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1. Introduction and summary

It was noticed by several research workers, e.g. Bahadur [1], Bech-
hofer [3], that after carrying out a test of homogeneity, one is often
interested in either ranking the treatments or selecting one or more
of the ‘best’ treatments. Bahadur [1] and Bahadur and Goodman [2]
proposed certain impartial decision rules for selecting one or more pop-
ulations from among k populations. Bechhofer [3] proposed a procedure
for selecting the ‘best’ of k populations with at least a preassigned
probability P* of ‘correct selection’ using an ‘indifference zone’ ap-
proach. Seal [12], Gupta [8], and Gupta and Sobel [9] proposed pro-
cedures for selecting a subset from k% populations which would contain
the best population with probability at least P*. Somerville [14] and
Fairweather [7] proposed minimax two-stage procedures for selecting
the best population.

Procedures for selecting a single population using a Bayesian deci-
sion theoretic approach and linear loss functions were developed by
Raiffa and Schlaiffer [11]. More recently, Bland and Bratcher [4] and
Bratcher [5] have studied Bayesian procedures for ranking binomial
populations by a succession of pairwise comparisons; and Deeley and
Gupta [6] have studied Bayesian procedures for selecting a subset from
k populations which involve a general class of linear loss functions.

In this paper we present a unified treatment of ranking and selec-
tion problems from a Bayesian decision theoretic point of view. Consider
k populations II,,-- ., II, whose distributions belong to the same param-
etrized family. Let f(x|6, w) denote the likelihood function for these
distributions, where 6 is the single parameter of interest and w denotes
possible nuisance parameters. Let 6, denote the true value of the param-
eter ¢, associated with the ith population, 7,, t=1,---, k. Assume that
prior distributions have been assigned to the parameters (¢;, w;), and
random samples have been obtained from the populations I7;, i=1,---, k.
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Let h,(6) denote the resulting marginal posterior density concerning the
parameter 6,, i=1,---,k. Also let P” and E” denote probabilities and
expectations taken with respect to posterior distributions.

In Section 2, a ranking procedure is developed under certain ter-
minal losses so that, roughly speaking, the decision-maker is led to
assign higher rank to /7, than to II, if he believes that @, is probably
greater than 6, in the sense that P” (4,<6,)>P" (6,<6,). Ranking pro-
cedures are derived in Section 3 for several types of situations in which
the terminal losses are specified by functions w,(6;) of the true param-
eter values 6, for the population or populations selected from the ranking
according to a given procedure. In Section 4, the ranking procedures
of Sections 2 and 3 are shown to be equivalent under certain circum-
stances. This equivalence is shown in part by obtaining sufficient condi-
tions for the monotonicity of the ratio of two posterior densities, k,(6)/
h(6). These conditions are similar to the sufficient conditions for the
monotone likelihood ratio property. Section 5 consists of a discussion
of certain problems of selecting a subset from the k populations.

2. Ranking procedures

Suppose that one wishes to report a ranking R: 6, <6,<---<6,
of k populations having distributions as described in the introduction.
Following a Bayesian decision theoretic approach, the decision-maker
may assign a loss function I(R, #) which depends on the ranking R
selected, and on the true values 8=(6,,---,6,) of the parameters of
interest. Having obtained a posterior density h(#) concerning the param-
eters @, he will then decide upon that ranking R which minimizes the
posterior expected loss,

2.1) L(R)= SQ- : -Sa R, 6)h(6)d6 .

A ranking R: 6, <6,,<---<6, will be denoted by an ordered sequ-
ence R=(iy, %, -+, %) where 1<4,<k, 1<j<k. Here ¢, denotes the
index of that population which is assigned rank j, j=1,---,k. The
indices ¢, are sometimes called anti-ranks. Loss functions will be pre-
sented so that, intuitively speaking, if the decision-maker tends to
believe that 6,<6, for two indices ¢, j, he will be led to assign higher
rank to 7, than to I7,, i.e. he will choose R=(3,---, ;) where the
integer 1 precedes the integer j.

Perhaps the simplest loss function is [,(R, ), which assigns loss 1
to any ranking R which is not correct given the true parameter values
8, and loss 0 to the correct ranking. Assuming this loss function, the
posterior expected loss for a ranking R is
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2.2) L(R)=1—P" (R)=1— SR oo ,

where by an abuse of terminology, R denotes the event that R is the
correct ranking.

The loss function (R, 6) is thus attractive because of its simplicity ;
however it seems to possess the following two disadvantages.
(i) I(R, 8) may be an inappropriate formulation of the decision-maker’s
losses in that it assigns equal loss to any incorrect ranking, whether it
be only mildly incorrect or drastically incorrect.
(ii) As the number k of populations increases, it rapidly becomes more
difficult to evaluate by numerical quadrature the k! distinct k-dimensional
integrals (2.2) that are needed in order to determine the optimal ranking.

Thus it would be useful to modify I, so that differing degrees of
error are reflected in the losses. It would also be desirable for such
a modified loss function to lead to a more tractable computational pro-
cedure. This section is concerned with such a modification of [,. We
begin by introducing the following terminology.

A transposition of two adjacent indices in a ranking will be called
an interchange. Thus, for j=2,---,k the rankings R=(;,- -, t;-1, 1,
v, %) and R'=(iy,-++, 1, %1, *+, %) differ by an interchange. A finite
sequence of rankings R,, Ry,---, R, where any two adjacent rankings
differ by an interchange will be referred to as a chain. The number
m of interchanges will be called its length.

DEFINITION. For any two rankings R and R’, the distance d(R, R')
from R to R’ will be defined as the minimum number of interchanges
in any chain from R to R'.

The function d(R, R') satisfies the axioms of a metric distance, that is
(i) d(R, R")=0 if and only if R=R'.

(ii) d(R, R)=d(R', R).
(ili) d(R, R")<d(R, R')+d(R', R").

As an example of this notion, consider R: 6,<6,<6, and R*: 6,<
6,<6;. Then d(R, R')=2 since a chain from R to R’ of minimum length
is given by; (6:<60,<8y), (6:<6;<8,), (6,<0,<8).

Let RY6) denote the true or correct ranking for given parameter
values 8. The distance d(R, R(#)) between an assigned ranking R and
the correct ranking R°%6f) may be interpreted as the number of correc-
tions (interchanges) needed to correct R.

A loss function [(R, ) may be proposed in terms of the distance
d(R, R(8)), namely

(2.3) (R, 6)=d(R, R'(9)) .
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It follows that the posterior expected loss under an assigned rank-
ing R is given by

(2.4) Ly(R)=2d(R, @) P" (@)

where the summation is over all k! possible rankings @, and P” (Q) de-
notes the posterior probability that @ is the true ranking. The decision-
maker can determine the optimal ranking by evaluating each of the k!
distinct k-dimensional integrals P” (@). Thus the procedure for deter-
mining the optimal ranking under I, appears to involve essentially the
same computational effort as that for determining the optimal ranking
under l;. The following somewhat technical material will lead to a
more effective computational procedure for determining the optimal
ranking under the loss [,.

Consider first those transformations 7 of the class of all rankings
which are defined as follows. For a permutation g of the integers 1,
«++,k, let y denote the induced transformation of rankings R=(1,,- - -, %;),

(2.5) rR=(g(3)," - -, 9(%)) -
Then for any rankings R, R’, and any such transformation 7,
(2.6) d(yR, yR')=d(R, R') .

To verify (2.6), note that if two rankings @ and Q' differ by an inter-
change, e.g. of 7, , and ¢,, then yQ and Q' also differ by an interchange,
namely of g¢(¢,_,) and g(i,). Applying y to each ranking in a minimal
chain from R to R’, i.e. a chain of length d(R, R'), one obtains a chain
of length d(R, R') from 7R to yR'. Hence d(yR, yR')<d(R, R'). Likewise,
applying 7! to each ranking in a minimal chain from yR to yR’, one
concludes that d(R, R')<d(yR, yR’). Hence (2.6) follows.

The following algorithm constructs a chain from an arbitrary rank-
ing R=(ty,---, 1) to the ranking I=(1,2,---,k) which will be shown
to be of minimal length. One proceeds induectively on the index m=
1,2,.--,k so that for each value of m a portion of the chain is con-
structed ending in a ranking R, whose first m entries are in increasing
order. Hence R, must equal I. Let R,=R. For m=2, interchange
iy and %, in R if %,>1,, otherwise let R,=R. Inductively, given the
ranking R,=(%, -+, %, tmy1r"* *» 4x), COMpare 4,,, with 4,4, _,---,
successively, and interchange %,,, with each ¢ for which i,>1%,.,. Let-
ting m=1, 2,--., k, the chain is constructed. It should be noted that
the number of interchanges leading from R, to R,.., equals the number
of indices 7}, 1<I<m, such that %;>1,,,.

As an example of this algorithm, the following chain leads from
R=(2,1,4,3) to I; R,=(2,1,4,3), R,=(1,2,4,8), B,=R,, R,=(1,2,3,4).
Here d(R, I)=2.
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LEMMA 2.1. For any ranking R=(t,- -, 1),
k
(2.7) d(R, I)=m‘u:1 %H(il'—im)

where H(n)=1 if n=0, H(n)=0 if n<0 is the Heaviside function.

PrOOF. The double sum in (2.7) equals the number of pairs of en-
tries 1,, i, in R, l<m, for which %,>%,. This equals the number of
interchanges in the chain from R to I constructed according to the
previous algorithm. On the other hand, consider any pair 4,, %,, [<m
where 1,>%,. Any chain leading from R to I must contain an inter-
change of ¢, and 4,,. Thus any chain from R to I must have length
at least the quantity specified in (2.7), so the proof is complete.

LEMMA 2.2. For any integer h, 25h=<k, let R=(1y,«+, Th_t, Tny***,
1) and R'=(iy,+, Ty, taey, *+, 1) denote two rankings which differ by
an interchange of the hth and (h—1)st entries.

Then, for any ranking @=(J, -, J.), the difference d(R, Q)—d(R’, Q)
equals —1 if 4,_, preceeds 1, in Q, and +1 if 1, preceeds 1,_, in Q.

Proor. Consider first the case @=1I. Comparing the representa-
tions (2.7) of d(R, I) and d(R’, I), the terms where m#k—1 or k cancel
leaving,

(2.8) d(R, I)—d(R, I)=¢<En_1 H(il—i,,_,)—kl}f‘i H(i,—1)
— 3 H(i—i-)—3 Hii—i) -

Here 1) refers to entries in R'. Note that i;=1; for j#h—1 or h, i;_,
=1,, and 1,=1,_,. Thus by combining the first and fourth terms, and
the second and third terms, (2.8) reduces to

(2.9) d(R, I)—d(R', I)= —H(th—th-1)+ H(tp_1—1s) -
This proves the lemma when Q=1

Consider next a general ranking Q. Let y denote the transforma-
tion defined by (2.5) which carries @ into I. Thus 7 is defined by the
permutation g(j,)=m, m=1,---, k. Assume that 4,_, preceeds 7, in Q.
Then g(1,-,)<g(%,), i.e. g(i,_,) preceeds g(i,) in I. The rankings yR and
yR' differ only by an interchange of g(¢,_,) and g(i,), so the above proof
implies that d(yR, I)—d(yR', I)=—1. Thus by (2.6), d(R, Q) —d(R’, Q)=
d(yR, Q) —d(yR', yQ)=—1. By a similar argument, if ¢, preceeds i,_,,
then d(R, Q)—d(R', Q)= +1.

THEOREM 2.1. If two rankings R and R' differ only by an inter-
change of 6,<6, in R to 6,<0, in R', then
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(2.10) LyR)—Ly(R')=—P" (8,<8,)+P" (6,<0,) .

ProOF. The difference L,(R)— L(R') equals Y (d(R, Q)—d(R', Q)):
P” (Q) by (2.4) where the summation is over all k! rankings. The event
0,<0,, as a subset of the space of values of 8, is the disjoint union of
those rankings Q: 6, <---<@, for which 6, preceeds 6,, and 6,<9; is
the disjoint union of those rankings for which 6, preceeds 6,. However,
by the previous lemma, d(R, Q)—d(R’, Q) equals —1 for rankings of the
first type and equals +1 for rankings of the second type. Thus (2.10)
follows.

Theorem 2.1 provides a simple ecriterion for comparing any two
rankings which differ only by an interchange. The decision-maker pre-
fers that ranking such that 77, is assigned higher rank than /7, provided
that he believes 6, to be probably greater than 6, in the sense that
P"(0,<6,)>P" (6,>6,). The result also justifies the following computa-
tional procedure for determining the ranking which minimizes the pos-
terior expected loss Ly(R).

Procedure for implementing l.(R, 8)
(i) Compute each of the k(k—1)/2 double integrals, P” (6;<¥6;), 1=1<
i=k.
(ii) For each ranking R, determine the minimal chain from R to I
according to the algorithm described above, and sum the differences
Ly(Q)—LQ)=—P" (,<8,)+P" (6,<8,) corresponding to each interchange
from Q to @ in the chain, thus obtaining L,(R)— Ly(I).
(ili) Choose a ranking which minimizes Ly(R)— Ly(I).

Example 2.1. The following counter-expample seems to indicate
that this procedure cannot be further simplified in general. Three
independent distributions of 6,, 6,, and 6; are defined such that P (6,<4,)
>P (6,<6,), and P (6,<6;)>P (6;<8,), but P (6, <) <P (6,<8)).

Let P (6,=—0.5)=2/3, P (6,=1)=1/3; 6,=0 with probability 1; and
P (#,=—-1)=1/3, P(6;=0.5)=2/3. Then P (6,<8,)=2/3, P (6,<8;)=2/3,
and yet P (6,<6;)=4/9. Thus the relation P (6,<6,)>1/2 is not always
transitive. In this counter-example, roughly speaking, #, is probably
less than 6,, 6, is probably less than 6,, but 6, is probably greater than
#,. Similar counter-examples can be constructed where 4,, #,, and 6;
have continuous distributions. ’

3. Loss functions depending on ¢,

The loss function (R, ) has been proposed as an appropriate loss
function for many situations in which the loss depends on the degree
of error in the chosen ranking. This section considers four types of
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situations in which the losses are direct functions of the true parameter
values 6,, t=1,---, k. For these situations, it will be somewhat more
convenient to consider utility rather than loss. Let w(R, #) denote a
utility function, and U(R) a posterior expected utility. In each situa-
tion, the ranking is for the specific purpose of later selecting one or
more populations according to a given procedure. After the selection,
utilities will be realized which depend_only on the true values 6, for the
populations selected. Assume that for preassigned functions w;, a utility
w;(#,) is realized whenever population 77, is selected, i=1,---, k.

Consider first a situation in which a single population is to be
selected from the k ranked populations according to a probability dis-
tribution depending only on the ranks of the populations. Let p, denote
the imputed probability that the population assigned rank 4 will be
selected, t=1,.--, k. Also assume that

@3.1) 0<p<---<p<l.

Then, the utility function and the posterior expected utility for
the ranking R=(i,---, t;) are,

(3.2) (R, O)=w, (0:)pi+ - - - +w (00D 5
and
(3.3) U(R)=E" (w,(0.))ps+ - - - +E" (w, (6., ))Ds .
The ranking R=(%,- -, 1,) which maximizes U, is specified by
B4 E"” (wy,(6.)) <E" (w,,(8,,)) < - - - <E" (w,(0.,))

since the representation (3.3) may be considered as a weighted sum of
the quantities E” (w;(0,)) with weights p,;, j=1,---, k.

To implement this procedure, one needs only to determine the k&
single integrals, E” (w,(6,)), 1=1,---, k.

It should be emphasized that whereas the expected utility Ui(R)
depends on the imputed probabilities, p;, the choice of an optimal rank-
ing does not, so long as Assumption (3.1) is valid. Thus for the purpose
of choosing a ranking, the decision-maker does not need to assign spe-
cific values to the selection probabilities, p;.

Consider next a situation in which a specified number r, 1<r<k,
of the ranked populations are to be selected, again according to a prob-
ability distribution depending only on the ranks of the populations. Let
t={t(1)- - -t(r)} denote a subset containing r of the indices 1,---, k. Let
g, denote the probability that the » populations with ranks #(1),---, &(r)
will be selected, and let p, denote the marginal probability that the
population ranked ith will be among those selected. Assume that these
marginal probabilities satisfy (3.1).
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Then the utility function and the posterior expected utility may be
written as,

(3.5 (R, 0)=2(w,,,(0s,)+ - RICZP ()L I

and

(3.6) UdR)=2{E" (wy,,(0:, )+ - - +E" PN {2

where R=(%,- -, %), and the summation is over all subsets t of size 7.

In order to simplify these expressions consider the functions I,(t)=1
if jet, I(t)=0 if j¢t. Then

3.7) (R, 0)=3.( 2 L(w,6,))a.

=w,(0: )2, L(t)g.+ - - - +w,,(0:)2 I(t)q.
=w,(0:;)pi+ - -+ +w, (0.,)Ds -

Consequently,
(3.8) UAR)=E" (w, (0. )P+ - - - +E" (w, (6,.))Ds -

Thus the problem of ranking in order to select a subset of r pop-
ulations is reduced to the corresponding problem for selecting a single
population, the optimal ranking being specified by (3.4).

For the third type of situation, assume that the highest ranked
populations are to be selected for certain, but the number r of popula-
tions which will be selected is now indeterminate, with an imputed
distribution ¢;, t=1,-.., k, where ¢; will denote the probability that the
1 populations ranking highest are selected. If » is determinate, then
the full information conveyed by the ranking is not utilized, and one
has a selection problem rather than a ranking problem. In this sense
a ranking can be considered as being more informative than a selection.

The utility function for this situation is

(3.9) uy(R, 0)=wck(0¢k)‘h+ {wik(aik)+wik_1(atk_l)}q2+ s
+ {wik(aik)'l' <o w; (0:)} e
:wi,(0i1)0k+ cee +wik(0ik) {gst+---+a},
where R=(¢,,---,1,). Thus the expected utility is,
(3.10) U(R)=E" (w, (8 ))a:+ - - - +E" (w, (0: ) g+ - - - +a1)

for the ranking R=(4,,---, %,). Once again the posterior expected utility
is a weighted sum of the quantities E” (wi(0)), 3=1,---, k, with weights
increasing as j increases. Hence the optimal ranking is again specified
by (3.4).
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Whereas in the three previous situations, the selection probabilities
were based entirely on the ranks of the populations, and the higher
ranked populations were more likely to be selected, neither of these
properties will be true in general for the following situation.

Suppose that a single population (or none) will be selected from the
reported ranking, R=(4,---,%). The population /7;, with highest rank
will be considered first. It will ‘accept’ and hence be selected with a
probability p(i,) which depends on the population 77, itself rather than
on its ranking. If I, is not selected, the population /7, having next
highest rank will be considered. It will accept, and hence be selected,
with probability p(i,_;). In general, let p(j), =1,---,k, denote the
probability that population 17, will accept if considered, j=1,---,k.
Assume that 0<p(5)<1, and that the events of different populations
accepting or not accepting are mutually independent. Let u, denote
the utility if none of the k populations accept.

Under these assumptions, the utility function and the posterior
expected utility for R=(3,- -, 1,) may be expressed as follows:

(B11)  wlR, 6)=1w, 0,00+ w,, 00, IPlia) (L—Pli)+ -
+w, 0P TT (1= p6) + 6 T (A—p(i))
and
(3.12)  U(R)=E" (w, 0 )PG)+E" (w00 ))Plis)(L—pE0)+ -
+E (i, 0,))p6) TT (A=) + 1T (1—(3) -

THEOREM 3.1. For a ranking problem with utility function u (R, 6),
the optimal ranking is specified by (3.4).

ProOOF. Let R=(%,---, 1;) denote a ranking which maximizes U,.
As in the discussion of (R, 8), we consider rankings R'=(%, -, %, ta_1,
.-+, 1,) which differ from R by an interchange of 4,_, and ¢,. The
difference U(R)—U(R’) may be determined as follows, where the first
equality is obtained from (3.12) by cancellation.

(3.13) UAR)—ULR)
=E" (w,,0:,))p0) ]| A=p()+E" (w,, (0, ))p(in-1)

- (1=p() IT A—p()—E" (w;,_(6,,_))P(,_)
+ T =20 —E (wy, (0,))p(n) 1= p(3, ) [T 1 —p(2))
= D(in-)P(0n) [T (L= PEDE" (wy,6:,)) =B (wy, (0, )} .

Since R maximizes U,, in particular U(R)—U(R')=0 for each h=2,
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-++, k. Thus E"(w,_(0, ))<E"(w,(,)), h=2,---,k, i.e. R must equal
the ranking specified by (3.4).

4. Comparison of ranking procedures

This section is concerned with those circumstances in which the
decision-maker is assured that the ranking procedures of Sections 2 and
3 will lead to the same optimal ranking. This will be the case, broadly
speaking, whenever either (i) the marginal posterior densities h.(8),
1=1,---, k, have the same ‘content’ in the sense that for each pop-
ulation the sample size plus the corresponding prior parameter are equal,
or (ii) the densities h;#), 1=1,.--, k, are symmetric.

Consider first the case in which the distributions of the populations
I,,---, I, belong to a family of distributions which depend on a single
parameter ¢, and admit a sufficient statistic, T'(x), x=(2,,---, z,). Such
a family is said to have the monotone likelihood ratio property, MLR,
in T(x), if for any 6,<6,, the ratio of likelihoods f(x|6,)/f(x!|8,) is a
strictly increasing function of T'(x), (see, for instance, Lehmann [10],
p. 68).

DEFINITION. Consider a family 4 of posterior densities h(6) whose
members are indexed by two parameters, 7” and z”. Let 4 (3y) denote
the subfamily of those densities such that »”=7. The family 4 will
be said to have the property of monotone posterior ratio (MPR) if for
any two densities h,(0), hy(f) in the same subfamily 4((y)) with param-
eter values t{, 7/ respectively; t/’<<7} implies that the ratio hy(8)/h.(6)
is an increasing function of 4.

This notion of MPR can be used to effect orderings of the posterior
densities h;(#), much as the notion of MLR is used to effect orderings
among likelihood functions.

A,: Assume that the likelihoods f(x|6;), 1=1,---, k, associated with
I,,---,II, belong to the exponential family,

(4.1) S(x]0.)=c(6;) exp [u(x)q(0,)]k(x)
where q(f;) is a strictly increasing function.

A,: Assume that for each population I7,, 4=1,--., k%, an independent
prior density g.(#) has been assigned from the natural conjugate family,
i.e. for some constants 7, and 7,

(4.2) 9{0)=I[c(0)]": exp [z.q(6)1k

and that an independent sample x;=(v,- -, @) of size m; has then
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been taken. (This leads to posterior densities of the form
(4.3) hi(0)=[c(0)]"*" exp [(z.+ T(x:))q(O)]k(x:)

where 7n; and T(xi)-—-i u(z,;) are sufficient statistics.) Let z/=»+n,,
j=1
and /=7,+T(x,), 1=1,---, k.

A,: Assume that the posterior densities h,(6) belong to the same sub-
family H(5i), 1=1,---, k.

THEOREM 4.1. If assumptions A,—A; are satisfied, then
(i) The densities h,(0) have the MPR property with respect to //=t,+
T(x,).
(ii) For any indices 1=1, j=<k, v+ T(x,)<t,+ T(x,) impleis that
(a) P"(6:.<8,)>P"(0,<6,).
(b) For amy monotone increasing function w(#), E" (w(6,))<
E” (w(0,)-

ProOF. Assume that for given indices 7, j, 7/ <z7/. Since by A,,

7/ =y, the ratio of the posterior densities may be written as

hi(0) _ r )—Ti— ; Hx,)
@4 o) = (e T == TeeaO] %2

The exponential factor is a strictly increasing function of # since g¢(6)
is strictly increasing, and the coefficient of ¢(¢) is assumed to be positive.
Thus the posterior densities have the MPR property as stated in (i).
It follows that for increasing values of ¢, ¢,<4,,

(4.5) h;(0:)hi(0,) <hi(0:)h ;) .
Part (ii) will be shown to be a consequence of (i). Consider
(4.6) P (6,<8,)—P" (6,<86,)
={---{ oo 1 moas,- o,

0i<0j
=\ rtoom0) 7 mto)ds,- -t
9;<8; S
where 6,,- -, 0, denote dummy variables of integration.
By interchanging 6, and 6, in the second integral, we have,
4.7 P (6,<0,)—P" (8,<8,)

= S te S (Ri0:)h (0,)—hi(0,)h,(6.)) l;l;[j hi(6,)d8,- - -db, .

0;<6;
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By (4.5), the difference in parentheses is positive, so P” (,<8,)>P" (¢,
<0,).
Consider next the difference,

(4.8) E” (w(6,))—E" (w(6,))= SD w(0) (hs(0)—hy(0))do .

The integral Sa (h;(6)—h(0))do equals zero, so unless h,=h,, there exists

points ¢ at which h;(8)<h(0) and other points 6 at which h,(6)>h,(6).

The ratio h;(0)/h(8) is strictly increasing, so there must exists a
unique point 6, € 2 at which this ratio equals unity. Moreover k()<
hi(6) for all #<6, and h,(6)>h(6) for all #>>6,. This implies that

4.9) E"” (w(8,))—E" (w(8,))
=S wO) ()~ 0D+ w(6)(h(6)—h(6)ds

>

> w(6y) S (h,(0)— h(8))d0+w(By) S (h,(6)— hu(8))dO=0 .

Theorem 4.1 implies that whenever the posterior densities h,(6;)
satisfy the specified assumptions, and the utilities w(8,) are increasing
in 6,, 1=1,---, k, then for the procedures of Sections 2-3, the optimal
ranking R=(%,,---, %;) is specified by

(4.10) Ti1+ T(x¢1)< e <Tik+ T(xtk) .

The assumption that all 5,+n, are equal, i.e. that for each popula-
tion the sample size plus the analogous prior parameter is the same,
will be satisfied, for example, when the sample sizes are equal and the
prior densities are improper and vague.

Some results similar to Theorem 4.1, but concerning the distribu-
tion of the sampling random variables, have been obtained by Seal [13]
for the problem of ranking type III populations

f(xla;, k)=ail(k)'x{~! exp (—a;x;) , I<x<co,

where the equality of the known parameters k plays the role of our
assumption that h,(0) € H(37'), 1=1,---, k.

Erample 4.1. Suppose the II; represent Bernoulli processes with

parameters p;,, 0<p,<1, and data z,,, 5=1,---, n,, having values 0 or
1. If the prior densities g,(p) are chosen from the beta family,
(4.11) 9@)=[B(z, p—o)]'p'1—p)y~—", 0<c<y,

where B(a, b)=I"(a+b)/['(a)['(b), then the posterior densities will be
(4.12)  h(p)=[B(zY, 7!/ — /)] [p(1—p)] (1 —p)™ exp [} log {p/(1—p)}]
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where 7{/=9+mn,, /=7,+T(x;), and T(xi)=ﬁ} Z, 1=1,-+-, k. The
i=1

function q(p)=log {p(1—p)} is strictly increasing in p, 0<p<1l. Thus
if the densities k;(p) are in the same subfamlly J[ ('), the Bernoulli

processes should be ranked according to 7} —z'i—I-E i, 1=1,-+-, k.
j=1

We consider next several situations in which the distributions as-
sociated with the populations I7; do not satisfy the assumptions of
Theorem 4.1; however it is still possible to provide sufficient conditions
under which the ranking procedures become identical.

Example 4.2. The likelihoods f(x|#, w) may depend on more than
a single parameter 6. Suppose, for example, that the populations 77,
represent normal processes with both 2 and ¢* unknown, which are to
be ranked according to ¢*. The decision-maker wishes to assign higher
rank to those populations with smaller variances, and he believes that
the precision p;=1/0¢} is a reasonable measure of his utility if the pop-
ulation 17, should be selected. He assigns independent normal-gamma
prior distributions (Raiﬁa and Schlaifer [11], pp. 298-303) to the param-

eters p;, p;, 1=1,.-,k, i.e. in a notation suitable for the present purpose,
(4.13) g(#, P| m,l, , 77):_I{pl/z e—zp(y—mﬁ/zp(n/z)—l o2
where [, 7, 7>0. Independent data x, J=1,- ,ni are taken from 17,

leading to the statistics xi_E x;;/m; and Si—“](wu—m,)2 Then the
marginal posterior density on pi belongs to the gamma family,

(4.14) hao)=K{ p![2)~1 g—</o]2

where 7/ =7n+mn,, and t/=r,+Si+ 0 +1;) (T, —m,).

Therefore, it may be directly verified that whenever the posterior
densities (o), 1=1,---, k, are in the same subfamily 4 (5}), they have
the MPR property with respect to =/, 2=1,-.-, k, and hence consequence
(ii) of Theorem 4.1 is valid.

Erxample 4.3. Suppose that the likelihoods associated with the k&
populations are uniform distributions f,(x]6,)=6;* for 0<x<68,. Let the
assigned independent prior densities be of the form

(4.15) 9(0)=n7"-(1/6y "' H(6—)

for some parameters z, >0, where H denotes the Heaviside function
as in (2.7). Then the posterior densities are given by

(4.16) hi0)=n! - (<Y (1/6y"H(6 —)

where r”-—max {ris 25}, p¥=mn+mn;. Thus, if the desities hy(#) are in
15js
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the same class 4(5!'), and 7/’ <7/, then
hy(0)/hi(6)= (=} [z/YIWH(0—7T) ,

which is an increasing function of 4. Therefore the conclusions of The-
orem 4.1 remain valid for uniform distributions.

Example 4.4. The decision-maker may wish to rank according to
the predicted performances of the k populations under specified condi-
tions, rather than according to a parameter 6. For example, if the
populations represent Bernoulli processes as in Example 4.1, the decision-
maker may wish to rank according to the predicted distribution of
successes in future Bernoulli processes of specified length N for each
population. Assuming that the independent posterior densities A,(p) are
given by (4.12), the probability distribution h(r), r=0,1,---, N for the
predicted number 7 of successes is a beta-binomial (or hyper-binomial)
mass function (Raiffa and Schlaifer [11], p. 237).

(4.17) hi(r)= (JZ >B(z'§’, o — <) B(r 42, Nt g —r—1)

where the parameters 7/, 5, have the meanings given in Example 4.1.
Consider two indices 7, j such that /<7/. The ratio W,,(r)=h,(r)/
h(r) may be reduced in general to the expression,

(4.18) W,r)= B(/, g —=) | T(r+ <) (N+y'—r—7]) .
B}, g —77) I'(r+<)Y['((N+9—r—1)

Thus for r=0,1,---, N—1, one may compare,

_(r+d)) (N+yg/'—r—1/—1)

(4.19) W DI W)= =
Each quotient in (4.19) is greater than 1 since 7/>7/. Thus W(r)=
hyr)/h(r) is an increasing function of », i.e. h,(r) has the MPR property
with respect to 7//. Thus consequence (ii) of Theorem 4.1 may be de-
duced by arguments which differ from those given in that summations
replace integrations.

The marginal posterior densities h,(g;) for the means p; in Example
4.2 are Student distributions. It may be verified that, assuming 7}
equal, t=1,---, k, the densities k,(g;) do not in general have the MPR
property. Nevertheless, as a consequence of the following general re-
sult, Conclusion (ii) of Theorem 4.1 remains valid for such densities, at
least in the important special case, w(f;)=a6,+8, a>0.

THEOREM 4.2. Assume that each posterior density h,(f), —oo <8<
+ o0, 18 symmetric about some point, i=1,---, k. Let / denote the point
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of symmetry of hi(6), i=1,---, k. Then for any indices 1=1, j=<n, i
<7 implies that,

(a) P"(8,<6,)>P" (6,<6.).

(b) E”(w(8,))<E" (w(8,)) for any linear function, w(@)=abll+8, a>0.

PrRoOF. By the assumption of symmetry, E” (8)=</, i=1,---, k.
Thus (b) is immediate. By the same assumption the median m, of h(9;)
also equals 7/, 1=1,---, k. Now

P"(0.<6,)=P" ((0;—m;)—(0;—m;)< ——(mi—m,)) .

But the distribution of (8,—m,)—(8;—m,) is symmetric about the origin,
hence has median zero. Since —(m;,—m,)=7/—7/>0, it follows that
P (6,<6,)>1/2 which implies (a).

Note that Theorem 4.2 does not assume that the densities 2,(6) be-
long to the same class % (y/). Indeed, in sampling from normal pop-
ulations, the conclusions (a), (b) remain valid even if the variances are
known for some of the populations and unknown for others.

5. Subset selection procedures

The subset selection problem consists of choosing a subset S from
the set of k populations so as to include in S those populations which
are believed to have large true parameter values 6,. Assume that the
purpose of selecting the subset S is to restrict further sampling to those
populations which are most promising. The populations 77, in S are to
receive further exhaustive examination at a cost ¢; for the population
II;,, i=1,.--, k. Then a single population will be selected from S, and
a utility realized depending on this decision.

Consider first those situations in which the utility gained after a
single population I7; has been chosen depends on whether an error has
been committed, more specifically, whether or not the selected popula-
tion II; is the ‘best’ population in the sense that it has the largest
value 6, among all k& populations. Suppose that the utility gained is d
if S contains the best population, zero otherwise. As a notational aid,
let 4(S, 6) denote that function which is one in the first case, zero in
the second. Since the decision-maker will obtain very precise informa-
tion concerning the values 6, for 17, € S, it may be assumed as an ideal-
ization that the population chosen will be optimal provided S contains
the best population. The utility function is then

(5.1) (S, 0)=—3 e.+4(S, 6)-d

where s denotes the subset of indices 7 such that I7, ¢ S.



50 Z. GOVINDARAJULU AND CHARLES HARVEY

Let A, denote the event that populatin 77, has the largest true
value 4, among all k populations, i=1,---, k. The event, U A;, that
some 77, in S has the largest 6, will be represented by the standard
notation CS, i.e. ‘ correct selection’, introduced by Bechhofer [3]. Then

the posterior expected utility may be written as
(5.2) U(S)= —izes c;+d-P” (CS)=i2ﬂ [—e.+d-P"(A)] .

It is clear from the second expression for U(S) that the procedure
for determining the optimal subset S is to include in S those 77, for which
—c;+d-P" (A)>0, i.e.

(5.3) P (A)/e.>(1/d) .

Intuitively, the decision-maker selects those populations with the great-
est value in terms of the probabilities P” (4,), scaled according to the
costs ¢;.

This procedure is implemented by calculating, for each ¢=1,---, k,
the k-dimensional integral P” (A,) with sufficient accuracy so that its
value can be compared with ¢;/d.

If values have been imputed for the losses due to costs, how can
the decision-maker assign an appropriate value to the utility d of select-
ing the best population? One method is to choose a value for d by
comparing, for a fixed index 4, the following three lotteries, 4, 4;, 4.
Let A, consist of winning 0 for certain. Let A, consist of paying a
proportion a.c; of the cost ¢, as an entrance fee to win a utility d for
certain, i.e. to be given perfect information concerning 8. Let 4; consist
of paying c; as an entrance fee to win utility d with probability p;, or
utility 0 with probability 1—p,. Suppose that for the index 4 under
consideration, one can choose a constant a; so that one is indifferent
between lotteries 4, and 4,. Then d should be assigned the value ac;.
If one can choose a probability p; so that one is indifferent between
lotteries 4, and A4,, then d should be assigned value ¢;/p;.

It may be necessary to reassign values to a, and p; in order to
satisfy the consistency requirements of utility theory. If the costs ¢,
are different, and values are assigned to d on the basis of more than
one ¢;, then even more retrospective comparisons may be needed to
achieve consistency.

Consider next a situation in which constraints have been imposed
on either the total sampling costs or on the probability of error. Sup-
pose, for example, that one wishes to maximize the expected utility
due to selecting the best population, given that the total sampling costs
cannot exceed C. Then (5.2) leads to the optimization problem,

(5.4) maximize P” (CS) subject to 3¢, =C.

i€s
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Suppose next that an upper bound a has been placed on the prob-
ability of error, and the decision-maker wishes to minimize the total
sampling cost. This leads to the optimization problem,

(5.5) minimize 3 ¢; subject to P (CS)=z1—a .

As a second utility function to be considered, suppose that the
utility depends only on the single population 77, finally chosen, rather
than on its relation to the other populations as with (S, 8). Suppose
that this utility is a function w,(6;,) of the true value ¢, of the param-
eter associated with 77,. Then the utility function and the posterior
expected utility are,

(5.6) uy(S, 0)= —121 Cri‘n;lax wi(0:)
5.7 U(S)=—> e, +E” (n;xax wy(6,)) .

In general, the subset S maximizing (5.7) can be determined by cal-
culating the 2*—1 integrals E” (max w(6,)).

If the cost of further sampling of S is constrained not to exceed
C, then the decision-maker selects that subset S so as to,

(5.8) maximize E” (ntlax w(#;)) subject to > ¢,=C.

If the expected performance of the single population chosen must
be at least a predetermined value M, then the decision-maker selects
S so as to,

(5.9) minimize 3} ¢; subject to E” (max w,(0.))=M .
ies tes

Consider next those situations in which the decision-maker needs
to select a subset S from a set of k populations which will be reported
as the more desirable in some sense, but where the horizon of the
formal analysis cannot be effectively placed beyond this subset selection.
Perhaps it is not clear whether the selection decision will lead to fur-
ther sampling, immediate selection of one of the populations in S,
utilization of all the selected populations, rejection of all the selected
populations, or possibly some other goal. The first question, of course,
is whether some loss function or utility function can be proposed which
appears to be fairly appropriate, at least over a wide range of subset
selection problems. As the reader may anticipate, we are unable to
-bring forth such a procedure. The primary difficulty, which can as-
sume various forms, seems to be that it is not clear how to compare
subsets of different sizes. If the purpose of the subset selection is non-
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specific, and one wishes to compare a subset S with a subset S'=SU {7}
containing an additional population, how should one scale the costs’
of including 77, against the ‘advantages’ of this inclusion?

Suppose that the problem is restricted to selecting a subset S, given
that its size has been predetermined. Is it possible to define the
‘quality’ of a subset of populations so that subsets of equal size can
be compared?

Assume that a single population /7, will be chosen from S and a
utility realized which is a function w,(6,) of the parameter 4, only, but
that the decision-maker has no idea which population in S will be chosen.
This situation leads one to the familiar choice between minimax pro-
cedures, Bayes’ procedures, or Laplace’s procedure (i.e. assigning equal
probability to each state of nature). The reader who has a definite
opinion as to which procedure is appropriate for the problem should ob-
serve that the original restricted problem of comparing subsets of equal
size is a more general problem.

In Section 2, where some measure of the ‘quality’ of a subset of
size » was required, we used Laplace’s procedure, i.e. a utility function
equal to the average of w;(6,), II, € S, or equivalently,

(5.10) u(S, 0)=12 w,(6;) .

This choice was motivated in large part for reasons of mathematical
tractability. The above considerations seem to indicate that, whenever
possible, a decision theoretic approach to a subset selection problem
should be based on a precise understanding of the purpose of that
particular selection.
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