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1. Introduction and summary

Let X be a random variable on a sample space ¥ having density
function fi(x; ¢) for each # in 2, the parameter space and for each 1 in
4, the set of kernel indices*. We shall consider the two-way classifi-
cation problem with the following loss structure:
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wo (O]
action

Qo 0 ao

a ay 0

a0, 01>0; woNw1=¢, weUwr1=202

For every measurable subset A, of 2, define the non-randomized classi-
fication rule d=4d,, as é(x)=a, if z€ A,, 1=0,1 (A, denoting the com-
plement of A;). Then the risk of such a rule § is given by

R, 0)=a,-g fiz:0)de, for Oecw._q, i=0,1.
45

If we assume that ¢ is also a random variable having a prior: prob-
ability measure 5 on 2, the expected risk of 4 is

Ri6, )=\, B, 0y(do)

=§a, S i”(d”) SAif:(x; 0)dz

@)

—a S 2(d6)+ SAQ hi(z; e |

* In a usual classification (decision) problem, we are given a fixed family @,=(fi(-; 6):
0 € 2} of conditional densities for some 1€ 4. In practical cases, however, we rarely have
the complete knowledge of P,;. Rather we only know a set of possible families {P;:1¢€ 4},
where 2 is an element of some known index set 4 (which we call the set of kernel indicies),
cf. Suzuki, G. (1969), “Bayes procedure with kernel index”’ Res. Memo. No. 25, Inst. Statist.
Math.
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where

1
hwi =3 (=1 | fiaiomds) .
1= “1-1
Then our main concern is to find a 6* by which we incur the minimum
attainable risk

Ri(y)=inf Ri(5, 7)=Ri(0* 1)

for some fixed » and 2, which may be unknown to us. Writing
(1) A*=A¥(np)={z: hz: <0},

put 6*=4d,.. Then it is the minimizing rule. R}(») and 6* are called
Bayes risk and Bayes decision rule. Therefore we shall call the set A*
given by (1) Bayes classification region.

For any subset A, define the regret function by

Dy(A, 7)=R(04, 7)—R¥(p) .

Then it is easily seen that
D(Ain=| .  |hi@;nlds,
A*AA

where A*A A denotes the symmetric difference of A* and A. When

we can only use an approximate kernel index 1 and an approximate
a priori measure 7 instead of true 2 and true », we would take the de-

cision §=0% (A*=AX(%)), from which we have the regret value D,(A*; 7).
From the standpoint of practical applications, it would be a most im-
portant subject to find how the regret value is related to the “closeness”

of some available value (2,%) and the true values (4, 7). In the next
section we state some useful properties of Bayes classification region
A¥(y). Then we discuss robustness of Bayes procedure in some param-
etric cases (Section 3).

2. Some properties of Bayes classification region

We first state some preliminary lemmas on a strong unimodal density.
We say that f is a strongly unimodal symmetric density on its positive
carrier (—M, M) and denote by f € Sy if r(t)=—log f(t) is strictly con-
vex i.e. ' (#)>0 and r(—t)=r(t) on (—M, M).

LEMMA 1. ‘Let feSy. For any p>0, B.(t)=log f(t)/f(t+p) is
strictly increasing for —M<t<M—p. Furthermore when M is finite,
lim B,(t)=c and lin}[ﬁp(t)=—oo.

t——

t—=M—p
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ProOF. The first assertion is the direct consequence of the strong
unimodality of f. Next if M is finite, for any K >0, there exists ¢,
(<M—p) such that

Sft+p)<f(M—p)e™™

i.e.

consequently we have
Bo(to) =71(ts+p)—7(t0)
=r(t+p)—r(M—p)+r(M—p)—rt)>K ,

which shows lim B,(f)=co. Further lim ,()=— lim B,(t')=—co.
t-M—p to—M t'—M—p

Remark. When M=oo, there exists an f ¢S, such that lim 8,(¢)
<co. For example, put f(x)=e"*/(1+¢7")% i.e. logistic density function.
Then f ¢S, and

B(t)=p—2log (1+e)/(l+e")—p  as t—oo.

Then we shall define the subclass S% of Sy as f €Sk iff f €Sy and

there exists a p,>0 for which li‘;n B, (t)=c0. From Lemma 1 S}(=S,
t—M—pg
for finite M. When M is infinite we have

LEMMA 2. For fe€S% the second assertion of Lemma 1 1is true.
Furthermore if lim r'(z)=lim {— f'(x)/f(x)} =o0, then f € S*.

T z

PrROOF. The first assertion is easily shown using the following two
inequalities: For any positive integer k&

k-1 ),

8Osk u(t+E2L o), for pt>0.

If 0<p<p’
B()<B(t),  for t>0.
Next noting that
sO=r(t+o)—rt)=\" r@)Mszr®) o0 (as 3000),
we can show the second assertion of Lemma 2.
LEMMA 3. Let feSy. For any s, t (s, |t|<M) define

1 M

—log L(09) — TN
alp)=log Jor —5<e< max (|s], |¢])

flot) M
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Then o'(p) has the same sign as [t|—|s]|.

PrOOF. We first note that the function —zr/(z) is symmetric and
decreasing for >0. For, because of the strong unimodality of f we
have

2 [~ or(@)]= — 2" () — o7 (2) <O .
dx

Therefore for 0<s<t
pa (p)= — psr'(ps)+ptr'(pt) >0 .
When —t<s<0, by writing

o F69) e F0(=5)
V=108 2 8 F ety

we have «/(0)>0 because 0< —s<t. Consequently we have a'(p)>0 for
t—s>0 and t+s>0. Along the same lines we can prove other cases.

COROLLARY. Let feSy. For 0<i<2 define

=23l

Then ¢(s, t) has the same sign as |t|—|s]|.

We shall now give some properties of Bayes classification region
A¥(y). With slight loss of generality, we restrict ourselves to the case
X=(—M,, M), 0,=(0, ), wy=(—00, 0], 2=wyUw, and fix; 0)=f(x—0).

THEOREM 1. Let f,€ Sy, for each fixed A€ A. For any 7 such that
SD ri(x—0)(dd)> —co for each x € X, put

(2) A(x; n)=—rx; n)+7d2; N) »

where
r(x; n;)=—log Sm fi(w—0)n(d) , 1=0,1.

Then 4dx;7) is a strictly increasing function of x. Furthermore, if
fl € Sjl;; ’
d(x; p)— +oo (as z— +M)

and the Bayes classification region is given by A¥(p)=(x*, M,), where
x*=1x¥(y) is the unique solution of the equation

d(x;p)=a (a=log aa) .
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PrROOF. Since

@ =3 0L ra-oman]]_se—omam)

g (— l)i<gw fi(x—0) n(de)/gw filx— 0),](,10))
..., (O 7o) £ fOmasyar
(| rwas(_soar),

then we have (3/0x)d(x; 7)>0 from the convexity of r,(t).
Next for any K >0 there exists a p>0 such that

2K+1) | 7(d0)<pfon) -

For f, € S%,, from Lemma 2, there exists an M >0 such that
FAM)[f{M+ p)>2(K+1)y(wn)/7(e)

and
|, nay>— Ky .
Using these inequalities we have
|, rat=oydn) || r—oynian)
2|, rn—oysa@e)|((" rar-oyman+{” s—oyan))
250 | 0d0)[(£00) " 1(d0)+ £+ o)) >K

which shows that lim 4,(x; 7)=co. In the same way lim 4,(x;7)=—oco.
Noting that o o

) ={e: h(z; 7)) <0} = {x: d(x; 7)>a}
the second assertion is proved.

Hereafter, we further restrict ourselves to the following parametric
case. Let feSY, A=(1/M, o) and fi(z—0)=1/)f(x—0)/2) i.e. 2 a
scale parameter. Clearly, f;€S%,, M,=AM. Furthermore we assume
that the a priori measure 5 is dominated by a os-finite measure » and
its derivative dy/dv=g, is expressed as

(3) 9:(0)=I[1—-)p+i1—p)lg0), Oecw, i=0,1,
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where p is an unknown constant (0<p=<1) and g, are known functions
such that S 9{6)du(0)=1.

£
In this case, the function (2) can be expressed as

d(x; n)=4i(x)—log 1—p)/p,

where
(4) d(zx)=log fi(x; g)/f{(=; ¢1)
fizi 0= £(220)aiomo,  i=0,1.
Then
(5) hiz; D) =hAx; P)=al—D)fi(%; g:)—apf(@; o)

Hn)=A(p)=(2(p), 2M) ,

where x,(p) is the solution of the equation
(6) d(x)=log 1—p)/pt+a  (a=log a/a).

From Theorem 1 we can see that for any fixed 1, x,(p) is well-defined
and strictly decreasing for 0<p<1.

With slight restriction on the pair (g,, g,) we can also show the
monotonicity of x,(p) with respect to 2. For any p>0, define 8}(8)=
log gi(—9)/9:(6+p) and B;(8)=log g,(8)/g.(—6—p). Denote by (g, g;) € S*(»)
iff both gf(#) and B,(6) are non-decreasing for #>>0 and strictly increas-
ing on a set of positive v-measure.

LEMMA 4. Let ¢(s,t) have the same sign as |t|—|s| and o(s, t)=
—o(—t, —s). For any (g, 9,) € S?(v) the integral
10)="{"_os—s, s~ OdO()slo)
has the same sign as x.
PrOOF. When >0 we write
I(z)=I(2)+ L(x)+ I(z) ,

where

o 0

I@=|_ |, ela—s 2—000dtossls)

2

£

K@= |7 ta—s, 2— )0 3iO0s)nts)

2z
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2x 0
K@=\ _pa—s a—aOddee)du(s)

We first note I(x)=0 from the assumption of ¢ and non-negativity of
g:- Next, by writing

L@+ E@)= || o(—a—s, o+~ )b+ 2)u(s)

+ Sm St o(—x—8, x+t)go(s+2x)du(s)g,(—t)du(t)

o Jo

=" o(—a—s, s+t s+ 20)0:(~1)

0

—go(t+22)g,(—8)}du(t)du(s) ,

we have I(x)+L(x)>0 from the assumption on B} and ¢ and conse-
quently I(x)>0. Along the same lines we can prove other cases.

Using the above lemma and corollary of Lemma 3, when 1< we
have

S go) fu(x; g) > fo(x; g0 filx; g1),  for x>0,

which implies 4,(x)>4,(x). Similarly, 4,(x)<4,(x) for x<0. Conse-
quently 4,(0)=4 is independent of 2 because of the continuity of 4,(-).
Putting

(7) p*=1/1+e"""),

we conclude that x,(p) is a strictly increasing function of 2 for each fixed
p (0<p<p*) and if p*<p<1, z(p) is a strictly decreasing function of 2.

Finally we shall show that the Bayes risk R}(y»)=R,(p) is a concave
function of p for each fixed 1€ 4 and is a strictly increasing function of
A for each fixed p. Since

M
(8) R@=ap+| hizipdz,
then noting h(x(p); p)=0, we have
M
2@ =at| | D pn—| o) @) 9

M

1
=ay— 2y S Sfix; g)dw .
=0 (»

a
From the monotonicity of z,(-)

1— S“:p) fiw; g)da = S F (W)gf(”)d”w)

£

is also strictly decreasing for p, where F(t)=St f(x)dxz. This shows
-M
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the concavity of R,(-). In a similar way we have

M

0 _ 0 . —_l M .
—éTR;(p)—S 2 i P =—2 SW) ha(z; p)da>0

. 04
because of the definitions of x,(p) and h,(x; p). Summarizing these we
have

THEOREM 2. Let f(x—80)=@Q/A)f((x—0)/2), where f € SE is a known
Sfunction. Furthermore a priori density g, is given by (3), where (g,
g1) € S*(v) is known to us. Then the Bayes classification region is given
by A¥(n)=A(p)=(x(p), AM) where x(p) s the solution of the equation
(6). For any fixed 2 x(p) is strictly decreasing for 0<p<1 and for any
fized p (F£p*, 0<p<]l) (p*—p)x,(p) 18 strictly imcreasing for A>1/M,
where p* is given by (7). Further, Bayes risk function R(p) is given
by (8) and it is concave for p and is increasing for A.

3. Robustness of Bayes classification rule

First, we wish to investigate the normal distribution model. Let
¢ and @ be the density function and the cummulative distribution func-
tion of the standard normal distribution.

LEMMA 5. (i) For every p>0, define
» pe(l-pz)ﬂ s O<p§1 ,
(9) )=
e p=1.

Then
| P(0P7(5))— (0@~ (B)) = 7(p) |5—1] .
(ii) For any real mumber r,

1
v 2re

Proor. (i) Put a(s)=0(p®'(s))—r(p)s. Then o(s)= pp(p®'(s))/
o(D7Y(s)) — 7(p) = pe” P42 — 1(p) < 0. Therefore, for s>t a(s) =< a(t),
namely

|@(tr)—d(r)| < [log t|, for t>0.

0<P(p@7(s)) — P(pD 7)) =7(0) (s —1) .

(ii) When r=0, for t=1 we put 8(t)=0(tr)—(1/¥'2ze)logt. Then B'(t)
=ro(tr)—(1/v2ze) (1/t)=1/t){tre(tr)— (1)} 0, i.e. B(t) is decreasing for
t=1. This shows
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O(tr)— log t=p1)=0(r) .

For 0<t<1 we also have the inequality

(—logt).

0<¢(T)—(I)(tr):¢<%(tr)>—(D(tr)_s_ J%

When r<0, we can also show the inequality in a similar way.

LEMMA 6. For any positive p we have

llog Ht+p) ’_~{ 2(1/t—1), 0<t«l,
2(t—-1), t=1.

Proor. For t=1, put &(t)=log t(t+p)—2t. Then

()= 2t+p _o— 2 2 0 _ P P <0.
§O= t(t+p) <t+p 1+p>+<t(t+p) 1+p> 1+4+p

Consequently o(t)<¢(1) i.e. log (t(t+p)/(1+p)<2(t—1). For 0<t<1,
putting s=1/t, p’=sp, we have

1+p _, _s(s+p') 1 )
1 =1 =2 1)=2(—-1).
it 1p (s=1)= (

We now put f=¢, 9.(0)=2(1/0)p(6/s), 6 € w; (v being Lebesgue meas-
ure). Clearly, f ¢ S* and (g,, g.) € S?(v) and all conditions of Theorem 2
are fulfilled. Then the functions (4), (5) are

4(z)=log 4%/%/ ‘p(—x\/ %>

hie; D) =2lea(l =) +ap) o i)

v 2+
' {T(p)_d)( \/12(,2202 )>}

t(p)=ay(1—p)/[a(1—p)+ap] .
Therefore the solution z,(p) of (6) is given by

(10) 2p)= [ 2D 0 ep))

Let p<p. Then z(p)<z(p) and A,(p)A A(p)=[x(p), x(P)). Since
hiz; p)<0 and

where
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O<(I)< \/ lz(;z )> (p)=c(d)—(p) for x € Aip)rAD),
then

|hi(x; p)|dx

S A (P Aad D)

x,(P)
=S —h(x; p)dx

z,(p>

<2[a(1—p)+ap][=(p)— r(p)]S y Y 221+ : ‘P<¢ 2:2_ z )d”

=20a(1-p)+apll®)— @)1 [0 | L 07 CE)| -0 | L o] |
Using Lemma 5 (i) we have

(23 9)|da S 2all—p)+aply( L ) 1oB) (BT

SAA(JJ)AAI(p’)

Stmax (e, @) — 20D G5y

For p>p, we have the same inequality.
Next we consider the sensitivity with respect to the scale param-

eter 1. Let 0<p<p*=af(a+a) and A1<2. Then 0<z(p)<wz:(p) and
A(p) A A{p)=[x(p), z(p)). Furthermore for z €[z:(p), z(p)) hix; p)<0
and

0<9(x |5 ) DS LD07ep)) <o)

Putting
A=07"z(p)), B=x(p)V¥+d,
we have

)
2[ay(1— D)+ ayp] Jawaszw

=SZ: [(p(xv 12(2;’-2|-02)> @ )} VIts ‘°<«/zﬁ+a >dx

< [q) (%% A> —@(A)] [q) ( zéz; B) — @(B)] .

|hi(x; p)|de

Using Lemma 5 (ii) and Lemma 6 we have
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~ 2
|h(z; P) Idx§2[au(1—p)+a1p]_1_<10g x:(p) )
2re z(p)
_al—p)tap( 1 (A +d") )
e <2 log 12(12+az))
S_Mﬂp_(ii_zz)z .
- nelt

S A padip

In a similar way we can prove that the same inequality holds in other
cases.
Noting that

A(p) & AL(D)C[Adp) & AAD)] U [A4D) & Ax(D)]

we also have

|hiz; p)|da

SAM:)AA;(;';)

<[max (a, al)r—aﬂﬂa—p@—p)wﬁ———“ﬂ;fl)f“*f” (- 2y

<[max (as, ao]zm?{%;@—p)u———maxﬂgg’ @) (2.

Summarizing these results we have

THEOREM 3. In the mormal distribution model stated above, when
we can only use P orland 2 imstead of p orland A, putting A=A(D)
(A(p), A(D)) we take decision 3=5;. Then the regret values are given

D(AD); p)<k(p)(D— D)
D(Axp); D) SL(p) (21— 2P
D(Ax(D); )< kD) (D— DY+ — 1),

where

[max (e, ay)]? 22 gty , 0<2<0
ag

[a(1—p)+apll(p)=
[max (ca, al)]z_ii : >0

L(p)=[a(1—p)+a,p]/med* l;=max (o, a;)/me* .

We next consider the dichotomy case. Let v be the counting meas-
ure and gi(1)=g(—1)=1. It is easily seen that (g, g;) € S?(x). For any
f € S% the functions (4), (5) are given by
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scr=te {252) r{252).

emai-n L2 o

and x,(p) is well-defined for 0<p<1, 2>1/M. Furthermore the Bayes
risk and the regret value of some non-Bayes rule are

R;(p)=pF<£‘%)_—1>+(1"p)[1“F (’xl'(p,z);lﬂ

D,(AxD); p)=H{xAp); p)—H(x:(D); p) ,

where

F(t)= S F)da
Hit; p)=\ h(o; dr=al—p)F (L) —app(1=1).
Using Taylor expansion (noting h,(x(p) ; »)=0), we have the following
inequalities.
D(AxD); P) = ci(A) |i(D)— (D) |
D(A«(D); P)<ci2) (D) — D))’ ,
where
ci()=max (ay, ;) f(0)/2
¢:())=max (a, o) - max| £'(£)| 22 .
For example, if f(x)=(1/v2r)e " then x,(p)=(2/2)log ((1—p)/p).
If f(x)=1—|z| (for |x|<1) we have z(p)=(1—2p)(A—1) and R (p)=

2(1-1/2p(1—p) for 1<2<2. When 2>2, putting 2*=(21—2)/2(2—1) (0<
A*<1/2) we have

1
A— ’ 0 2* )
i—2p <p<
z(p)=1 1-2p)2—1), 2*<p<l—2*,
1 __,, 1—2*<p<1,




ROBUSTNESS OF BAYES CLASSIFICATION REGION

2p(1—p) 1 0 ¥
p+——2p_1 Bk <p<2*,
2p(1—p) 1
l—p—"Tn 22— 1—2* 1.
P™ o1 2 <p<
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