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Summary

In this paper, we present a class of fractional factorial designs of
the 2" series, which are of resolution V. Such designs allow the esti-
mation of the general mean, the main effects and the two factors in-
teractions (29 parameters in all for the 27 factorial) assuming that the
higher order effects are negligible. For every value of N (the number
of runs) such that 29<N=<42, we give a resolution V design that is
optimal (with respect to the trace criterion) within the subeclass of
balanced designs. Also, for convenience of analysis, we present for
each design, the covariance matrix of the estimates of the various
parameters. As a by product, we establish many interesting combina-
torial theorems concerning balanced arrays of strength four (which are
generalizations of orthogonal arrays of strength four, and also of balanc-
ed incomplete block designs with block sizes not necessarily equal).

1. Introduction and preliminaries

Since we shall be concerned with 2° fractional factorial designs of
resolution V, we shall have 29 (=v, say) parameters in all. These in-
clude the general mean g, the main effect A; (i=1,---,7), and the 2-
factor interactions A,, (:<J; ¢, 7=1,---, 7); the higher order effects are
assumed negligible. A 2" design T is of resolution V, if and only if the
above 29 parameters are estimable. The (29x29) covariance matrix of
the estimates of the parameters obtained by using 7, may be denoted
by V,. If the corresponding “information matrix” is M,, then V,=
(M;)™!. (Recall that M, occurs in the normal equations: M, p=z, where
p (29x1) is the vector of parameters, and the elements of z (29x1)
are linear functions of the observations.) A design T is ‘balanced’ if
V, is invariant with respect to the permutation of factors, i.e. the

quantities Var (4,), Var (fli,), Cov (g, Ay, Cov (& Ai,), Cov (4,, A,), Cov
(Ai, Aij), Cov (fli, Ajk), Cov (Ai,, [Lk) and Cov (./i,-,, Akl) are independent
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of 4, 7, k, | (assumed to be all distinet). To give an equivalent condi-
tion for balance, we first observe that a 2™ design T with N runs can
be represented by a (mxN) matrix T with elements 0 and 1, where
the rows correspond to factors and columns correspond to runs or as-
semblies. Then it is known (e.g. Srivastava [6]) that a necessary and
sufficient condition for T' to be balanced is the following. For every
(4x N) submatrix T, of T, and for every (4X1) vector u in which 1
occurs 1 times (¢=0,1,---,4) and 0 occurs (4—%) times, the number of
times u occurs as a column of 7, must be p; (a nonnegative integer).
The vector g'=(u, p1, g2, 13, pu) is called the index set of the balanced
design 7, which is also called a ‘balanced array of strength 4’. In
case the y; are all equal to (say) g, T becomes an orthogonal array of
strength 4, index p, 7 ‘constraints’, and N ‘assemblies’.

Srivastava and Chopra [7] studied the characteristic polynomial of
M, for the general 2™ factorial, when T is balanced. In particular,
they obtained tr V, as a function of ', which is given below for m="7
for later use.

THEOREM 1.1. Let there be a balanced 2' design T with index set
p,=(#0y ﬂly [12) ﬂh ﬂl)- Then’ we ha/l?e
1.1) (a) trv,=Cyboy T
C3 Cs 8‘&2
where
(1.2)  ¢;=38y1+32r173+ 207175+ 3973+ 607375 — Tri — 3(2y2+ 57

cs=71—12673+ 397173+ 16715+ 107375+ 60717575 — Trirs — T073rs
+ 14733+ 21075757 — 371(2r2+ 57.)

ci=2r1+2r—4ys
¢s=(1—13) (11 +3rs—4rs) —5(ra—1.)*
where

(1.3) n=N=p+4pm+6pm+4pm+p=p"+4p +6p,
11= (= )+ 2(pts— pr1) = — ' = 2415
o= =2+ po=p"" —2pty
7= (e — p) — 2ps— 1) = — pi6’ + 245
7s=po— 4+ 6p—dps+p=p' — 4y +6p1y
where

’’

=pmtw, p=mtps, pl=m—pm, pEm—
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and
1.4) =0, =0, ¢=0 and ¢;=0.

The above study helps in the analytical (and to some extent, the
combinatorial) aspects of the problem of finding optimal balanced frac-
tional factorial designs. However, the combinatorial aspect of this
problem, being more difficult, needed further investigation. To help in
this, some studies were made in Srivastava [5]; we quote some of these
below for later use. To avoid repetition, we shall assume, for Theorems
1.2-1.6, that we are considering a balanced array T (m X N) of strength
4 and index set g'=(m, pu, tt2, 13, ).

THEOREM 1.2 (a) Let m=5. A mecessary and sufficient condition
Sfor the existence of T is that there exists an imteger d such that

(1.5) dzdu=gu(p)=max (0, p—ps, pu—paa+—t1)
d=gu=du(p)=min (u,, po— s+, po—pm+p—ps+pn) -

(b) Let m=6. A necessary and sufficient condition for the exist-
ence of T is that there exists an integer d, such that

(1.6) dy=¢u=¢u(p)=max (0, d,.s+0;, d.y+0,, dig+0;) ,
o= ¢ =dp(p)=min (dg, dis—0;, dog—05) ,

where d,;=d;+d;.1+ - +d;, j=1; for each v, d=d, satisfies (1.5); d;=
dy=---=dg; and the 6’s are given by

1.7 O=—p, 0O,= “112+2#3—3#4 , O= —[Jo+2111_3ﬂz+4ﬂ3—5ﬂ4 ’
04= —ﬂ3+2[14, 05= _ﬂ1+2ﬂz—3ﬁ3+4ﬂ4 .

(¢c) The conditions ¢y=d¢, are equivalent to the following 12 in-
equalities :

(a) ds 1 ( 0 3
() | —di—ditd, —
(c¢) | —di—dy—dy—d,+ds — 23
(d) | —di—d,—d;—d,—d; — o+ 2p, —3p+ 41— 5
(e) d4+ds+de - [13+2/l4
(1.8) (f) _dl_d2+d4+d5+d6 > a— Us
() —di—dy—ds+ds+dg | T — et pa—
(h) —di—d,—d, — o+ 2p1 —3pt+ 31— 3y
(1) dy+dy+dy+ds+ds — i+ 2p—3p 4y
(j ) —dl+ds+d4+d5+do —[l1+2[12—3[l3+3y4
(k) —d+ds+ds —m+ tm— mt+ o
(1) t —d, ) Ut = ot = )
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Now, for m=6, and for a fixed (given) g, let there be g distinct
values of the vector (d,, d')=(d,, d,,---,ds) which satisfy (1.6). Let
these be denoted by (d,, d;,,-- -, ds), r=1,---,g. (Note that, in par-

ticular, g= 11 if §b11=¢12 and ¢21=¢22 ') Let d_r=(1/6) (dlr+d2r+ ot +d67)'
Define
(1.9)  8,0=(to—2mm+3ps— 43 +511) — 6d,+dy, = — 0, —6d, +d,, ,
5r1=(ﬂ1—2#2+3#3—4ﬂ4)+5d_r—dor= '—05+5Jr—d01' ’
5r2=(ﬂ2_2#3+3ﬂ4)_4&r+d0r= —02—4d_r+d07 ’
673=(ﬂ3_2ﬂ4)+3Jr_d01= ’—04+3(zr—d0r y
61‘4:#4_2J1’+d0r= _01'—2&r+d07‘ ’
51’5 = Jr - dOT ’
5r5=dor .

THEOREM 1.3. Suppose T exists with m=7. Let xz;, (1=0,1,---,7)
denote the number of columns of T each of which is of weight i. (By
‘weight 1’, we mean that the column has i ones and (7—1) zeros in 1t.)
Then the x; must satisfy the following “ Single Diophantine Equations”
(SDE).

(1.10) (a) 3bxy+15x;4 5,42, =35,
(b) 5x1+5m2+3x3+w4=35ﬂ1
( Cc ) 5x2+9x3+9x4+5x5=105ﬂ2
(d) X3+ 304+ a5+ 52 =35y,
(e) x,+5x+15xs+352,=354, .
(In the sequel, a design T with x,=x;=0 is called a ‘trim’ design.)

THEOREM 1.4. Suppose T ewists with m=7. Also suppose g’ 1is
such that (for 6-rowed arrays) g distinct values of (d,, d’) correspond to
it. (Clearly lg>0, since T exists and T 1is T-rowed.) Then there exist

nonnegative integers Y, -+, Y,, with Sg‘_. Y,=1T, such that the following
“Triple Diophantine Equations” (TDE) :M'e satisfied. Below, n’zé 0riYrs
(7=0,1,---,6).
(1.11) (a) Txyta,=n,, (b) 6x+2x,=6nr,,

(c¢) b5xy+38x;=15x, , (d) 4uy+4w,=20r, ,

(e) 3x,+5x;=15x,, (f) 2x,46x;=06m;,

(g) xet+Te=mg.
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THEOREM 1.5. Under the conditions of Theorem 1.4, suppose that
g=1. Then the TDE are reduced to what we call “ Double Diophantine
Equations” (DDE). These correspond to equatioms (1.11) with =;="174;
(4=0,1,-..,6). (Here the suffix 1 in d,; (=0,---, 6) has been dropped
for convenience.)

Using some of the above results, optimal balanced 2™ designs were
obtained for m=4, 5, 6, and for each value of N in a practical range, in
Srivastava and Chopra [8]. By ‘optimal’ we mean that in the class of
all balanced designs, T is chosen such that trV, is a minimum. In
this paper, we shall obtain similar designs for the case m="1.

For brevity, we omit detailed introduction to the theory of optimal
balanced designs. The reader interested in previous work should look
into the bibliography at the end, and the further references therein.

2. Optimal balanced designs

In Table I, we give the optimal balanced 2" designs of resolution
V, for every N, with 20<N=<42. In general, for a given N, one could
have more than one distinct (non-isomorphic) balanced designs. How-
ever, in our case, for every N, there is only one optimal design, the
value of g corresponding to which is indicated in the 2nd column of
Table 1.

Fortunately, the structure of the optimal designs obtained here is
quite simple. Each design is expressible simply by a set of 8 nonneg-
ative integers (4, 4;,- -, 4;), such that in a design with these param-
eters, every column vector with 4 zeros (¢{=0,1,.--,7) and (7—17) ones

Table I Optimal balanced designs of the 27 series

N [1’ A7 A s A4 23 A2 A Ao
29 43113 1 0 1 0 0 0 1 0
30 53113 2 0 1 0 0 0 1 0
31 63113 3 0 1 0 0 0 "1 0
32 73113 4 0 1 0 0 0 1 0
33 73114 4 0 1 0 0 0 1 1
34 83114 5 0 1 0 0 0 1 1
35 93114 6 0 1 0 0 -0 1 1
36 43126 1 0 1 0 0 0 2 0
37 53126 2 0 1 0 0 0 2 0
38 63126 3 0 1 0 0 0 2 0
39 73126 4 0 1 0 0 0 2 0
40 83126 5 0 1 0 0 0 2 0
41 83127 5 0 1 0 0 0 2 1
42 83128 5 0 1 0 0 0 2 2
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occurs exactly 2, times. Thus, in Table I, we simply present the 1’s
for each design.

Also, by definition, the covariance matrix V, of a balanced design
T has at most 10 distinct elements. For each design T in Table I, the
distinet elements of V, are given in Table II.

It would be useful to mention here briefly the nature of our process
of obtaining optimal designs. First of all, for each N, we shall obtain
all the values of g’ for which trim designs can possibly exist i.e. all
¢’ which satisfy the conditions (1.4), (1.5), (1.8), (1.11) with zy=z,=0.
Next, suppose that for some value of N, say N=N,, we have a value
of g, say p'=p* =(pu, pi¥, pF, pff, ), which corresponds to a possibly
existent trim design. Then, for any N,>N,, there corresponds to this
trim design a not-trim design with g'=(uf+a, pf, pf, ¢, p¥+8), where
az0, =0, and a+p=N,—N,. The reason is that given the trim de-
sign, the said not-trim design could be obtained by adjoining a columns
of weight 0 each, and B columns of weight 7 each. Thus, for each N,
we obtain the set of all values of g’ which correspond to possibly ex-
istent designs (both trim and otherwise). For any given N, we then
calculate trV corresponding to every such value of g/, and find the
value of g’ which minimizes tr V. Finally, we construct designs which
correspond to such optimal values of g.

We now begin the combinatorial investigations.

3. Combinatorial analysis of trim designs leading to optimal balanced
designs

In this section, we make certain investigations on trim designs,
which in turn is helpful in obtaining optimal designs.

Recall the z; (¢=0,1,---,7) of Theorem 1.3. Since we shall con-
sider trim designs alone, we have x,=x,=0. Now, define

3.1) u=2z+ux, v==2,+2;, w=+2,,
w=x,—x , V=w,—x, w=x3—2x,,
/i

Y=m+p, wM=p—p d=m+u, W =p—pu .

Equations (1.10 a, €), (1.10 b, d), (1.10¢), (1.10a)-(1.10 ¢) and (1.10 b)-
(1.10d) give

3.2) (a) 15u+5v+w=354", (b) 15uw'4+5v+w'=354,
(¢) 5Su+bv+4w=35y", (d) 5u'+5v+2uw'=354,
(e) 5v+9w=105x, .

Equations (3.2a, ¢, e), when solved for «, v, w, give



594 D. V. CHOPRA AND J. N. SRIVASTAVA

3.3) u=9u,+54"—84/' =0 i.e. y”g—g—y'—%yg

(3.4) 0=3[9¢ — 11— 34120  i.e. y"§3p'—13—1y2.

(3.5) w=5[6p— 3¢ + 1120 le. /234 —6p,.
Similarly (3.2b, d) give

(3.62) 100/ —w' =35(u/ — )  ie. 3510w —w')

(3.6b) W =T3h—p)  Pe. T|@V+w).

Finally, we observe that

() (xp), ("¢, (m+w), @+v), (wtw) are even,
3.7)
(i) [W|=su, [V|=sv, |Wsw, |x|Sy, W=

Also, from (3.3)-(3.5) we have

4 1
3.8 >y, ">, .
(3-8) Hzgm H'zgm
THEOREM 3.1. The number of assemblies N in a balanced trim de-
sign with m=7 and index set ' must satisfy
21 28

(3.9) max <?pz+?,/, 7p')§N§min (14,,2+_;_ ", %pz+ 7;/) .

ProoF. This follows immediately from (3.3)-(3.5) and (1.3).

THEOREM 3.2. If T is a trim design with m=17, then p,=3 and 4
respectively implies N=35 and 51. Also p,=5 implies N=60.

PrOOF. The results for x,=3, 4, 5 follow from (3.3), (3.8), and
(3.9).

Since we will be interested in constructing optimal designs with
29<N=42 we shall not, in view of Theorem 3.2, consider designs with
/12.2_4'

THEOREM 3.3. (a) There does not exist any trim design with m=
7, re=1 and the following set of values of N: (i) 24<N<27, (ii) 31
N<34, (ili) 38<N=<41 and (iv) 46<N<48. (b) For the remaining
values of N in the range 2T<N=<50 (i.e. when N=28, 29, 30; 35, 36, 37;
42, 43, 44; 49, 50), the values of (¢, pf'') corresponding to which designs
might possibly exist are (4,6), (4,7), (4,8), (5,9), (5,10), (5,11), (6,12), (6,13),
(6,14), (7,15) and (7,16).
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ProOOF. These results follow from Theorem 3.1.

THEOREM 3.4. If a trim design T with m=7 and m=1 exists,
then p"=y4'.

PROOF. Let x=m—pm, y=p—p. From (1.5), we have ¢,=min
( 14y, 1+y+x)=dzmax (0, +y, 1+y—p)=¢,. This implies 1+y+2
=0. If possible, let p+p>pe+p, i.e. 2+y<0. Thus we can have
either (a) x=0, y=—1, or (b) x=—1, y=0. We shall present the proof
only for case (a). The proof for (b) follows from that of (a) simply by
interchanging 0 and 1 in T. Now, for (z, ¥)=(0, —1), we get ¢,=¢y,
=0. Hence d,=0 for all ¢, and d’ is the zero vector. Next using
(1.8¢c,d, e), we find that the only permissible value of g is (0,0, 1, 2,
1). However, because of Theorem 3.1, this value also does not corre-
spond to any existent trim design.

THEOREM 3.5. Let there exist a trim design T with m=T, and p,
=1. Then p=p, and p=p,.

ProoOF. We just showed that, under the stated conditions, we must
have p+m=p+p. Now, let py<gp. Then, by the last theorem, p,>
¢, and <0, y>0. From (3.10), we then have ¢, ,=y<1+y+2, im-
plying £+1=0. Thus #=—1, and ¢,=¢,=y=d,=d;. Then (1.8, j)
shows that g is of the form (1, 2, 1, z,—y, p), and hence ¢y=¢p=+2y
—wm=d,, d=+y. Thus §,=6,=d;,=0, 5,=1, which contradicts the DDE
(Theorem 1.5).

THEOREM 3.6. For a trim design T with m=T7 and p,=1, one of
the following sets of conditions must be satisfied :
(1) A{m=pm=0, 1,23, 3u=p,+6},
(ii) {110:3.!11, #32.3 and 3[ls=,ll4+6}y or {3ﬂ1=#0+61 #1%& #423[!3},
(i) {23, s=p=0 and 3p=p,+86}.

PrOOF. From (1.5) and Theorem 3.5, we have ¢,,=1+y, or y, ac-
cording as y4,=0, or =1; ¢,=1+y, or p,, according as =1, or p=0.
The pair (¢u, ¢p)=1+y, m) with g,=p=0 is not possible because ¢, =<
¢1. We discuss the remaining three cases one by one. (Case I) (¢y,
du)=0+y, 14+y) with =0, g=1. Then d,=ds=1+y; and (1.8¢, i)
gives 4,22, and p,221,—3. Hence (dy; d)=(m—2ps+3; 1+ p—ps), so
that d'=(m,0,0,0, 1, ys—2, p,—2p,+3). Using this in the DDE gives
=0, and x;=21, x,="T(y;—3)=78;, which leads to (i). (Case II) (¢,
D)=, 1+y) with =1, p=1, we find that (1.8f, g) imply d,=d,=
1+y or d;=ds=y. Take the first case. In order that (1.8) be satisfied,
we must have p,>2, 11 =2y, and p,+3=>2y;. Then ¢y =u=p—2p;+3
and & =(u—2m+3, 1s—2,1,0,0, py, po—2p,). Substituting these in the
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DDE, we get p=3p, #4283 and 3y=p,+6. The other result of (ii), is
similarly obtained starting with d,=ds=y. (Case III). Now, let (¢, ¢1)
=(m, ), where p=>1 and p,=0. Here di=py, p=21,—3, 1, =2 and
=(1,0,0,0,1, #;—2, py—2p,,+3). This implies z,=21, r;=x,=x;=2,=
0, x,=78,=7(x;—38), leading to (iii).

COROLLARY 3.1. For a trim design T with m=T and p,=1, " is
divisible by 3.

This corollary in conjunction with Theorem 3.3 (b) and a re-appli-
cation of Theorem 3.6 gives

COROLLARY 3.2. If a trim design with m=T and p=1, exists,
then (¢, ') must take ome of the values (4,6), (5,9), (6,12) and (7,15),
with N=28, 35, 42, and 49, respectively. This shows that N must be a
multiple of T, and that corresponding to a given such N, the index set
© must be of the form (3p, p, 1, N/T—p, 3N/T—38p—6), where the integer
p satisfies N|T—3=p=0. (Note that if an array with index set (uF, pf,
p¥, p¥, uf) exists, then ome with the ‘ reverse’ index set (uf, pf, p¥, p¥, u¥)
can be obtained from it by interchanging 0 and 1. In the above, we
have therefore presented one index set in each case and ignored the re-
verse one.)

THEOREM 3.7. Let T be a trim design with m="T, p,=2. Then
(a) /=3, (b) when p'=4, the possible values of N are 31, 32, and for
#' =5, N must equal 37, 38 or 39, (c) x'=6 implies N=42.

Proor. Part (a) follows from (3.8). Also, when p'=3, (3.9) gives
(126/5)<N=<(77/3), which is impossible since N is an integer. When
¢'=4, (3.9) gives N=31 or 32. For p'=5, we get 37<N<39, and for
726 we get N=42.

THEOREM 3.8. Let T be a trim design with m=17 and p;=2. Then

;1"2 #"
PROOF. Let x=p—pm, y=p—p, so that x+y=p"—p"”. Conditions
(1.5) then reduce to

(3.10) ¢p=min (g, 2—y, 2—y—2x)=d=max (0, —y, 2—y—pu)=¢y .

If possible let x'>p”, i.e. x+y=1. This can hold under any one of
the following conditions: (a) >0, ¥>0, (b) =0, ¥>0, (¢c) >0, y<O0,
(d) >0, y=0, (e) x<0, y>0. We shall present the proof only for the
cases (a), (b) and (c). Cases (d) and (e) follow from (b) and (c) respec-
tively by symmetry, i.e. by interchanging 0 and 1 in 7.

Consider (a). From (3.10), we have p"—p'=d—2=—2. Thus z+
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yY=<2, which for case (a) implies =y=1, and d=0. Hence we get b=
min (g, 1,0)=0=max (0, —1, 1—pg)=¢y,. Now g >p=0. Hence ¢y =0.
Thus ¢,=0, and d,=d;=0. Using this in (1.8d), we get =0 or 1.
Again, since x=y=1, (1.8d) gives p,—x,<0. Hence (1, ,)=(0, 0), (0,
1) or (1,1), which implies x”<2. Hence, because of Theorem 3.7 (a),
no array exists under case (a).

Case (b). As in case (a), using (3.9), we get x=0 and y=2o0r 1. For
y=2, we find ¢;=¢,,=0, so that d,=0. Then (1.8 h, ¢, e) implies wm=0,
=2, and hence p”=2, which is impossible by Theorem 3.7 (a).

For =0, y=1, (3.9) reduces to ¢,;=min (g, 1)=d=max (0, 1 —p )=
¢u. Hence (¢u, ¢)=(1,1), (0,0) or (0,1). Consider the value (1,1).
Then d;=ds=1, 1,=0. Hence px,=0. Using (1.10) with z,=2z,=0, and
=2, p=m=0, we find x;=42, and ;;=6, ;,=6. But (1.8¢) gives g,
<4, a contradiction.

Consider next (¢, ¢12)=(0, 0), so that 4,=0, and hence ;=1. Equa-
tions (1.10e, d, c) then give z,=—21, a contradiction. Next, take the
value (0,1). Then, p#,=1, =1, and 1=d,>---=d;=0. From (1.8h),
we have d;+d,+d;=<3—p,<2. This and (1.8 f), implies that d'=(0, 0, 0,
0,0,0) or (1,0,0,0,0,0). These values of d’; using (1.8e), imply p,=
1, and hence p;=2.

Next, (1.81) gives p,=2. Finally, using (1.8d), we find that when
di=0, £=(2,2,2,2,1) or (3,8,2,2,1), and when d,=1, d,=0, we have
#=02,2221). Now g'=(3,3,2,2,1) implies N=36 which is not
possible by Theorem 3.7 (c). Also, the value (2, 2, 2, 2, 1) is not possible,
since it would imply the existence of the (orthogonal) array (2, 2,2, 2,
2), which is known not to exist.

Case (c). Here >0, y<0, and, from (3.10), 2=xz+y=1, and 2<2.
Hence =2, y=—1. Hence g, =2=2. Also sy=—y=1. Hence Pu=es
=1=d,=d;. Then (1.8¢, d) give ;,<2, and (1.8d, i) imply 2<p,—p,<3.
Hence the possible values of g are (2,4,2,1,2), (8,5,2,1,2), (1, 3,2,
0,1) and (2,4, 2,0,1). Of these, the first three imply respectively N
=36, 41 and 26, and are rejected by Theorem 8.7 (b, c). The last one
is rejected by (1.10 e, d), since x,=0, and the other xz’s are non-negative.
This completes the proof of the theorem.

THEOREM 3.9. Let T be an array having =2, m27, m+m=pm
+ps. Then Ho= 1, and Hs=

PROOF. Define « and y as in the last theorem, so that (3.10) still
holds. Suppose the lemma does not hold, and suppose x<0. (The proof
for the case when >0 follows by symmetry.) Then y=—xz>0. From
(3.10), y=2. Hence y=1 or 2,
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Case 1: y=2. Then ¢,=0=¢,. Hence d,=0, and (1.8 ¢, e, h) imply
w=2, and p,=<2. Hence p'=(u+2, p,2,4,2) with 4 <2. For each
such g/, (1.7) and (1.6) give ¢y =¢=0=d,; and hence g=1. Then (1.9)
gives §,=4d;,=0, §,=2, contradicting the DDE.

Case 11: y=1. Here again, we can have (¢, ¢n)=(0, 0), (1, 1) and
(0,1). For the value (0, 0), (3.10) implies p,=0. Hence g’ is of the
form (g, 1—1,2,1,0) giving N=12+5y,, and p'=p—1. Using (3.9),
we must then have T(y—1)=12+45p,=T(zry—1)+(14/3), which implies z,
=<(19/2), and p,=(43/6). Hence p,=8 or 9, contradicting (1.10).

When (¢4, ¢5)=(1,1), we have g=1, and pg'=(1,0,2, 1+, p)-
Also, (1.8 ¢, e) give 3<y,<4; and hence N<37. But, since y=0, (1.10
a, b, e) give x;=42>37, a contradiction.

Finally, take (¢4, ¢2)=(0,1). Then p=2, p=1, and (3.9) gives 4
<y=p"<6. Also p'=(w, n—1, 2, pu+1, ). Using this in (1.10), we
get 10x,—2x;—x,=35, 5(x,+2;)+9(x;+2,)=210, and x;+2x,—10x,=35.
This gives (z,+%)-(10/3)=(210/9)—(5/9)(x.+2s)=(x3+2x,), and hence N
=42—(1/2)(ws+2,). When p,=6, we get N=42, and hence z;+z,=2,+
2,=0. Hence 356=10x,—2x;—x,= —x,, a contradiction. Similarly, when
#'=5, we have N=37, and hence z;+2,=10 and x,+2;=3. Then 35=
10x,—x,—10, or z,=4.5, which contradicts z,+z,=3. Finally, when 7y
=4, the same steps lead to x;+x,=20, x,+x,=6, and hence 10x;,—2x;=
55. This implies z,=6, z,=0, x;=5, x,=15, and (1.10a) becomes 90+
52,+5=35p,. Hence ygy#2. Thus =38, m=1, '=@G3,2,2,2,1), 2,=2,
r;=4.

When #'=(3,2,2,2,1), (1.8b, c) give d'=(1,0,0,0,0,0) or (0,0,0,
0,0,0). In each of these two cases, (1.7), (1.6) give ¢u=¢,=0, and
hence dy;=2. Thus to the value (3,2, 2,2, 1) of g/, there correspond 2
possible values of (d,, d’). Hence g=2. From (1.9) 6;;=1/6, and §;=0,
so that (1.11f) gives 6x;=6-((1/6)y,+0-y,)=2x;+ 62,=2(4)+6(0)=8, or y,
=8. But, ¥,+%.=7, and ¥’s are nonnegative integers. Thus we have
a contradiction, and the proof of the theorem is completed.

THEOREM 3.10. If T is a trim design with m=7 and p,=2, then
7 #4.

ProOF. Suppose p'=4. Then by Theorem 3.7 (b), N=31 or 32, i.e.
¢"=3 or 4. By Theorem 3.8, the case p’=3 is rejected. Also when
#"=4, Theorem 3.9 gives p'=(p, pt1, 2, ps, p1s). The possible values of
(21, 1) are (0,4), (4,0), (1,3), (3,1) and (2,2). Of these, the first two
values are impossible because of (1.4) since ¢;=0. Also (u, p)=(2, 2)
is impossible, since the orthogonal array (2,2, 2,2, 2) does not exist
when m=7. We are therefore left with the value (1, 3), the case (3, 1)
being dealt with by symmetry. When g,=1, (3.10) gives (¢u, ¢)=(1,
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2). Inequalities (1.8¢,f, g, j) imply d,=d;=1. But then (1.8i) is con-
tradicted. This completes the proof.

THEOREM 3.11. If T is a trim design with m=T and p,=2, then
N=317.

PrOOF. Suppose N=37. Then p'=5. As in the last theorem, be-
cause of (1.4), and also in view of Theorem 3.9, the only values of g’
which need to be considered (aside from symmetry considerations) are
(1,1,2,4,4) and (1,2, 2,3, 3). Since in both cases, p/'=y', we use (1.10)
as in the proof of Theorem 3.9 to obtain z;+x,=10, x,+2,=3, and 10z,
—x,=45, which leads to the contradiction x,=>4.5, and x,<3.

THEOREM 3.12. If T is a trim design with m=7, and p,=2, then
N=+38.

PROOF. Suppose N=38. Theorem 3.7 gives x'=5, and hence p'
=6. Using this in (3.2a, ¢, e), we get u=w,4+2,=8, v=u,4+2,=15, w=
x;+2,=15. Now, let the symbol a¢|b mean “a divides b” where a and
b are integers. Then from (1.10a,b), we get 5|z;, 5|x,, and 7|(x,—
2x,+ ). Similarly, from (1.10¢, d) and (3.6 a), we have 7|(x,—2x;+ ),
and 7|{2(x;—x5)+(x;—=x,)}. Using these facts, it can be easily checked
that the only possible solutions x’'=(x,, 2, s, 4, @5, ;) of (1.10) are,
apart from (0, 1) symmetry, given by the following four vectors=(6, 8,
10,5,7, 2), (5,13, 0, 15, 2, 3), (2, 14, 5, 10, 1, 6), (3, 9, 15, 0, 6, 5). Of these,
the first two give g'=(4, 3, 2, 2, 2), and the last two correspond to g'=
3,3,2 2 3).

Consider first g'=(4, 8, 2, 2,2). Then (¢, ¢.)=(0, 2), 6'=(4,, 0,, 6,,
0y, 0;)=(—2, —4, —6, 2, 3), and (1.6) becomes ¢y,=min (ds, d,.s—2, dy.s—3)
=¢n=max (0,d,.,—2,d,,—4,d.s—6). Hence d,;<6, so that d,<2. Also
dys=2, hence d,=1, d;=1, d¢=0 or 1; d,;=d;;—d.<4, hence d,=1.
Also, d,,=<2+4d;, so that d;=0 implies d,=1. Hence d’ can have three
values, namely (1,1,1,1,1,0), (2,1,1,1,1,1) and (1,1,1,1,1,1) with
(¢z1, ¢s) respectively equal to (0,0), (1,1) and (0, 1), and d,=0, 1, and
(0 or 1). Thus g=4. For the four possible values of (d,, d’), we then
have (a,, 65, 65)=(1, 3/6, 0), (0, 3/6, 1), (0,1, 0) and (1, 0,1). Hence, when
x'=(5, 13,0, 15, 2, 3), we get from (1.11) that y,+y.=5, ¥,+9.+y;=6,
Y.+ y.=3, with y,+y.+vy:+y,=7. These give y,=4, y,=2, ¥,=0, y,=1.
However, the 6-rowed array corresponding to d'=(2,1,1,1,1,1) has
only 2 columns of weight 5 or more, whereas x,=3. This implies y,=
0, a contradiction. Similar is the case for x'=(6, 8, 10, 5, 7, 2). Hence
there exists no array with g'=(4, 8, 2, 2, 2). A

Now, let g'=(3, 3, 2, 2, 3), so that (¢, ¢5)=(1, 3), =(—3, —7, —10,
4,7). As before, it is easily seen that in this case, (d,;d’) may have
three values (1;2,2,2,2,2,1), (2;2,2,2,2,2,2) and (1;2,2,2,2,1,1),
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so that g=3. Also, we have respectively, =1, 2, 1.
Now (1.11 g) gives 3=y,+2y,+¥;=7, a contradiction. This completes
the proof.

THEOREM 3.13. If T is a trim design with m=17, and p,=2, then
N+39.

Proor. We proceed as in the last theorem. Let N=89. Then
#'=5b, p'=7, and u=13, v=6, w=20. As before, utilizing the fact that
certain linear functions of the z’s are divisible by 7 or 5, it is easily
checked that x’ can have four possible values: (9, 1, 0, 20, 5, 4), (6, 2, 5,
15,4, 7), (13, 2, 5, 15, 4, 0), (10, 3, 10, 10, 3, 3). These correspond respec-
tively to ¢'=(4,2,2,3,3), 3,2,2,83,4), (6,3,2,2,1) and (5, 3, 2, 2, 2).

Consider g'=(4, 2, 2, 3, 3), so that (¢, ¢2)=(0, 2), and ¢,=min (d,
dys—3, dys—5)=¢y=max (0, dy.,—3, d,.,—5, d.s—9). Hence d,;<9, so that
d¢<2. When d;=0, the inequality (d,s=8) gives d,=2, which implies
d,..=4>3+d,, a contradiction. Hence d;=1. If d,=2, thend,,=8>5+
ds; hence d,=1. Now d,.,<d,.; hence d,=1. Hence (d,; d’) has 2 values
0;2,1,1,1,1,1)and (0; 1,1, 1, 1, 1, 1), and d,=0 for both cases. Hence,
(1.11 g) gives x,=0, a contradiction.

For ¢'=(3, 2,2, 3,4), we have (¢4, ¢)=(1, 3), and ¢,=max (0, d,.,
—4,d,.,—8, d.4—13)< ¢y, = min (ds, dy.s—5, ds.s—9). Thus d,;<13, and
hence d;<2. Now d,=38 implies d,.,>8+d,; hence d;<2. Also d,,=5.
Hence d,=2=d;, d;=0 or 1. Now d,,=<d,s—1. Thus d' has three pos-
sible values (2,2,2,2,2,1), (3,2,2,2,2,2) and (2, 2, 2, 2, 2, 2), with (¢y,
¢2)=(0,0), (1,1) and (0, 1) respectively. Thus g=4, the value of §,
for the four cases being respectively 2, 1, 1 and 2. Hence (1.11a)

4
gives «,=2y+¥,+¥+2y,=> y,=7>6, a contradiction.
i=1

When u'=(6, 3, 2, 2, 1), we have (¢, ¢)=(0,1), and from (1.6) it
is easily seen that d’ can have two possible values (1,0, 0, 0, 0, 0) and
0,0,0,0,0,0) with ¢y=¢»=0=d, in each case, and g=2. Hence J
equals 1/6 and O respectively. Hence from (1.11f), y,=2x;+6x,=8 (us-
ing the value of x’ corresponding to the present value of g'). Hence
¥,>17, a contradiction.

Finally, let ¢'=(5, 3, 2, 2, 2). Then (¢, ¢11)=(0, 2), and ¢, =max (0,
dy2—2, d.y—4, dy.s—T) S Pp=min (dg, d;.s—2, dy.s—3). Hence d,.;<5, so
that d;<1. Thus d,,<d,;<3, so that d,<1. But d,,=2. Hence d,=
d;=1. Since d,;<2+d,, we can not have (d,, d))=(2,0). Thus the pos-
sible values of d’ are (1,1,1,1,1,1), (1,1,1,1,1,0) and (2,1,1,1,1,1)
with (¢u, ¢)=(0,1), (0,0) and (1,1). Hence g=4, and the value of
(35, 9) in the four cases is (1,0), (0,1), (5/6,0), and (1/6,1). Using
(1.11g), we get y.+y,=3. But y,=%,=0, since #,=3, and the number
of columns of weight 5 or 6 in the corresponding arrays is respectively
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1 and 2. This completes the proof.

THEOREM 3.14. If T is a trim design with m=17, and 1;=2, then
N=42.

Proor. This follows from Theorems 3.7-3.13.

We next discuss designs with g,=3. From (3.8), we have p'=4.
When =4, (3.4), (3.8) imply p”’=1. Next, using (3.2)-(3.8), we have
u=v=u'=v'=0, w=35, p/==+1, w'=435, pi==+2. Therefore the only
possible value of g/, apart from an interchange of 0 and 1, is (1, 3, 3,
1,0). This gives

THEOREM 3.15. For ;=3 and p'=4 the only possible value of g
for which trim designs may possibly exist is (1, 3, 3,1, 0), apart from
(0, 1) symmetry.

THEOREM 3.16. If a design T with m=17, p;=3, and p' =5 exists,
then N=42. Also, the corresponding values of g, apart from an inter-
change of 0 and 1, are (1, 3,3, 2,3) and (4,4, 3,1, 0).

PrOOF. From Theorem 3.1, 41<N=<42. Now N=41 implies p'=
3; this with (3.3)—(3.5) gives u=2, v=9 and w=30. Hence »'=0, —2,
or 2. When w'=0, (3.6), (3.7) give w'=0, pi=pi and |7(3us—p)|=18,
which in turn implies pg=p=+1. Thus g'=(2,3,3,2,1) or (1,2, 3,3,
2), the second value being ‘reverse’ to the first. A similar argument
for w'=+2, leads to the same set of values for g’. Now, for g'=(2,
3,3,2,1), we have (¢y, ¢1,)=(0, 1), and by (1.8 b, ¢, f, g, i) all values of
d' are rejected. Hence no trim design with N=41 assemblies exists.
Next, we take N=42. Then p”’=4. As above, we find u=7, v=0, w
=35, and (g, ')=(£3, +4), (+1, ¥2). This completes the proof.

THEOREM 3.17. If T is a trim design with m="7, and 2T N4,
then the only values (apart from (0, 1) symmetry) of g for which designs
do exist are (i) (1, 3, 3,1, 0) with N=35, (ii) (0,0,1, 4, 6), (3,1, 1, 3, 3),
with N=28, and (iii) (0,0,1,5,9), (8,1, 1,4, 6), (6,2, 1, 3, 3) with N=35.

Proor. That the above are the only values of g’ (with 20SN<
42) for which designs may possibly exist is indicated by Theorems 3.14,
3.15, 3.16 and 3.6 (Corollary 3.2).

We now show that trim designs do exist for the above values of

#. Let m=k, and let 2(m, k) denote the array with m rows and (Z")

columns, such that the columns are distinct and are of ‘weignt’ k& each
(i.e. each column has k ones and (m—k) zeros). Then, because of com-
plete symmetry with respect to the rows, it is easily checked that Q2(m,
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k) forms a balanced array with #,=<<m1:4)’ (;?:{1), <1I::L——f§>’ (71?:??),
(m—4

k——4>>’ where <z> is defined to be zero if a<b or b<0.

In particular, the array £(7, 3) has g#'=(1, 3, 3,1,0). For g'=(0, 0,
1, 4, 6), we need {(7,5)P (7, 6)}, which means taking the two arrays
(7, 5) and (7, 6) and simply adjoining them. Similarly, the remaining
four values of g given in the theorem correspond respectively to the
arrays (7, 1)@ (7, 5), 7,5)P A7, 6)DA7,6), 27, 1)DAT,5)P A7,
6), 27,1)PA7,1)P2(7,5). This completes the proof.

THEOREM 3.18. Let T be a trim design with m=17, and N=42.
Then, (a) apart from an interchange of 0 and 1, the possible values of
¢ are (0,0,1,6,12), (3,1,1,5,9), (6,2,1,4,6), (9,3,1,3,3), (1,3, 3,2,
3), and (4,4,3,1,0); and (b) the last two values of p' give rise to tr V

=00,

Proor. Part (b) follows from (1.1) and (1.2), since ¢, turns out to
be zero for both of the above two cases with x,=38. For part (a), we
consider the three cases with x,=1, 2, 8, separately.

For u,=1, the four values of g’ given above follow directly from
Corollary 8.2. Also, when g,=3, N=42 implies p'<6. For p'=6, we
shall have =0, which is impossible in view of (1.10a, e). Then (3.8),
and Theorems 3.15 and 3.16 imply the two values of g’ (for p,=38) given
above.

Finally, we show that the case p,=2 is impossible. By Theorem
3.6, we have p/=6, and hence p”=6. Using (3.3)-(3.5), we get u=w
=0=w', v=42. Hence, (3.6 b) implies 7|2v', and the possible values
of (x,, xs), and (=5, x;), are (21, 21), (28, 14), (35, 7), and (42, 0). It can
be easily checked, using (1.10) and (1.1), that the values (21, 21) and
(42, 0) give rise to singular designs (i.e. those for which tr V=o0). For
the other cases, the possible values of g', apart from an interchange
of 0 and 1, are (4,4, 2,2,2) and (5,5,2,1,1). For these two cases, we
have respectively, (¢, ¢12)=(0, 2) and (0,1). It can be easily checked
that each value of d’ corresponding to any of these is rejected by using
(1.8b, d, e). This completes the proof.

THEOREM 3.19. Let T be an optimal balanced design with N (=29)
runs and index set g'. Then p'+(1+4a,3,3,1,8), where a and B are
nonnegative integers.

ProoF. Let T, denote the design with N=29 in Table II, with
#=4,3,1,1,8), and tr Vr,=1.4861. Using T,, we can obtain a design
Ts¢ with N (=29) runs by adjoining (N—29) runs to 7,, each new run
being simply a column of zeros. Hence tr ViygstrV,; <oo. Now, in
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(1.2), we have ¢;=(ri—7rs)(r1+8rs—475)—5(ra— 1) =64 {Bpips+ papts + p13) —
3pi}. Hence when g/'=(1+a,3,1,1,8), we have ¢;=0, and therefore
from (1.1), tr V,=co>tr Vrx. Hence T could not be optimal. (Indeed,
T is not even ‘nonsingular’, i.e. all the 29 parameters are not estim-
able using T'). This completes the proof.

THEOREM 3.20. If T is anm optimal balanced design of resolution V
with N (=29) runs, then the index set g’ of T is not of the form (a, 0,
1,4,64p) or (a,0,1,5,9+p), where a and B are nonnegative integers.

PrROOF. From (1.1) and (1.2), we have tr V,=(ci/es)+(7/8p) = (8 —
20:)[8{5ptsp13+ prop’ — 33} . The last expression equals 1.6875 and 1.5417
respectively for the two forms of g’ given in the theorem. Define T,
and T¢* as in the last theorem. Then trV s<tr Vr,=1.4861<1.5417<
tr V,, so that T is not optimal. This completes the proof.

THEOREM 3.21. Let T be an optimal balanced design of resolution
V with N (29=<N=<42) runs, and index set p'. Then, apart from (0, 1)
symmetry, p' must be of one of the following three forms (a+3,1,1, 3,
B+3), (a+3,1,1,4, +6), (a+6,2,1,3, 8+3), where a and B are non-
negative integers. (We may remark that the optimal values of g’ given
in Tables 1 and II were obtained for any given N by a direct computa-
tion and comparison of the value of trV (given by (1.1)) for the values
of ¢’ of the above three forms, except for N=42, when the four values
of ¢’ given in Theorem 3.18 were also considered.

Proor. This is a direct consequence of Theorems 3.17-3.19.

THEOREM 3.22 The designs indicated in Table 1 for the various
values of p' given there, are unique.

PRrROOF. As seen from Table I, the values of g’ there are of the
form (a+3,1,1,3, 8+3) or (a+6, 2,1, 3, 8+3), where a and 8 are non-
negative integers. To prove the theorem, it is clearly sufficient to show
that the trim designs corresponding to ¢'=(3,1, 1, 3,3) and (6, 2, 1, 3, 3).
are unique. Now, when g'=(3,1,1, 3, 3), equations (1.10), (3.3)-(3.5)
give x,=21, x,="7, the other z’s being zero. Hence, the design includes
as a subset, 21 columns each of weight 2. Clearly, all of these 21 col-
umns must be distinct, since if any column were repeated more than
once, we would have p,>1. Now, there are exactly 21 distinct columns
possible, each of weight 2, namely the set 2(7, 2). Thus 2(7, 2) is a subset
of the design. Similarly, all the 7 columns of weight 6 each must be
distinct, so that 2(7, 6) is also a subset of the design. Hence the de-
sign must be (7, 2)@P (7, 6), which proves the uniqueness when p'=
(3,1,1,3,3). The uniqueness of the design 2(7, 2)P 2(7, 6)P (7, 6) for
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the other values of g’ is similarly established.

WICHITA STATE UNIVERSITY
COLORADO STATE UNIVERSITY

[1]
(2]

[3]
[4]
[5]
[6]

[7]

(8]

REFERENCES

Bose, R. C. and Srivastava, J. N. (1964a). Analysis of irregular factorial fractions,
Sankhya, A, 26, 117-144.

Bose, R. C. and Srivastava, J. N. (1964b). Multidimensional partially balanced de-
signs and their analysis, with applications to partially balanced factorial fractions,
Sankhya, A, 26, 145-168.

Chopra, D. V. (1968). Investigations on the construction and existence of balanced
fractional factorial designs of 2™ series, Ph.D. Thesis, University of Nebraska.
Kiefer, J. C. (1959). Optimum experimental designs, jour. Roy. Stat. Soc., B, 21, 273-
319.

Srivastava, J. N. (1971). Some general existence conditions for balanced arrays of
strength ¢ and 2 symbols, Jour. Comb. Th., A, 13, 198-206.

Srivastava, J. N. (1970). Optimal balanced 2™ fractional factorial designs, S. N. Roy
Memorial Volume, University of North Carolina and Indian Statistical Institute, 227-
241.

Srivastava, J. N. and Chopra, D. V. (1971a). On the characteristic roots of the in-
formation matrix of 2™ balanced factorial designs of resolution V, with applications,
Ann. Math. Statist., 42, 722-734.

Srivastava, J. N. and Chopra, D. V. (1971b). Balanced optimal 2™ fractional factorial
designs of resolution V, m=4, 5, 6, Technometrics, 13, 257-269.



