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A Markov Renewal Process (M.R.P.) is a process similar to a Markov
chain, except that the time required to move from one state to another
is not fixed, but is a random variable whose distribution may depend
on the two states between which the transition is made. For an M.R.P.
of m (<o) states we derive a goodness-of-fit test for a hypothetical
matrix of transition probabilities. This test is similar to the test Bart-
lett has derived for Markov chains. We calculate the first two moments
of the test statistic and modify it to fit the moments of a standard ».
Finally, we illustrate the above procedure numerically for a particular
case of a two-state M.R.P.

1. Introduction

A Markov Renewal Process (M.R.P.) with m (<o) states is one
which records at each time ¢, the number of times a system visits each
of the m states in the time interval (0,t). The system moves from
state to state according to a Markov chain with transition probability
matrix Py=[p;;], but, unlike a Markov chain, the time between transi-
tions is not constant. Rather, the holding time in each state is a ran-
dom variable whose distribution function (d.f.) may depend on the two
states between which the move is made. The observations of an M.R.P.
are also different from those of a Markov chain in that they consist
of both the observed states of the system J;, J,, J;,--- and the succes-
sive holding times X, (=0), X, X,--- in each state. The M.R.P. makes
a transition from J,_, to J, after remaining in J,_, for time X,. Also,
one should note that an M.R.P. with m=1 is an ordinary Renewal
process.

In this paper we derive a large sample, goodness-of-fit test for a
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hypothetical matrix P, of transition probabilities for an M.R.P. An
M.R.P. has been used by Pyke [17] for some problems in counter theory.
Cinlar [4] has discussed the use of M.R.P.’s in queueing theory. Another
very interesting application of M.R.P.’s is one given by Perrin and
Sheps [14], in which they have considered human reproduction a stochas-
tic process and have analyzed the process as an M.R.P. Finally, M.R.P.’s
have been used by many other authors as models for problems in in-
ventory, reliability, maintenance, and so on. The test derived in this
paper is expected to be useful in such problems.

Two papers by Pyke ([15] and [16]) have been the catalyst for many
papers on M.R.P.’s which have appeared since then. However, most
of the work on M.R.P.’s up to this time has dealt with only the un-
derlying distribution theory and limit theorems. With the exception
of one paper by Moore and Pyke [12] on estimating transition distri-
butions, very little has been done in the area of statistical inference
for M.R.P.’s. This is contrasted by the fact that many papers have
been written on statistical analysis of Markov chains—Bartlett [1], Bhat
[2], Billingsley [3], Good [6], Patankar [13], and Whittle [18], to name
a few. It seems appropriate, then, to consider a statistical inference
problem for M.R.P.’s, namely, a goodness of fit test for a hypothetical
model.

2. Notation and previous results

Throughout the paper we use the notation of Pyke ([15] and [16])
as far as possible, and we assume the underlying Markov chain to be
irreducible, aperiodic, and recurrent. Thus, we have

(2'1) P{Jn=jr Xnéx'JOf le"'an—l:i}
—P{J.=j, X.<e|J. =i}
=p,; Fiy(%) ,

where the p,, are transition probabilities and Fi(x) are holding-time
distributions, and we set Q;(x)=p;, F,(z), the transition d.f. of the
M.R.P. The Laplace-Stieltjes Transform (L.-S.T.) of any mass function
will be denoted by the corresponding small letter; for example,

(2.2) gis(8)= S 5qQu(@),  §>0.

We let N,(t) represent the number of visits to state j(@g=1---,m)
in the interval (0, t), and the vector
N@)=[N,),- - -, Na(D)Y .
Now, Z, will be the state of the system at time ¢, and the set of ini-
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tial probabilities will be given by P [Z=i]=a,, (i=1,--, m). Also,

(2-3) M;,(t) =E [Nj(t) I Zy= i] ’

(2.4) R(1)=E [N,(){N;(t)-1}| Z,=1] ,
and

(2.5) Ci®)=E [N,®)N(t)| Z,=13] ,  j+#k,

with corresponding L.-S.T.’s m.(s), 7,(s), and cix(s). Furthermore,
(2.6) Gi;(t)=P {N,(£)>0|Z,=1} ,

with L.-S.T. g,(s). G(t) is called the first passage time of state j,
and Gy,(t), the recurrence time.

We shall denote by Py, F(x), Q(z), G(t), M(t), R{), f(s), q(s), 9(s),
m(s), and 7(s) matrices whose (i, )th elements are respectively Dis»
Fi(x), Qi(x), Gi;(?), M;,(t), Ri(t), fii(8), q:(8); 9:5(8), my;(s), and 7;,(s).
For m Xm matrices A=[a,], ;A will mean the diagonal matrix

a, 0 ---0
0 ay ’
0 0 .. : A

I will be the identity matrix, 0 the null matrix, and e a column vector
of ones. Also, E will denote ee’, and 4,; will be the Kronecker delta.

Kshirsagar and Gupta [10] have found the L.-S.T. of the probability
generating function (p.g.f.) of N(¢) as follows:

(2.7) ¥ =[I—q(s)¢] ' [I—q(s)le ,

where ¢=diag (§,---, &,), and |&]|<1 for i=1,---, m. By differentia-
tion of (2.7), they have found the L.-S.T.’s of the first two moments
of N(t) as individual elements of

(2.8) m(s)=q(s)[I—q(s)] ' =[I—q(s)]'—1I,
2.9) r(s)=2m(s) ym(s) ,

and the cross-product moments as

(2.10) Ci(8) =15 (8)M4,(8) + 10y, (S)mii(8) .

The quantities (2.9) and (2.10) will be used later to find the variances
and covariances of the N,(t). Pyke’s ([16]) generating function expres-
sion for the first passage time distribution is
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(2.11) 9(8)=q(s) [I—q(N{LI—a() '},

from which one may evaluate the mean recurrence times, say b, (1=
1,---,m), by taking limits of appropriate quantities as s tends to zero.

A generalization of an M.R.P. that we wish to consider is an Equi-
librium Markov Renewal Process (E.M.R.P.). When m=1, this process
reduces to an Equilibrium Renewal Process as discussed by Cox [5].
This process has the characteristic that instead of observing it from its
start, we begin observing only after a sufficiently long time has elapsed ;
then the distribution of the first state and holding time is different
from all the subsequent ones. Pyke [16] has proved that the initial
probabilities for this process are

(2.12) g=20,  qi=1,--e,m,
bit

where 7, is the mean of the d.f. iQ,,(w). Pyke has also proved the
=1

transition d.f. for the first transition to be
@13)  QO=2{[0-F@ldy G i=lem).

After the first transition is observed, the transition d.f. becomes Q;;(x),
as before.

For the E.M.R.P. the L.-S.T.’s of the moments of N(t) are given
by Kshirsagar and Gupta [10] as:

(2.14) () =(s) —a(®)] ",

(2.15) #(s) = 27(s) am(s) ,

and

(2.16) C(8) =M (8)m ;i (8) + Mu(8)my ,(s) -

Using (2.12), (2.13), and (2.14) they have shown that the unconditional
expectation of N(t) is given by

(2.17) E NG, NalOl=t| oo

bll bmm
a result analogous to the corresponding renewal process result discussed
by Cox [5]. Later in the paper we shall use (2.15) and (2.16) to obtain
the unconditional variances and covariances of N(t).

Many of the results discussed so far have been available only in
terms of L.-S.T.’s of the quantities involved. Unfortunately, except
for the very simplest of cases, inversion of these L.-S.T.’s is not pos-
sible. However, asymptotic expressions may be obtained for large ¢ by
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expanding the L.-S.T.’s in powers of s and using Tauberian arguments,
as outlined by Cox [5] in the case of ordinary renewal processes. The
quantity [I—q(s)]™! appears often, especially in the moments of N(?),
so its expansion will be very important in what follows.

Kshirsagar and Gupta [9], Hunter [7], and Keilson [8], have inde-
pendently obtained expansions for [I—q(s)]™*, all by different methods,
but a new result of Kshirsagar and Gupta [11] is more desirable than
the first three because it is given in terms of the basic quantities g(s),

and because it is easier to calculate. Let U'=[U,,---, U,] be the vec-
tor of stationary state probabilities for the Markov chain; that is,
U ,P 0— U’ .

Then, let L=el", Z=(I—P,+L), and k,=U'P,e, where P,=S: 2 dQ(z),

the matrix of rth moments of the transition d.f. Q(x). Then, Kshirsagar
and Gupta [11] have shown that

(2.18) [I—q(9)]'= 1+ A4A+s4,+o(s) ,
where
1
2.1 A.- =—L ’
(2.19) =
(-1 _1
(2.20) Ao-—(I ; LP1>Z<I . P1L>,
and
@21) A= {—ZP1+—k—lLP1ZP1+ 22‘ LP,} A,
+_1_{ZP2 1 LPIZP,———LLP,}L
2%, % 3%,

For convenience we denote individual elements of A, as af}.
Now, using the expansion and (2.8), (2.9), and (2.10) we may find
the means of the Nt)’s as

(2.22) ME)=t-A_,+(A—D)+o(1) .
If we let V()=[Vi,(t)], where V,(t)=Var {N,(t)|Z=1}, then

(2.23) V()=R(t)+M(@O)—[M@®)
= t[2A—1d —A_ ]+ [Aod Ay— Ao Ait+,4,— A, +A—1d A,
+A4,, A ]+o(1),

where CoD=[c;,d;;], a matrix of products of individual elements. Also,
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if we let I'/(t)=Cov [Ny(t), Ni(t)| Z,=1], then
(2.24) I'j()=Cjlt)— M()Mu(?)
=tkl‘[U,-a5?+Ukas:;>1+[ (Uy(a% +a)+ UnasP+asp))

S0+ afP— by —0u) — (@ —0,) @D ) | +ol1)

Now, for the E.M.R.P. we may find the unconditional variances and
covariances of N,(t) by applying the expansion to (2.15) and (2.16), in-
verting and multiplying by the vector of initial probabilities (2.12).
After some simplification, we obtain

2.25)  V,t)=Var IN@)]=t| - U2a=1) |+ ZUa)+o(1) ,

k,

and

(2.26) I';(t)=Cov [N,(t), Ni(t)]
—t—[U,(a(°)—-5jk)+Uk(a(°) ak,)]+[ (Uai+ Uty ]-I—o(l) .

We are now prepared to apply these results to our inference problem.

3. The ¥’ goodness of fit test

Bartlett [1] has considered a y* test for the goodness of fit of a
hypothetical matrix of transition probabilities in the case of a Markov
chain. The procedure consists of observing a Markov chain with m

states and computing the classical y* test statistic, namely i (n,—m,)}
j=1

m;, where n; denotes the number of visits to the jth state of the
chain, and m, denotes the expected number of visits to the jth state,
assuming the hypothetical matrix of transition probabilities to be the
true one. The test is carried out using the standard y* distribution
with m—1 degrees of freedom. The validity of the approach lies in
the asymptotic normality of the n,;, which Bartlett proved in the same
paper.

Patankar [13] has modified Bartlett’s procedure by calculating the
expectation and variance of the ), say A and 2B, respectively, taking
Ay*/B to have an approximate y* with A% B degrees of freedom. This
is a better approximation in that the first two moments of the modified
statistic agree exactly with those of a »%.

For the M.R.P. we use the N,(t)’s as the observations and note
that Moore and Pyke [12] have shown that as ¢ becomes large the N,(t)
are asymptotically normally distributed, with means M, (t), variances
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V.,(t), and covariances I}(t). Thus, for an M.R.P. the goodness-of-fit
statistic takes the form

2 N~ MO
@b S O

There are several differences between this statistic and Bartlett’s sta-
tistic for Markov chains. First, one observes a fixed (total) number
of transitions in a Markov chain, whereas in an M.R.P. we have ob-
served the process for a fixed but large length of time, so that the
number of transitions is random. In a Markov chain a transition will
always occur after every unit length of time, but this is not necessarily

so in an M.R.P. Since, in the Markov chain, 3. n;=n, the fixed total
Jj=1

number of transitions, there is a linear constraint on the variables, so
the y* has m—1 degrees of freedom. No such restriction exists for the
M.R.P. Finally, in the M.R.P. the expectations M,,(t) are available only
in terms of the expansions rather than as functions of the N,(¢) and
p:;, and the matrix of known d.f.’s is involved.

Rewriting the statistic as a quadratic form, we have

(3.2) %=Y'QY,

where Y'=[N,(t)—Mu(?),- - -, Nult)— Min(t)], and
Q=divg | 3 G )

Then, it is well-known that

(3.3) E (@)=tr (VQ),

and

(3.4) Var (x5) =2 tr {(VQ)'} ,

where

linl(t) Fliz(t) tee I_Yltm(t) }
V=l Do :
Ti(t) Tist) - - - Vinl®)

is the matrix of variances and covariances of the Y’s given the initial
state ¢. Then, multiplying the matrices and taking the trace yields

(3.5) E (=3

and
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m ] 2 m 2
a6 Var (=2 3 (1—0,)ALMOF 5 S Vu®) )
@8 Var=2 3, 0=0 3 omam T2 A 0
for a fixed initial state 4. Substituting the expansions (2.22), (2.23) and
(2.24) into (3.5) and (3.6) and simplifying, we have

(3.7) A=E (y5)= 2 (2a§7—1)+o(1) ,
and

(3.8) 2B=Var(y)=2 g"‘_‘,

(13,0 [ LA 1 o pagy DGIY |
X U,

1 U. f

+2 37 (4(as) —4a5y+1} +o(1)

Then, taking y'*=Ay}/B to be approximate y* with A% B degrees of free-
dom, the moments of y'? exactly fit those of the data if the hypotheti-
cal probabilities p,; are the true ones.

For the E.M.R.P. we calculate y%, say, the same way as before.
The moments are found, however, using (2.17), (2.25), and (2.26) in (3.5)
and (3.6). After some simplification, we have

(3.9) Ag=E (y¥)= Z‘. (2a57-1)+0(1) ,
and

(3.10) 2B;=Var (3)=2 3 (13,0 @R -3, +2a0—0,) @) ~01,)
- k
g @ =0 2 33 (e~ dap + 1)+ oll)

First note that (3.9) is identical to (8.7). Then, careful evaluation of
the Kronecker deltas in (3.10) reveals that it (3.10) is identical to (3.8).
This satisfies the intuition that, if ¢ is large, the process reaches equili-
brium in the interval (0, t), whether we begin observing from the start
or not. Having so noted and satisfied our intuition, we then modify
xx as before by taking y"’*=Ajy%/Br to obtain an approximate y* with
A%/By degrees of freedom to carry out the test.

To consider the question of how large ¢ should be for application
of the asymptotic formulas, we return for a moment to ordinary one-
state renewal processes. Although no mathematically rigorous proof
has been given, Cox [56] argues roughly that a minimum requirement
is that
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where p and ¢ are the mean and variance, respectively, of the life
distribution. To apply this result to M.R.P.’s, we note first that if
we consider only transitions into state j, then we have an ordinary
renewal process with life distribution G,;(¢), the recurrence-time distri-
bution. The above minimum requirement now becomes

3
t>max {h}, j=1l,-e-,m,
J ’Ujj

where b;; and v}, are respectively the mean and variance of the recur-
rence-time distribution.

4. The 1’ statistic for a two-state M.R.P.
Direct evaluation of [I—gq(s)]"'—1I and inversion gives
4.1)

M(t):[ bat+(cua—a’Bb—1)+0(1) (1—a)at—acy—a*f(l1—a)+o(1) J

bat — (ci.e+a?pb)+0(1) (1—a)at+cya—(1—a)?f—1+o0(1)
where py,=1—py=a; py=1—p,=b; [ei]1=[pi;pi51= Py

4.2) [dil=[pi(pi;+1)]=P;; p,; and ¢, are respectively means
and variances of Fi(x); l/la=(1—a)(cu+cwu)+blcu+cw);
B=det (P))—1/2{(1—a)(dy+ds)+b(dy+dy)}.

Again, direct evaluation using (2.9), (2.10), (2.23) and (2.24) yields ex-
pansions for the variances and covariances for m=2 as follows:

Vu(t)=t[2ab(cpa—a’pb—1)+ab] +o(t) ,

Vi) =t(1 — a)al2a(c1y— 1) — 22’f(1 — @) +2ac — 1] +o0(t) ,
Vau(t) =t(ad) [2a(csy— czy) — 2a*Bb+ 2aci;— 1]+ 0(2)
Vau(t)=t(1—a)a[2{acy—a*B(1—a)—1} +1]40o(t) ,

Iiyt)=Iit)=t[a(1—a){—ac,—a’pb} —ab{a(2c,—cy)
—adf(l—a)}]+o(t),

(4.3)

and
A=) =tlab{—acy,—a’f(l—a)—1} —a(l—a)
: {acm+a2ﬁb}]+o(t) .

We may now calculate our test statistic as

o INGO—MaOF , [Nft)— MO
“h WETM T M
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with
“5) B =30+ w)
and
oo ([ Val® o[ Val®) T o [LAOT
wo  Var=2{[ ] + RS DA R

for a given initial state 4. Substituting (4.1) and (4.3) into (4.5) and
(4.6) and simplifying yields

4.7) E (xf)=2a(cy—cipten+c2) —22°8[(1 —a)+b] —2+0(1) ,
and
(4.8) Var (x2) =[2¢ya—2a*8b— 11+ [2¢ 0 —2a°(1 —a) — 1]

+2[ 1;0, {—acy,—a’Bb}*+2{acy,+a’fb} {a(2¢1,—cn)

+a’f(1—a)} +

b
1—a

{a(2cu—czl)+azﬁ(1—a)}2]+o(1) ,

when 4, the initial state, is equal to one. Now, for =2, we have

4.9) E (33)=2a(cy +C1y— €1+ C2) —22°B[(1 —a) +b] —2+-0(1) ,

and

(4.10) Var ()=[2a(cs— €31+ 1) — 20*pb— 11"+ [2acy — 2a’B(1 —a) — 1]
+2[ﬁ{-—ac,,—a"ﬁ(l—a)-—1}2+2{ac,z+azﬁ(l—a)+1}

1—
b

- {acu+apb} + 172 {acutatpb}?|+o(1) .
5. Numerical examples

To illustrate our method we present here some tests carried out
numerically on samples generated from a particular M.R.P. We wish

to test the matrix
37
P,= ,
’ [.6 .4]

using a matrix of distribution functions of the form

l—e2 1— e-(zm’ ]

1—e 22 1— e-(.c/Z)2

F(:v)=[
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For this case we have

P 0.600 1.239 and p.| 2400 2.800
71 1.200 0.708 *71 4.800 1.600 |

From (4.2) we have 1/a=2.439 and 8=—4.862. In each case we ob-
serve the process for t=80 units of time. We list the initial state and
the observed number of visits to each state of the system, but not the
observed sequence of states or sojourn times, since they are not needed
in the actual computation. We use (4.1), (4.4), (4.7), (4.8), (4.9), and
(4.10) and tabulate the results below.

Modified X2 test of goodness of fit for a two-state M.R.P.

Initial | Ny | Mo Obsigved E()=A4 |Var(1})=2B|Modified 12| Dggrees of
2 12 18 3.990 1.230 1.644 5.970 1.84
2 14 20 1.667 1.230 1.644 2.499 1.84
1 31 12 12.130 1.165 1.368 20.667 1.98
2 17 18 1.360 1.230 1.644 2.040 1.84
1 18 20 0.528 1.165 1.368 0.901 1.98

With the exception of the third sample, the values of the modified
statistic are insignificant when compared to the 959 point of the stand-
ard y* with two degrees of freedom, and there is no reason to doubt
the fit.

NATIONAL CENTER FOR HEALTH STATISTICS
SOUTHERN METHODIST UNIVERSITY
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