1)}$, $2 \le h \le m$, where $C (< \infty)$ does not depend on n.

PROOF. By (2.2), (2.3) and (2.6), $V_{n+1}^{(h)} - V_n^{(h)}$ involves a sum over $2^h \binom{n}{h-1}$ terms of the type $\phi_g(X_{i_1}, \, \cdots, \, X_{i_g})$, $1 \leq i_1 < \cdots < i_g \leq n+1$, $0 \leq g \leq h$, and hence, the lemma follows directly by using the generalized C_p -inequality $\left|\sum\limits_{j=1}^N C_j\right|^p \leq N^{p-1} \sum\limits_{j=1}^N |C_j|^p$, for $p \geq 1$ along with $\mathrm{E}\,|\phi_g| \leq \mathrm{E}\,|\phi| < \infty$ for all $0 \leq g \leq h \leq m$, when $\phi \in L^p$.

LEMMA 4. If $\phi \in L^p$, 1 , then

(2.7)
$$\mathbb{E} |U_n^{(h)}|^p \le C^* n^{-(p-1)}, \quad C^* < \infty, \quad \text{for all} \quad 2 \le h \le m.$$

PROOF. By our Lemma 3 and Lemma 1 of Chatterji [2], we have for every h $(2 \le h \le m)$ and $n \ge h$,

(2.8)
$$\mathbf{E} |V_n^{(h)}|^p \leq 2 \left\{ \mathbf{E} |V_h^{(h)}|^p + \sum_{j=h+1}^n \mathbf{E} |V_j^{(h)} - V_{j-1}^{(h)}|^p \right\}$$

$$\leq 2C \left\{ 1 + \sum_{j=h}^{n-1} j^{p(h-1)} \right\} \leq C * n^{ph-p+1}; \quad C * < \infty.$$

Hence, the lemma directly follows from (2.6) and (2.8).

LEMMA 5. If $\phi \in L^p$, $p \ge 2$, then for every h $(2 \le h \le m)$,

(2.9)
$$E |U_n^{(h)}|^p \leq C^* n^{-p/2}, \qquad C^* < \infty.$$

PROOF. By our Lemma 3 and a theorem in Dharmadhikari, Fabian and Jogdeo [4], for $\phi \in L^p$, $p \ge 2$,

(2.10)
$$\mathrm{E} |V_n^{(h)}|^p \leq C_p n^{p/2} \beta_{n,p}^{(h)}, \quad C_p < \infty; \quad 2 \leq h \leq m,$$

where

(2.11)
$$\beta_{n,p}^{(h)} = \left\{ \mathbf{E} \left| V_h^{(h)} \right|^p + \sum_{j=h}^{n-1} \mathbf{E} \left| V_{j+1}^{(h)} - V_j^{(h)} \right|^p \right\} / n \leq C * n^{ph-p},$$

$$C^* < \infty \text{ (as in (2.8))}, \qquad 2 \leq h \leq m.$$

Hence the lemma follows directly from (2.6), (2.10) and (2.11).

Now, by the preceding two lemmas, we have for every $h: 2 \le h \le m$,

(2.12)
$$E|U_n^{(h)}|^p \le C^* n^{-s}, \quad \phi \in L^p, \quad p>1,$$

where s is defined in (1.5). Hence, (2.5) directly follows from (2.12) and the Markov inequality.

To prove (1.6), we first consider the case $0 . We let <math>Z_1 = \phi(X_1, \dots, X_m)$, and for k > m, the set of $\binom{k-1}{m-1}$ kernels $\phi(X_k, X_{i_2}, \dots, X_{i_m})$, $1 \le i_2 < \dots < i_m \le k-1$ is indexed in an arbitrary order as $Z_{\binom{k-1}{m}+j}$, $j=1,\dots,\binom{k-1}{m-1}$, so that

$$(2.13) U_N = N^{-1} \sum_{j=1}^N Z_j; \quad N = \binom{n}{m}, \quad n \ge m.$$

The Z_j are marginally identically distributed and $\int |Z_j|^p < \infty$ for $\phi \in L^p$. So the conditions of the theorem of Chatterji [2] are satisfied, and hence,

(2.14)
$$N^{-1/p} \sum_{j=1}^{N} Z_j = {n \choose m}^{1-p^{-1}} U_n \to 0 \text{ a.s. and in } L^p, \text{ as } n \to \infty.$$

This completes the proof for p<1. The case of p=1 follows readily by using the reverse martingale property of U_n , as mentioned in Section 1. So, in the remaining, we confine ourselves only to 1 .

We are entitled here to use (2.4), where by Pyke and Root [8],

(2.15)
$$\lim_{n \to \infty} \{ n^{1-p^{-1}} U_n^{(1)} \} = 0 \text{ a.s. and in } L^p, \ 1$$

Also, by (2.2) and (2.3), for every h ($2 \le h \le m$), $n \le h$,

(2.16)
$$U_n^{(h)} = {n \choose h}^{-1} \sum_{c_{n,h}} \phi_h^*(X_{i_1}, \dots, X_{i_h});$$

$$(2.17) \quad \phi_{h}^{*}(X_{1}, \dots, X_{h})$$

$$= \phi_{h}(X_{1}, \dots, X_{h}) - \sum_{j=1}^{h} \phi_{h-1}(X_{1}, \dots, X_{j-1}, X_{j+1}, \dots, X_{h})$$

$$+ \sum_{1 \leq j < k \leq h} \phi_{h-2}(X_{1}, \dots, X_{j-1}, X_{j+1}, \dots, X_{k-1}, X_{k+1}, \dots, X_{h}) \dots$$

$$+ (-1)^{h} \theta(F).$$

Note that $\phi \in L^p \Rightarrow \phi_h^* \in L^p$ for all $h \leq m$, and by (2.17),

(2.18)
$$\mathrm{E} |\phi_h^*|^p \leq 2^{h(p-1)} \, \mathrm{E} |\phi|^p < \infty \quad \text{for} \quad \phi \in L^p, \quad 1 \leq p < 2; \quad h \leq m.$$

Thus, if we write for $n \ge h$

$$(2.19) \quad f_n^{(h)} = {n-1 \choose h-1}^{-1} \sum_{n=1}^{k} \phi_n^*(X_n, X_{i_2}, \dots, X_{i_h}) = {n-1 \choose h-1}^{-1} [V_n^{(h)} - V_{n-1}^{(h)}],$$

where the summation $\sum_{n=1}^{\infty}$ extends over all $1 \leq i_2 < \cdots < i_n \leq n-1$, we have

(2.20)
$$\sup_{n} E |f_{n}^{(h)}|^{p} \leq E |\phi_{n}^{*}(X_{1}, \dots, X_{h})|^{p} < 2^{h} \cdot E |\phi|^{p} < \infty, \qquad \phi \in L^{p};$$

(2.21)
$$E\{f_n^{(h)}|\mathcal{B}_{n-1}\}=0 \text{ a.s., by Lemma 2 and (2.19)}.$$

Finally, writing for $j \leq n \ (\geq h)$

$$b_{nj}^{(h)} = h \binom{j-1}{h-1} \binom{n-1}{h-1}^{-1}, \qquad 2 \leq h \leq m,$$

we have from (2.16), (2.19) and (2.22),

$$(2.23) n^{1-p^{-1}}U_n^{(h)} = n^{-p^{-1}}\sum_{j=h}^n b_{nj}^{(h)}f_j^{(h)}, \quad n \ge h, \quad 2 \le h \le m.$$

Let us then consider the following lemma.

LEMMA 6. Let $\{Z_n, n \ge 1\}$ be a martingale difference sequence, $\{a_{nj}, 1 \le j \le n\}$, $n \ge 1$ be sequences of real numbers such that $\sup_{n} \max_{1 \le j \le n} |a_{nj}| < \infty$, and for $1 , <math>\sup_{n} E |Z_n|^p < \infty$. Then

(2.24)
$$\lim_{n\to\infty} \left\{ n^{-1/p} \sum_{j=1}^n a_{nj} Z_j \right\} = 0 \text{ a.s. and in } L^p.$$

The proof follows virtually on the same lines as in the second part of the proof of the theorem in Chatterji ([2], p. 1069), and hence, is omitted.

Now, by (2.22), $\sup_{n} \max_{1 \le j \le n} |b_{nj}^{(n)}| = h$, and hence, by (2.20), (2.21), (2.23) and Lemma 6, we obtain that for $\phi \in L^p$, 1

(2.25)
$$\lim_{n \to \infty} \{ n^{1-p^{-1}} U_n^{(h)} \} = 0 \text{ a.s. and in } L^p, \text{ for all } h \leq m.$$

From (2.4), (2.15) and (2.25) the a.s. result in (1.6) follows directly, while using, in addition, the Minkowski inequality, the L^p -convergence in (1.6) follows.

Q.E.D.

Acknowledgement

The author is grateful to the referee for his critical reading of the manuscript and useful comments.

REFERENCES

- [1] Berk, R. H. (1966). Limiting behavior of posterior distributions when the model is incorrect, *Ann. Math. Statist.*, 37, 51-58.
- [2] Chatterji, S. D. (1969). An L^p-convergence theorem, Ann. Math. Statist., 40, 1068-1070.
- [3] Chung, K. L. (1951). The strong law of large numbers, Proc. Second Berkeley Symp. Math. Statist. Prob., 341-352. (Univ. Calif. Press.)
- [4] Dharmadhikari, S. W., Fabian, V., and Jogdeo, K. (1968). Bounds on moments of martingales, Ann. Math. Statist., 39, 1719-1723.
- [5] Hoeffding, W. (1948). A class of statistics with asymptotically normal distribution, Ann. Math. Statist., 19, 293-325.
- [6] Hoeffding, W. (1961). The strong law of large numbers for *U*-statistics, *Inst. Statist.*, *Univ. North Carolina, Mimeo Report*, No. 302.
- [7] Marcinkiewicz, J., and Zygmund, A. (1937). Sur les fonctions independantes, Fund. Math., 29, 60-90.
- [8] Pyke, R., and Root, D. (1968). On convergence in r-means of normalized partial sums, Ann. Math. Statist., 39, 379-381.