ROBUSTNESS OF BAYES CLASSIFICATION REGION

GIITIRO SUZUKI

(Received Jan. 16, 1973; revised Jan. 30, 1974)

Introduction and summary

Let X be a random variable on a sample space \mathcal{X} having density function $f_i(x;\theta)$ for each θ in Ω , the parameter space and for each λ in Λ , the set of kernel indices*. We shall consider the two-way classification problem with the following loss structure:

nature action	ω ₀	ω_1
a_0	0	$lpha_0$
a_1	α_1	0

 $\alpha_0, \alpha_1 > 0; \ \omega_0 \cap \omega_1 = \phi, \ \omega_0 \cup \omega_1 = \Omega$

For every measurable subset A_0 of \mathcal{X} , define the non-randomized classification rule $\delta = \delta_{A_0}$ as $\delta(x) = a_i$ if $x \in A_i$, i = 0, 1 (A_1 denoting the complement of A_0). Then the risk of such a rule δ is given by

$$R_{\lambda}(\delta,\theta) = \alpha_i \int_{A_i} f_{\lambda}(x;\theta) dx$$
, for $\theta \in \omega_{1-i}$, $i=0,1$.

If we assume that θ is also a random variable having a priori probability measure η on Ω , the expected risk of δ is

$$egin{aligned} R_{\lambda}(\delta,\,\eta) &= \int_{\Omega} R_{\lambda}(\delta,\, heta) \eta(d heta) \ &= \sum_{i=0}^{1} lpha_{i} \int_{\omega_{1-i}} \eta(d heta) \int_{A_{i}} f_{\lambda}(x\,;\, heta) dx \ &= lpha_{1} \int_{\omega_{0}} \eta(d heta) + \int_{A_{0}} h_{\lambda}(x\,;\,\eta) dx \;, \end{aligned}$$

^{*} In a usual classification (decision) problem, we are given a fixed family $\mathcal{P}_{\lambda} = \{f_{\lambda}(\cdot;\theta): \theta \in \Omega\}$ of conditional densities for some $\lambda \in \Lambda$. In practical cases, however, we rarely have the complete knowledge of \mathcal{P}_{λ} . Rather we only know a set of possible families $\{\mathcal{P}_{\lambda}: \lambda \in \Lambda\}$, where λ is an element of some known index set Λ (which we call the set of kernel indicies), cf. Suzuki, G. (1969), "Bayes procedure with kernel index" *Res. Memo.* No. 25, Inst. Statist. Math.

where

$$h_{\lambda}(x;\eta) = \sum_{i=0}^{1} (-1)^{i} \alpha_{i} \int_{\omega_{1}-i} f_{\lambda}(x;\theta) \eta(d\theta)$$
.

Then our main concern is to find a δ^* by which we incur the minimum attainable risk

$$R_{\lambda}^{*}(\eta) = \inf_{\delta} R_{\lambda}(\delta, \eta) = R_{\lambda}(\delta^{*}, \eta)$$

for some fixed η and λ , which may be unknown to us. Writing

(1)
$$A^* = A_i^*(\eta) = \{x : h_i(x : \eta) < 0\},$$

put $\delta^* = \delta_A$. Then it is the minimizing rule. $R_i^*(\eta)$ and δ^* are called Bayes risk and Bayes decision rule. Therefore we shall call the set A^* given by (1) Bayes classification region.

For any subset A, define the regret function by

$$D_i(A, \eta) = R_i(\delta_A, \eta) - R_i^*(\eta)$$
.

Then it is easily seen that

$$D_{\lambda}(A;\eta) = \int_{A^* \triangle A} |h_{\lambda}(x;\eta)| dx$$
,

where $A^* \triangle A$ denotes the symmetric difference of A^* and A. When we can only use an approximate kernel index $\tilde{\lambda}$ and an approximate a priori measure $\tilde{\eta}$ instead of true λ and true η , we would take the decision $\tilde{\delta} = \delta_A^*$ ($\tilde{A}^* = A_{\tilde{\iota}}^*(\tilde{\eta})$), from which we have the regret value $D_{\iota}(\tilde{A}^*; \eta)$. From the standpoint of practical applications, it would be a most important subject to find how the regret value is related to the "closeness" of some available value ($\tilde{\lambda}, \tilde{\eta}$) and the true values (λ, η). In the next section we state some useful properties of Bayes classification region $A_{\iota}^*(\eta)$. Then we discuss robustness of Bayes procedure in some parametric cases (Section 3).

2. Some properties of Bayes classification region

We first state some preliminary lemmas on a strong unimodal density. We say that f is a strongly unimodal symmetric density on its positive carrier (-M, M) and denote by $f \in S_M$ if $r(t) = -\log f(t)$ is strictly convex i.e. r''(t) > 0 and r(-t) = r(t) on (-M, M).

LEMMA 1. Let $f \in S_M$. For any $\rho > 0$, $\beta_{\rho}(t) = \log f(t)/f(t+\rho)$ is strictly increasing for $-M < t < M - \rho$. Furthermore when M is finite, $\lim_{t \to M - \rho} \beta_{\rho}(t) = \infty$ and $\lim_{t \to -M} \beta_{\rho}(t) = -\infty$.

PROOF. The first assertion is the direct consequence of the strong unimodality of f. Next if M is finite, for any K>0, there exists t_0 $(< M-\rho)$ such that

$$f(t_0+\rho) < f(M-\rho)e^{-K}$$

i.e.

$$r(t_0+\rho)>r(M-\rho)+K$$

consequently we have

$$eta_{
ho}(t_0) = r(t_0 +
ho) - r(t_0)$$

$$= r(t_0 +
ho) - r(M -
ho) + r(M -
ho) - r(t_0) > K,$$

which shows $\lim_{t\to M-\rho}\beta_{\rho}(t)=\infty$. Further $\lim_{t\to M}\beta_{\rho}(t)=-\lim_{t'\to M-\rho}\beta_{\rho}(t')=-\infty$.

Remark. When $M=\infty$, there exists an $f \in S_{\infty}$ such that $\lim_{t\to\infty} \beta_{\rho}(t) < \infty$. For example, put $f(x)=e^{-x}/(1+e^{-x})^2$, i.e. logistic density function. Then $f \in S_{\infty}$ and

$$\beta_{\rho}(t) = \rho - 2 \log (1 + e^{-t})/(1 + e^{-t-\rho}) \rightarrow \rho$$
 as $t \rightarrow \infty$.

Then we shall define the subclass S_M^* of S_M as $f \in S_M^*$ iff $f \in S_M$ and there exists a $\rho_0 > 0$ for which $\lim_{t \to M - \rho_0} \beta_{\rho_0}(t) = \infty$. From Lemma 1 $S_M^* = S_M$ for finite M. When M is infinite we have

LEMMA 2. For $f \in S_{\infty}^*$ the second assertion of Lemma 1 is true. Furthermore if $\lim_{x \to \infty} r'(x) = \lim_{x \to \infty} \{-f'(x)/f(x)\} = \infty$, then $f \in S_{\infty}^*$.

PROOF. The first assertion is easily shown using the following two inequalities: For any positive integer k

$$eta_{
ho}(t) \leq k eta_{
ho/k} \Big(t + rac{k-1}{k}
ho \Big) \;, \qquad ext{for }
ho, \, t > 0 \;.$$

If $0 < \rho < \rho'$

$$\beta_{\rho}(t) < \beta_{\rho'}(t)$$
, for $t > 0$.

Next noting that

$$\beta_{\rho}(t) = r(t+\rho) - r(t) = \int_{t}^{t+\rho} r'(x) dx \ge r'(t) \cdot \rho \to \infty$$
 (as $x \to \infty$),

we can show the second assertion of Lemma 2.

LEMMA 3. Let $f \in S_M$. For any s, t (|s|, |t| < M) define

$$\alpha(\rho) = \log \frac{f(\rho s)}{f(\rho t)}$$
 for $\frac{1}{M} < \rho < \frac{M}{\max(|s|, |t|)}$.

Then $\alpha'(\rho)$ has the same sign as |t|-|s|.

PROOF. We first note that the function -xr'(x) is symmetric and decreasing for x>0. For, because of the strong unimodality of f we have

$$x\frac{d}{dx}[-xr'(x)] = -x^2r''(x)-xr'(x)<0$$
.

Therefore for 0 < s < t

$$\rho\alpha'(\rho) = -\rho sr'(\rho s) + \rho tr'(\rho t) > 0$$
.

When -t < s < 0, by writing

$$\alpha(\rho) = \log \frac{f(\rho s)}{f(\rho t)} = \log \frac{f(\rho(-s))}{f(\rho t)}$$

we have $\alpha'(\rho) > 0$ because 0 < -s < t. Consequently we have $\alpha'(\rho) > 0$ for t-s>0 and t+s>0. Along the same lines we can prove other cases.

COROLLARY. Let $f \in S_M$. For $0 < \lambda < \lambda'$ define

$$\varphi(s,\,t)\!=\!f\!\left(\!\frac{s}{\lambda}\!\right)\!f\!\left(\!\frac{t}{\lambda'}\!\right)\!-\!f\!\left(\!\frac{s}{\lambda'}\!\right)\!f\!\left(\!\frac{t}{\lambda}\!\right)\;.$$

Then $\varphi(s, t)$ has the same sign as |t|-|s|.

We shall now give some properties of Bayes classification region $A_{\lambda}^{*}(\eta)$. With slight loss of generality, we restrict ourselves to the case $\mathcal{X} = (-M_{\lambda}, M_{\lambda}), \ \omega_{0} = (0, \infty), \ w_{1} = (-\infty, 0], \ \Omega = \omega_{0} \cup \omega_{1} \text{ and } f_{\lambda}(x; \theta) = f_{\lambda}(x-\theta).$

THEOREM 1. Let $f_{\lambda} \in S_{M_{\lambda}}$ for each fixed $\lambda \in \Lambda$. For any η such that $\int_{\mathcal{G}} r'_{\lambda}(x-\theta)\eta(d\theta) > -\infty \text{ for each } x \in \mathcal{X}, \text{ put}$

(2)
$$\Delta_{\lambda}(x;\eta) = -r_{\lambda}(x;\eta_{0}) + r_{\lambda}(x;\eta_{1}),$$

where

$$r_i(x;\eta_i) = -\log \int_{\omega_i} f_i(x-\theta) \eta(d\theta)$$
, $i=0,1$.

Then $\Delta_{\lambda}(x; \eta)$ is a strictly increasing function of x. Furthermore, if $f_{\lambda} \in S_{M_{\lambda}}^{*}$,

$$\Delta_{\lambda}(x; \eta) \to \pm \infty$$
 (as $x \to \pm M_{\lambda}$)

and the Bayes classification region is given by $A_{i}^{*}(\eta)=(x^{*}, M_{i})$, where $x^{*}=x_{i}^{*}(\eta)$ is the unique solution of the equation

$$\Delta_{\lambda}(x; \eta) = \alpha \qquad (\alpha = \log \alpha_0/\alpha_1).$$

PROOF. Since

$$egin{aligned} rac{\partial}{\partial x} \mathcal{A}_{eta}(x\,;\,\eta) &= \sum\limits_{i=0}^1 \, (-1)^i \Big(rac{\partial}{\partial x} \int_{\omega_i} f_{eta}(x- heta) \eta(d heta) \Big/ \int_{\omega_i} f_{eta}(x- heta) \eta(d heta) \Big/ \int_{\omega_i} f_{eta}(x- heta) \eta(d heta) \Big/ \\ &= \sum\limits_{i=0}^1 \, (-1)^i \Big(\int_{\omega_i} f_{eta}(x- heta) \eta(d heta) \Big/ \int_{\omega_i} f_{eta}(x- heta) \eta(d heta) \Big/ \\ &= \int_{s \leq x \leq t} \, \{r_{eta}'(t) - r_{eta}'(s)\} f_{eta}(s) f_{eta}(t) \eta(ds) \eta(dt) \Big/ \\ &\qquad \qquad \Big(\int_{s \leq x} f_{eta}(s) ds \int_{t \geq x} f_{eta}(t) dt \Big) \; , \end{aligned}$$

then we have $(\partial/\partial x)\Delta_i(x;\eta)>0$ from the convexity of $r_i(t)$. Next for any K>0 there exists a $\rho>0$ such that

$$2(K+1)\int_{-a}^{0}\eta(d\theta)<\eta(\omega_{0})$$
.

For $f_{\lambda} \in S_{M_{\lambda}}^{*}$, from Lemma 2, there exists an M > 0 such that

$$f_{\lambda}(M)/f_{\lambda}(M+\rho) > 2(K+1)\eta(\omega_1)/\eta(\omega_0)$$

and

$$\int_{\scriptscriptstyle 0}^{\scriptscriptstyle M} \eta(d heta) > rac{K}{K+1} \eta(\omega_{\scriptscriptstyle 0})$$
 .

Using these inequalities we have

$$\begin{split} & \int_0^\infty f_i(M-\theta) \eta(d\theta) \Big/ \int_{-\infty}^0 f_i(M-\theta) \eta(d\theta) \\ & \geq \int_0^M f_i(M-\theta) \eta(d\theta) \Big/ \Big(\int_{-\rho}^0 f_i(M-\theta) \eta(d\theta) + \int_{-\infty}^{-\rho} f_i(M-\theta) \eta(d\theta) \Big) \\ & \geq f_i(M) \int_0^M \eta(d\theta) \Big/ \Big(f_i(M) \int_{-\rho}^0 \eta(d\theta) + f_i(M+\rho) \eta(\omega_1) \Big) > K \;, \end{split}$$

which shows that $\lim_{x\to M_{\lambda}} \Delta_{\lambda}(x; \eta) = \infty$. In the same way $\lim_{x\to -M_{\lambda}} \Delta_{\lambda}(x; \eta) = -\infty$. Noting that

$$A_{\lambda}^{*}(\eta) = \{x : h_{\lambda}(x; \eta) < 0\} = \{x : A_{\lambda}(x; \eta) > \alpha\}$$

the second assertion is proved.

Hereafter, we further restrict ourselves to the following parametric case. Let $f \in S_M^*$, $\Lambda = (1/M, \infty)$ and $f_{\lambda}(x-\theta) = (1/\lambda)f((x-\theta)/\lambda)$ i.e. λ a scale parameter. Clearly, $f_{\lambda} \in S_{M_{\lambda}}^*$, $M_{\lambda} = \lambda M$. Furthermore we assume that the *a priori* measure η is dominated by a σ -finite measure ν and its derivative $d\eta/d\nu = g_p$ is expressed as

(3)
$$g_p(\theta) = [(1-i)p + i(1-p)]g_i(\theta), \quad \theta \in \omega_i, i=0,1.$$

where p is an unknown constant $(0 \le p \le 1)$ and g_i are known functions such that $\int_{\mathbb{R}^n} g_i(\theta) d\nu(\theta) = 1$.

In this case, the function (2) can be expressed as

$$\Delta_{i}(x; \eta) = \Delta_{i}(x) - \log(1-p)/p$$
,

where

Then

$$(5) \qquad h_{\lambda}(x; \eta) \equiv h_{\lambda}(x; p) = \alpha_0(1-p)f_{\lambda}(x; g_1) - \alpha_1 p f_{\lambda}(x; g_0)$$
$$A_{\lambda}^*(\eta) \equiv A_{\lambda}(p) = (x_{\lambda}(p), \lambda M),$$

where $x_i(p)$ is the solution of the equation

(6)
$$\Delta_{\lambda}(x) = \log(1-p)/p + \alpha \qquad (\alpha = \log \alpha_0/\alpha_1).$$

From Theorem 1 we can see that for any fixed λ , $x_{\lambda}(p)$ is well-defined and strictly decreasing for 0 .

With slight restriction on the pair (g_0, g_1) we can also show the monotonicity of $x_i(p)$ with respect to λ . For any $\rho > 0$, define $\beta_\rho^+(\theta) = \log g_1(-\theta)/g_0(\theta+\rho)$ and $\beta_\rho^-(\theta) = \log g_0(\theta)/g_1(-\theta-\rho)$. Denote by $(g_0, g_1) \in S^p(\nu)$ iff both $\beta_\rho^+(\theta)$ and $\beta_\rho^-(\theta)$ are non-decreasing for $\theta > 0$ and strictly increasing on a set of positive ν -measure.

LEMMA 4. Let $\varphi(s,t)$ have the same sign as |t|-|s| and $\varphi(s,t)=-\varphi(-t,-s)$. For any $(g_0,g_1)\in S^p(\nu)$ the integral

$$I(x) = \int_{0}^{\infty} \int_{-\infty}^{0} \varphi(x-s, x-t)g_{1}(t)d\nu(t)g_{0}(s)d\nu(s)$$

has the same sign as x.

PROOF. When x>0 we write

$$I(x) = I_1(x) + I_2(x) + I_3(x)$$
,

where

$$I_{\mathbf{i}}(x) = \int_{2x}^{\infty} \int_{2x-s}^{0} \varphi(x-s, x-t)g_{\mathbf{i}}(t)d\nu(t)g_{\mathbf{0}}(s)d\nu(s)$$

$$I_{\scriptscriptstyle 2}\!(x)\!=\!\int_{\scriptscriptstyle 2x}^{\scriptscriptstyle \infty}\int_{\scriptscriptstyle -\infty}^{\scriptscriptstyle 2x-s}\varphi(x\!-\!s,\,x\!-\!t)g_{\scriptscriptstyle 1}\!(t)d\nu(t)g_{\scriptscriptstyle 0}\!(s)d\nu(s)$$

$$I_3(x) = \int_0^{2x} \int_{-\infty}^0 \varphi(x-s, x-t)g_1(t)d\nu(t)g_0(s)d\nu(s) \ .$$

We first note $I_{\mathfrak{d}}(x) \geq 0$ from the assumption of φ and non-negativity of g_i . Next, by writing

$$\begin{split} I_{\mathbf{i}}(x) + I_{\mathbf{i}}(x) &= \int_{0}^{\infty} \int_{0}^{s} \varphi(-x - s, x + t) g_{\mathbf{i}}(-t) d\nu(t) g_{\mathbf{0}}(s + 2x) d\nu(s) \\ &+ \int_{0}^{\infty} \int_{0}^{t} \varphi(-x - s, x + t) g_{\mathbf{0}}(s + 2x) d\nu(s) g_{\mathbf{i}}(-t) d\nu(t) \\ &= \int_{0}^{\infty} \int_{0}^{s} \varphi(-x - s, x + t) \left\{ g_{\mathbf{0}}(s + 2x) g_{\mathbf{i}}(-t) - g_{\mathbf{0}}(t + 2x) g_{\mathbf{i}}(-s) \right\} d\nu(t) d\nu(s) \;, \end{split}$$

we have $I_1(x)+I_2(x)>0$ from the assumption on β_r^+ and φ and consequently I(x)>0. Along the same lines we can prove other cases.

Using the above lemma and corollary of Lemma 3, when $\lambda < \lambda'$ we have

$$f_{i}(x;g_{0})f_{i'}(x;g_{1}) > f_{i'}(x;g_{0})f_{i}(x;g_{1})$$
, for $x>0$,

which implies $\Delta_{\lambda}(x) > \Delta_{\lambda'}(x)$. Similarly, $\Delta_{\lambda}(x) < \Delta_{\lambda'}(x)$ for x < 0. Consequently $\Delta_{\lambda}(0) = \Delta$ is independent of λ because of the continuity of $\Delta_{\lambda}(\cdot)$. Putting

$$p^* = 1/(1 + e^{4-\alpha}),$$

we conclude that $x_i(p)$ is a strictly increasing function of λ for each fixed $p \ (0 and if <math>p^* , <math>x_i(p)$ is a strictly decreasing function of λ .

Finally we shall show that the Bayes risk $R_{\lambda}^{*}(\eta) = R_{\lambda}(p)$ is a concave function of p for each fixed $\lambda \in \Lambda$ and is a strictly increasing function of λ for each fixed p. Since

(8)
$$R_{\lambda}(p) = \alpha_1 p + \int_{x_1(p)}^{\lambda M} h_{\lambda}(x; p) dx,$$

then noting $h_{\lambda}(x_{\lambda}(p); p) = 0$, we have

$$\begin{split} \frac{\partial}{\partial p} R_{\lambda}(p) &= \alpha_{1} + \int_{x_{\lambda}(p)}^{\lambda_{M}} \frac{\partial}{\partial p} h_{\lambda}(x; p) dx - \left[\frac{\partial}{\partial p} x_{\lambda}(p) \right] h_{\lambda}(x_{\lambda}(p); p) \\ &= \alpha_{1} - \sum_{i=0}^{1} \alpha_{i-1} \int_{x_{\lambda}(p)}^{\lambda_{M}} f_{\lambda}(x; g_{i}) dx . \end{split}$$

From the monotonicity of $x_{i}(\cdot)$

$$1 - \int_{x_{\lambda}(p)}^{\lambda M} f_{\lambda}(x;g_{i}) dx = \int_{\omega_{i}} F\left(\frac{x_{\lambda}(p) - \theta}{\lambda}\right) g_{i}(\theta) d\nu(\theta)$$

is also strictly decreasing for p, where $F(t) = \int_{-M}^{t} f(x) dx$. This shows

the concavity of $R_{\lambda}(\cdot)$. In a similar way we have

$$\frac{\partial}{\partial \lambda} R_{\lambda}(p) = \int_{x,(p)}^{\lambda M} \frac{\partial}{\partial \lambda} h_{\lambda}(x; p) dx = -\frac{1}{\lambda} \int_{x,(p)}^{\lambda M} h_{\lambda}(x; p) dx > 0$$

because of the definitions of $x_i(p)$ and $h_i(x; p)$. Summarizing these we have

THEOREM 2. Let $f_{\lambda}(x-\theta)=(1/\lambda)f((x-\theta)/\lambda)$, where $f \in S_{M}^{*}$ is a known function. Furthermore a priori density g_{p} is given by (3), where $(g_{0}, g_{1}) \in S^{p}(\nu)$ is known to us. Then the Bayes classification region is given by $A_{\lambda}^{*}(\eta)\equiv A_{\lambda}(p)=(x_{\lambda}(p), \lambda M)$ where $x_{\lambda}(p)$ is the solution of the equation (6). For any fixed $\lambda x_{\lambda}(p)$ is strictly decreasing for $0 and for any fixed <math>p \neq p^{*}$, $p \neq 0 (<math>p^{*}-p)x_{\lambda}(p)$) is strictly increasing for $p \neq 0$ is given by (7). Further, Bayes risk function $p \neq 0$ is given by (8) and it is concave for $p \neq 0$ and is increasing for $p \neq 0$.

3. Robustness of Bayes classification rule

First, we wish to investigate the normal distribution model. Let φ and Φ be the density function and the cumulative distribution function of the standard normal distribution.

LEMMA 5. (i) For every $\rho > 0$, define

(9)
$$\gamma(\rho) = \begin{cases} \rho e^{(1-\rho^2)/2}, & 0 < \rho \leq 1, \\ \rho, & \rho \geq 1. \end{cases}$$

Then

$$|\Phi(\rho\Phi^{-1}(s))-\Phi(\rho\Phi^{-1}(t))|\leq \gamma(\rho)|s-t|$$
.

(ii) For any real number r,

$$|\Phi(tr)-\Phi(r)| \leq \frac{1}{\sqrt{2\pi e}} |\log t|, \quad \text{for } t>0.$$

PROOF. (i) Put $\alpha(s) = \Phi(\rho\Phi^{-1}(s)) - r(\rho)s$. Then $\alpha'(s) = \rho\varphi(\rho\Phi^{-1}(s))/\varphi(\Phi^{-1}(s)) - \gamma(\rho) = \rho e^{\theta^{-1}(s^2)(1-\rho^2)/2} - \gamma(\rho) \le 0$. Therefore, for s > t $\alpha(s) \le \alpha(t)$, namely

$$0 < \Phi(\rho \Phi^{-1}(s)) - \Phi(\rho \Phi^{-1}(t)) \le r(\rho)(s-t)$$
.

(ii) When $r \ge 0$, for $t \ge 1$ we put $\beta(t) = \Phi(tr) - (1/\sqrt{2\pi e}) \log t$. Then $\beta'(t) = r\varphi(tr) - (1/\sqrt{2\pi e})(1/t) = (1/t)\{tr\varphi(tr) - \varphi(1)\} \le 0$, i.e. $\beta(t)$ is decreasing for $t \ge 1$. This shows

$$\Phi(tr) - \frac{1}{\sqrt{2\pi e}} \log t \leq \beta(1) = \Phi(r)$$
.

For 0 < t < 1 we also have the inequality

$$0 < \Phi(r) - \Phi(tr) = \Phi\left(\frac{1}{t}(tr)\right) - \Phi(tr) \le \frac{1}{\sqrt{2\pi e}}(-\log t)$$
.

When r < 0, we can also show the inequality in a similar way.

LEMMA 6. For any positive ρ we have

$$\left|\log \frac{t(t+\rho)}{1+\rho}\right| \leq \begin{cases} 2(1/t-1), & 0 < t < 1, \\ 2(t-1), & t \geq 1. \end{cases}$$

PROOF. For $t \ge 1$, put $\xi(t) = \log t(t+\rho) - 2t$. Then

$$\xi'(t) \! = \! \frac{2t \! + \! \rho}{t(t \! + \! \rho)} \! - \! 2 \! = \! \left(\frac{2}{t \! + \! \rho} \! - \! \frac{2}{1 \! + \! \rho} \right) \! + \! \left(\frac{\rho}{t(t \! + \! \rho)} \! - \! \frac{\rho}{1 \! + \! \rho} \right) \! - \! \frac{\rho}{1 \! + \! \rho} \! < \! 0 \ .$$

Consequently $\varphi(t) \leq \varphi(1)$ i.e. $\log (t(t+\rho)/(1+\rho)) \leq 2(t-1)$. For 0 < t < 1, putting s=1/t, $\rho'=s\rho$, we have

$$\log \frac{1+\rho}{t(t+\rho)} = \log \frac{s(s+\rho')}{1+\rho'} \leq 2(s-1) = 2\left(\frac{1}{t}-1\right).$$

We now put $f = \varphi$, $g_i(\theta) = 2(1/\sigma)\varphi(\theta/\sigma)$, $\theta \in \omega_i$ (ν being Lebesgue measure). Clearly, $f \in S_{\infty}^*$ and $(g_0, g_1) \in S^p(\nu)$ and all conditions of Theorem 2 are fulfilled. Then the functions (4), (5) are

$$egin{aligned} arDelta_{\lambda}(x) = & \log arPhi\Big(x\sqrt{rac{\sigma^2}{\lambda^2(\lambda^2+\sigma^2)}}\Big/arPhi\left(-x\sqrt{rac{\sigma^2}{\lambda^2(\lambda^2+\sigma^2)}}
ight) \ h_{\lambda}(x\,;\,p) = & 2[lpha_0(1-p)+lpha_1p]rac{1}{\sqrt{\lambda^2+\sigma^2}}arphi\Big(rac{x}{\sqrt{\lambda^2+\sigma^2}}\Big) \ & \cdot \left\{ au(p)-arPhi\Big(x\sqrt{rac{\sigma^2}{\lambda^2(\lambda^2+\sigma^2)}}\Big)
ight\}\;, \end{aligned}$$

where

$$\tau(p) = \alpha_0(1-p)/[\alpha_0(1-p)+\alpha_1p]$$
.

Therefore the solution $x_{i}(p)$ of (6) is given by

(10)
$$x_{\lambda}(p) = \sqrt{\frac{\lambda^2(\lambda^2 + \sigma^2)}{\sigma^2}} \Phi^{-1}(\tau(p)) .$$

Let $\tilde{p} < p$. Then $x_{\lambda}(p) < x_{\lambda}(\tilde{p})$ and $A_{\lambda}(p) \triangle A_{\lambda}(\tilde{p}) = [x_{\lambda}(p), x_{\lambda}(\tilde{p}))$. Since $h_{\lambda}(x; p) < 0$ and

$$0 < \varPhi \left(x \sqrt{rac{\sigma^2}{\lambda^2 (\lambda^2 + \sigma^2)}}
ight) - au(p) \leq au(ilde{p}) - au(p) \qquad ext{for } x \in A_\lambda(p) \triangle A_\lambda(ilde{p}) \;,$$

then

$$egin{align*} \int_{A_{\lambda}(p)\Delta A_{\lambda}(ilde{p})} |h_{\iota}(x\,;\,p)| dx \ &= \int_{x_{\lambda}(p)}^{x_{\iota}(ilde{p})} -h_{\iota}(x\,;\,p) dx \ &\leq 2[lpha_{0}(1-p)+lpha_{1}p][au(ilde{p})- au(p)] \int_{x_{\lambda}(p)}^{x_{\iota}(ilde{p})} rac{1}{\sqrt{\lambda^{2}+\sigma^{2}}} arphi\Big(rac{x}{\sqrt{\lambda^{2}+\sigma^{2}}}\Big) dx \ &= 2[lpha_{0}(1-p)+lpha_{1}p][au(ilde{p})- au(p)] \Big[arPhi\Big\{rac{\lambda}{\sigma}arPhi^{-1}(au(ilde{p}))\Big\} - arPhi\Big\{rac{\lambda}{\sigma}arPhi^{-1}(au(p))\Big\}\Big] \;. \end{split}$$

Using Lemma 5(i) we have

$$\begin{split} \int_{A_{\lambda}(p)\Delta A_{\lambda}(p')} |h_{\lambda}(x;p)| dx &\leq 2[\alpha_{0}(1-p)+\alpha_{1}p]\gamma\left(\frac{\lambda}{\sigma}\right)[\tau(p)-\tau(\tilde{p})]^{2} \\ &\leq [\max\left(\alpha_{0},\,\alpha_{1}\right)]^{2} \frac{2\gamma(\lambda/\sigma)}{\alpha_{0}(1-p)+\alpha_{1}(p)}(\tilde{p}-p)^{2} \,. \end{split}$$

For $\tilde{p} > p$, we have the same inequality.

Next we consider the sensitivity with respect to the scale parameter λ . Let $0 and <math>\lambda < \tilde{\lambda}$. Then $0 < x_i(p) < x_{\tilde{i}}(p)$ and $A_i(p) \triangle A_{\tilde{i}}(p) = [x_i(p), x_{\tilde{i}}(p))$. Furthermore for $x \in [x_i(p), x_{\tilde{i}}(p))$ $h_i(x; p) < 0$ and

$$0 < \Phi\left(x\sqrt{\frac{\sigma^2}{\lambda^2(\lambda^2 + \sigma^2)}}\right) - \tau(p) \leq \Phi\left(\frac{x_{\bar{i}}(p)}{x_{\bar{i}}(p)}\Phi^{-1}(\tau p)\right) - \tau(p) .$$

Putting

$$A = \Phi^{-1}(\tau(p))$$
, $B = x_i(p)/\sqrt{\lambda^2 + \sigma^2}$,

we have

$$\begin{split} &\frac{1}{2[\alpha_0(1-p)+\alpha_1p]} \int_{A_{\lambda}(p)\Delta A_{\overline{\lambda}}(p)} |h_{\lambda}(x;p)| dx \\ &= & \int_{x_{\lambda}(p)}^{x_{\overline{\lambda}}(p)} \left[\varPhi\left(x\sqrt{\frac{\sigma^2}{\lambda^2(\lambda^2+\sigma^2)}}\right) - \tau(p) \right] \frac{1}{\sqrt{\lambda^2+\sigma^2}} \varphi\left(\frac{x}{\sqrt{\lambda^2+\sigma^2}}\right) dx \\ &\leq & \left[\varPhi\left(\frac{x_{\overline{\lambda}}(p)}{x_{\lambda}(p)}A\right) - \varPhi(A) \right] \left[\varPhi\left(\frac{x_{\overline{\lambda}}(p)}{x_{\lambda}(p)}B\right) - \varPhi(B) \right]. \end{split}$$

Using Lemma 5 (ii) and Lemma 6 we have

$$\begin{split} \int_{A_{\lambda}(p) \triangle A_{\tilde{\lambda}(p)}} |h_{\lambda}(x;p)| dx &\leq 2[\alpha_0(1-p) + \alpha_1 p] \frac{1}{2\pi e} \left(\log \frac{x_{\tilde{\lambda}}(p)}{x_{\lambda}(p)}\right)^2 \\ &= \frac{\alpha_0(1-p) + \alpha_1 p}{\pi e} \left(\frac{1}{2} \log \frac{\tilde{\lambda}^2(\tilde{\lambda}^2 + \sigma^2)}{\lambda^2(\lambda^2 + \sigma^2)}\right)^2 \\ &\leq \frac{\alpha_0(1-p) + \alpha_1 p}{\pi e \lambda^4} (\tilde{\lambda}^2 - \lambda^2)^2 \,. \end{split}$$

In a similar way we can prove that the same inequality holds in other cases.

Noting that

$$A_{\lambda}(p) \triangle A_{\tilde{\lambda}}(\tilde{p}) \subset [A_{\lambda}(p) \triangle A_{\lambda}(\tilde{p})] \cup [A_{\lambda}(\tilde{p}) \triangle A_{\tilde{\lambda}}(\tilde{p})]$$

we also have

$$\begin{split} &\int_{A_{\lambda}(p)\Delta A_{1}^{2}(\tilde{p})}|h_{\lambda}(x;p)|dx \\ & \leq [\max{(\alpha_{0},\,\alpha_{1})}]^{2}\frac{2\gamma(\lambda/\sigma)}{\alpha_{0}(1-p)+\alpha_{1}p}(\tilde{p}-p)^{2}+\frac{\alpha_{0}(1-\tilde{p})+\alpha_{1}\tilde{p}}{\pi e\lambda^{4}}(\tilde{\lambda}^{2}-\lambda^{2})^{2} \\ & \leq [\max{(\alpha_{0},\,\alpha_{1})}]^{2}\frac{2\gamma(\lambda/\sigma)}{\alpha_{0}(1-p)+\alpha_{1}p}(\tilde{p}-p)^{2}+\frac{\max{(\alpha_{0},\,\alpha_{1})}}{\pi e\lambda^{4}}(\tilde{\lambda}^{2}-\lambda^{2})^{2} \,. \end{split}$$

Summarizing these results we have

THEOREM 3. In the normal distribution model stated above, when we can only use \tilde{p} or/and $\tilde{\lambda}$ instead of p or/and λ , putting $\tilde{A} = A_{\lambda}(\tilde{p})$ $(A_{\lambda}(p), A_{\lambda}(\tilde{p}))$ we take decision $\tilde{\delta} = \delta_{\tilde{A}}$. Then the regret values are given

$$\begin{split} &D_{\lambda}(A_{\lambda}(\tilde{p});\,p) \leq k_{\lambda}(p)(\tilde{p}-p)^{2} \\ &D_{\lambda}(A_{\tilde{\lambda}}(p);\,p) \leq l_{\lambda}(p)(\tilde{\lambda}^{2}-\lambda^{2})^{2} \\ &D_{\lambda}(A_{\tilde{\lambda}}(\tilde{p});\,p) \leq k_{\lambda}(p)(\tilde{p}-p)^{2} + l_{\lambda}(\tilde{\lambda}^{2}-\lambda^{2})^{2} \,, \end{split}$$

where

$$[\alpha_0(1-p)+\alpha_1p]k_{\lambda}(p) = \begin{cases} [\max{(\alpha_0, \alpha_1)}]^2 \frac{2\lambda}{\sigma} e^{(\sigma^2-\lambda^2)/2\sigma^2}, & 0 < \lambda \leq \sigma \\ [\max{(\alpha_0, \alpha_1)}]^2 \frac{2\lambda}{\sigma}, & \lambda > \sigma \end{cases}$$

$$l_{\lambda}(p) = [\alpha_0(1-p) + \alpha_1 p]/\pi e \lambda^4$$
 $l_{\lambda} = \max(\alpha_0, \alpha_1)/\pi e \lambda^4$.

We next consider the dichotomy case. Let ν be the counting measure and $g_0(1)=g_1(-1)=1$. It is easily seen that $(g_0, g_1) \in S^p(\nu)$. For any $f \in S_M^*$ the functions (4), (5) are given by

$$egin{aligned} & \Delta_{\!\scriptscriptstyle A}\!(x)\!=\!\log f\!\left(rac{x\!-\!1}{\lambda}
ight)\!\left/f\!\left(rac{x\!+\!1}{\lambda}
ight)\,, \ & h_{\!\scriptscriptstyle A}\!(x\,;\,p)\!=\!lpha_{\!\scriptscriptstyle 0}\!(1\!-\!p)rac{1}{\lambda}f\!\left(rac{x\!+\!1}{\lambda}
ight)\!-\!lpha_{\!\scriptscriptstyle 1}prac{1}{\lambda}f\!\left(rac{x\!-\!1}{\lambda}
ight) \end{aligned}$$

and $x_{\lambda}(p)$ is well-defined for $0 , <math>\lambda > 1/M$. Furthermore the Bayes risk and the regret value of some non-Bayes rule are

$$egin{split} R_{\lambda}(p) = p F\Big(rac{x_{\lambda}(p)-1}{\lambda}\Big) + (1-p)\Big[1-F\Big(rac{x_{\lambda}(p)+1}{\lambda}\Big)\Big] \ D_{\lambda}(A_{ar{\lambda}}(ilde{p});\; p) = H_{\lambda}(x_{\lambda}(p);\; p) - H_{\lambda}(x_{ar{\lambda}}(ilde{p});\; p)\;, \end{split}$$

where

$$F(t) = \int_{t}^{t} f(x)dx$$

$$H_{\lambda}(t; p) = \int_{t}^{t} h_{\lambda}(x; p)dx = \alpha_{0}(1-p)F\left(\frac{t+1}{\lambda}\right) - \alpha_{1}pF\left(\frac{t-1}{\lambda}\right).$$

Using Taylor expansion (noting $h_i(x_i(p); p) = 0$), we have the following inequalities.

$$D_{\lambda}(A_{\bar{\lambda}}(\tilde{p}); p) \leq c_{1}(\lambda) |x_{\bar{\lambda}}(\tilde{p}) - x_{\lambda}(p)|$$

$$D_{\lambda}(A_{\bar{\lambda}}(\tilde{p}); p) \leq c_{2}(\lambda) (x_{\bar{\lambda}}(\tilde{p}) - x_{\lambda}(p))^{2},$$

where

$$c_1(\lambda) = \max (\alpha_0, \alpha_1) f(0)/\lambda$$

$$c_2(\lambda) = \max (\alpha_0, \alpha_1) \cdot \max_t |f'(t)| 2\lambda^2.$$

For example, if $f(x)=(1/\sqrt{2\pi})e^{-x^2/2}$ then $x_{\lambda}(p)=(\lambda^2/2)\log((1-p)/p)$. If f(x)=1-|x| (for |x|<1) we have $x_{\lambda}(p)=(1-2p)(\lambda-1)$ and $R_{\lambda}(p)=2(1-1/\lambda)^2p(1-p)$ for $1<\lambda<2$. When $\lambda>2$, putting $\lambda^*=(\lambda-2)/2(\lambda-1)$ (0< $\lambda^*<1/2$) we have

$$x_{\lambda}(p) = \left\{ egin{array}{ll} \lambda - rac{1}{1 - 2p} \;, & 0$$

$$R_{\lambda}^{*}(p) = \left\{ egin{array}{ll} p + rac{2p(1-p)}{2p-1} rac{1}{\lambda^{2}} \; , & 0$$

INSTITUTE OF STATISTICAL MATHEMATICS