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1. Introduction

This paper represents a contribution in furthering the knowledge
about the combinatorial structure of fractional replicates and about
aliasing schemes for irregular fractional replicates. A genralized method
of constructing irregular fractional replicates is presented, and aliasing
schemes for some main effect plans are presented. Special reference
is made to construction of saturated fractional replicates for a set of
main effect parameters. A special ordering of treatment observations
and of single-degree-of-freedom parameters is described ; using this or-
dering irregular fractions with prescribed aliasing schemes result. An
invariant property of the information matrices of main effect fractional
replicates and a semi-invariant property of the aliasing matrix for the
2 -factorial are discussed.

In the second section we give a Kronecker product representation
for the design matrix of an s-factorial composed of linear contrasts;
the statistical model is described together with estimates of parameter
effects and their associated variances. In the third section of the paper
a discussion is given of some previous results of the authors on an in-
variance property of the information matrix and on a semi-invariant
property of the aliasing structure matrix for the 2"-factorial. These
results and others cited here are needed in the development of the re-
mainder of the paper.

In the fourth section we show how to rearrange the treatment
order and the corresponding design matrix to achieve certain aliasing
structure properties. The results are presented in three theorems. In
section five the method of construction is outlined and illustrated with
two examples. The possible values of the determinants of the infor-
mation matrices for saturated main effect plans from 2* and 3* factorials
are presented at the end of this section. In the last section, aliasing
structure schemes are exhibited and an aliasing structure property is
defined and discussed.
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2. Basic notations and statistical model

In an s"-factorial system (s is a prime number), the space of treat-
ment combinations, Z, is represented by the set Z=1{(i;, %5, *, 1,): =
0,1,..-,8—1 for all h=1,2,...,n} which contains s" points, say N=s".
A standard ordering of points in Z is given by the relationship between
the coordinate of a point z,=(3;, %3, -+, %.), v=0,1,..+, N—1, and the
order subscript

@.1) v= ,.Z' s
=1

The addition operator+4 between any two treatment combinations z,
and z, is defined as follows: if z,=(%;, %5, -+, %) and 2, =1, 95, -+, 13)
then z,.=z,+2,=GY, #/,---, 1)), where /=1,+1,, mods, for all h=1,
2,---,n. It follows immediately that the set Z is a group with respect
to operator +. We denote by az,, «a=0,1,.--,s—1, the addition of z,
itself a-times, i.e., az,=(at,, at;,- - -, at,)=(, 15, - -, 1), mod s.

The expected value of the random vector y(Z) associated with the
space of treatment combinations Z is given by

(2.2) E[y(2)=XB,

where X is an N XN orthogonal matrix in the sense that X'X is a
diagonal matrix, B is the N x1 column vector of single degree of free-
dom parameters, B, Bi,: -, Bv-1, and y(Z) is the Nx1 column vector
with covariance matrix ¢’I. The parameters 8, have the usual inter-
pretation of main effects and interactions of n factors. We distinguish
between linear effects, quadratic effects, and effects of higher order.
(Note: Any orthogonal set of contrasts may be utilized but we have
arbitrarily selected the polynomial set.) We also distinguish between
linear by linear interactions, linear by quadratic interactions, ete. We
further describe the structure of the s"=N parameters, §,, u=0,1,
.-+, N—1, by considering the space B of N points where B={(a, as,
cevyay): a,=0,1,.--,8—1 for all h=1,2,..-,n}. The correspondence
between the parameters 8, and the points of B is given by the order

relation specified by uzi‘, a,s"". We also introduce the addition oper-
h=1

ator + on the space B. The unit element of this group g,=(0, 0,---, 0)
is the mean response of all the treatment combinations. The param-
eters (0,0,-:-,ax, 0,:++,0), k=1,2,--.,n, where a;=1 in the kth posi-
tion correspond to the kth factor a,th degree main effect. Interactions
correspond to points where coordinates are zero or non-zero with at
least two coordinate non-zeros. Later, we also use the following nota-
tions: M for B, and A=1B=-...K* for (a4, as,- - -, a,).
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Let X be the matrix of coefficients of orthogonal polynomials of
order s, where the elements of the first column are all 1 and the inner
product of any two different column vectors of X is zero. This ma-
trix X corresponds to a factor level vector (0,1, ---,s—1). The
matrix X can be defined as:

X=X('"’=X(”®- . -®X“) ,

where ® denotes the Kronecker product, i.e., if
1 I R 50,.-1
X®= 1 511 * El,c.—l

i 5;-1,1 c : E:-.l,s—l

then
X(ln—l) EOIX(x"—l) e eo ‘_IX(‘n-l)
(2.3) Xeh= X (.'H) e“X.“n_‘) e 51,._1)?(‘”_!)
X(;"-—l) 6‘_1 ;X(;"l—l) .. : E.-l ‘—;X(‘n—l)
Note. Let x(ay, a, -, a,) be the column vector in X correspond-
ing to the parameter point (a;, -+, @) and let x(an), X(an, o), ete.

represent (0,-++, a,, 0,--+,0), (0,-++, @, 0,-++, a, 0,---,0) etc., respec-
tively. Define a specialized product of two matrices A,..=||a;|l and
Bmxn:”bij”) i:l, 2: e, My j=19 2, cee, M, such that

A : B=lleyll, where c¢;;=a;by, 1=1,2,---,m; j=1,2,-+,mn.
Then, it is easily verified that
(2.4) x(al, Qgy** ;a,,):x(al) H x(az) A x(a,,) .

Suppose that the vector y(Z) and B are rearranged and partitioned
as follows: y(Z*Y=W(Z,), ¥(Zy-,)), B*'=(B;, By_,), where y(Z;) and
B, are px1=(n(s—1)+1)x1 observations and main effect parameter
vectors, respectively, with the mean parameter as the first element of
B, and N=s". Then, write y, and yy_, for y(Z;) and y(Zy_,), respec-
tively, and consider the following expression:

Up _ Xy X . B,
@5) E[yy—p}_[xn Xn} l:BN-p]

such that X, is a non-singular pXp matrix. The existence of y, is
easy to verify. From (2.5) we obtain

(2.6) E [y,]=[Xy, Xul[B;, By,
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and the observations in y, yield a saturated fractional replicate for the
parameter vector B,.

Using the least squares method (e.g., Banerjee and Federer [1], [2],
Zacks [14]), we obtain the following solution :

@.7) Bf=B,+ Xi'X,B,_,= X'y, ,

where B)=B,+Xi'X,By_,, and B,+X:'X,B,_,=X;'y, denotes the
least squares estimator of B,+X'X;By_,. Alternatively,
(2.8) By =B,+(X{X)"X\(I+ ) XuB,y_,

=(X!X) XL+ Ay, ,

where X,=[X/X/], and 2=—X,X,;!. We note that
Var (BX) =(X{,Xy) 'd* .

3. An invariant property of |X/X,|

In an s™-factorial, denote the matrix of coefficients of orthogonal
polynomials of order s corresponding to a factor level vector (0,1,---,
s—1) by X* and the matrix corresponding to (¢, 44+1,---,3—1)=(0, 1,
ceo,8—1)+(3, %, -, 1), (mods), by X. The following lemma has been
proved by Paik and Federer [7].

LEMMA 3.1. Let G=(X®X®)XPXO=(X®)'X®, then XO=
X*G for i=0,1,---,s8—1, and the matric G has the form

1 0---0
3.1) diag (1, C)=| © ST
(-) E

C'=I,_pxiu-1, and |Ctl=%1 for all integer values of 1.

1 -1 1
Example. For X‘”z(l —1>, C=-1, and for X“’:(l 0 —2),
1 1
1 1 1
1/-1 3
C=—< )
2\—-1 -1

Let Z,(s*) be a saturated main effect plan; write this as Z,, repre-
sented by a submatrix of Z such as a pXxn matrix in an s*factorial and
X, by a pX p coefficient matrix of the main effect parameters correspond-
ing to the plan Z,; let J, (4, %3, -, 1,) be a pXn matrix effect with the
hth column having elements i, for all h=1,2,---,n and X,,, be a pxp
coefficient matrix of the main effect parameters corresponding to the
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plan Z,,=2Z,+J,(i1, %, -, 1,), (mod s), where the order subscript v=
,,é_l 8" Then X, ,=Xy(diag (1, C4, C4,-- -, C'w)).

The following theorem also has been proved by Paik and Federer [7].

THEOREM 1. If Z, is a saturated main effect plan, then Z,, also is a
saturated main effect plan and | X X ,|=| XXyl

The meaning of the theorem is that if Z, is not a subgroup (in
the algebraic sense) of Z in an s"-factorial, Z,+J,(i, 13, , %), ©,=0,
1,-++,8—1 for all h=1,2,---, n, produces s* different main effect plans,
but determinants of the information matrices have the same value. (It
appears that Webb [12] and Paik [5] were among the first to be aware
of the fact that several plans gave the same value for the determinant
and that any one could be as useful as any other.)

A main effect plan Z,, of an s*factorial is said to be independent
(nonisomorphic) of a main effect plan Z, if Z,, cannot be constructed
by the procedure Z,,=Z,+J,(i1, 3, *+, 1), 4%,=0,1,--+,8—1 for all h=
1,2,---,n. If Z,, and Z, are not independent then the plan Z,, is an
element of the set, S(Z,)={Z,+Jy(%, 13, +, %,): 1,=0,1,--+, s—1 for all
h=1,2,-..,n}. The set S(Z,) is said to be the main effect plan set
generated by Z,. Using this criterion, we may list every independent
main ‘effect plan from an s"-factorial. Paik and Federer [9] present a
complete list of the generators for main effect plans for 2%, 2%, and 2
factorials. Since there are n(s—1) main effect parameters in an s

factorial, the total number of main effect plans is ( - 8_8;) +1) and the

total number of generators of main effect plans is (ns(’;—_ll)> / (n(s—1)+1)

for n(s—1)+1 not equal to a multiple of s. Thus for the 2‘-factorial

there are Gf) /5=273 generators. Raktoe and Federer [11] have deter-

mined the total number of generators for main effect plans for all s

Also, it should be noted that a semi-invariant property of the alias-
ing matrix for a 2"-factorial has been proved by Paik and Federer [8].
The semi-invariant property of X;!X,, is defined such that the matrix
Xi'X,, remains unchanged, except for signs of some elements, under
the procedure Z,,=Z,+J, (%, %;,--+,%,). This means that the aliasing
structure does not change under the procedure.

4. Rearranging the treatment order and the corresponding design
matrix

From equation (2.7) or (2.8), we note that the inverse of X, or



572 U. B. PAIK AND W. T. FEDERER

of X;,, is needed to obtain the solution. Also, we see later that if the
size of the fraction is less than s"! in an s"-factorial, then we may use
the matrix X“" ™ instead of the N XN matrix X“™ to obtain a solu-
tion such as (2.7) or (2.8). Also, we shall see in this case that the
method of constructing a saturated fractional replicate resolves itself
into the problem of selecting the smallest number of treatments from
those corresponding to the orthogonal matrix X" for some k1.
However, in this case, the mean effect will be confounded with the main
effect A. This is the reason for rearranging the treatment order in Z
with some higher order defining contrast before constructing a frac-
tional replication, i.e., we shall require the mean effect to be uncon-
founded with the main effects.

Now consider rearranging the treatment order in vector Z with
some defining contrast in an s"-factorial. The s"—1 degrees of freedom
among the s treatment combinations may be partitioned into (s®—1)/
(s—1) sets of s—1 degrees of freedom. Each set of s—1 degrees of
freedom is given by the contrast among s sets of s"! treatment com-
binations specified by the following equations:

(4-1) ali1+a2i2+ e +anin=j ’ j=01 11' “ s_ly mOdS ’

where the right-hand sides of these equations are elements of the Galois
Field GF(s). The a,’s are positive integers between 0 and s—1, not
all equal to zero, and all additions and multiplications are done within
the Galois Field GF'(s), then the interaction A*B=--.K® corresponds
to the equation whose left-hand side is ai;+aty+ - - - +auia., i.e., the
(J+1th set of s—1 degrees of freedom given the defining contrast
M=AxB=...K*», where M denotes the mean parameter and = means
completely confounded with, may be expressed as: M;=(A“B%-..K),
which satisfies the following condition: ay,+ayis+ -+« +a,t,=7, mods,
where ¢,=0,1,.---,s—1 for all h=1,2,.--,n. For a defining contrast
M=AB=...K", the identity relationships are written as:

4.2) M,=(ABs...K=),, §=0,1,--+,8—1.

Let the set of treatment combinations for fixed ¢,=y, r=0,1,---,
s—1, be {y, 5,--, %}, then the (k+ys"')th treatment corresponds to
M, tmoas in the set of {y, 4y,:,1,}, for 0<k<s*'—1.

THEOREM 4.1. In an s™-factorial (s is a prime number), if the treat-
ment order in Z 1is rearranged to correspond to the defining contrasts
M,=(AB*---K~),, j=0,1,---,5s—1, then the following form of the cor-
responding linear orthogonal comparisons matriz X* can be obtaimed by
rearranging the row vectors in X, 1.e.
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X& Xof ¢ X
(4.3) xx=| X Kb X
Xg Xt XFie
where Xg=X“"" and X}, i,7=0,1,-+-,s—1, are all s""' x5! matrices.
PrROOF. Let X&' be an s"!xs"! matrix of the first column ma-

trices in X" defined by (2.3) corresponding to a treatment combination
set {(7, %y, %) 9%=0,1,---,8—1 for all h=2,3,.-.--,n}. The first

! ("1

column matrices in (2.3) can be written as (X§ 7,---, X§{, 7). Let
k= {t : t=§} i,,s""‘} ={0,1,.--,8"'—1} be the sequence of the row or-
h=2

-1y

der numbers in X, and let {k{”}, be the sub-sequence of the row
order numbers in X&', {k"}={0,1,---,s"'—1}, corresponding to de-
fining contrast M,=(AB<...-K);. Then, the sequence {k{”} can be
partitioned as

{kP} = {{£”}o, (R ese -0 {RE)a)

Suppose m € {k{’}, and m' € {k{’},, then it may be easily verified
that m#=m’ if y#y/. This means that the set of sequences

4.4 {{£"}, (R°}y5e -, B2}, given j,

consists of s"! non-negative integers less than or equal to s*'—1, and
none of the integers is equal to another one. Hence,

4.5)  {{kP};, (KO}, e -0 (R0 = (UK}, (B2}, - o) {BEP)a)

Let {k”}, be the set of row vectors corresponding to M, in X&',
then

(k) ) [ ),
(4.6) 2o 2k o xg,
{k(;—l)}l {k((.))}‘_l

where the notation ~ means that if we rearrange the row vector or-
der properly in the left-hand side of the matrix of the ~ notation,
then this matrix will be the same as X§' . This proves the theorem.

Remark. Let
(4.7) xi](j’ j29 ) jn)

be the column vector in X} corresponding to the parameter A’B’%,--.-,
K’», where j,=0,1,-.-,8s—1 for h=2,3,..-,n. We may obtain the
following relations:



574 U. B. PAIK AND W. T. FEDERER

(4'8) xij(jr .7.2,“‘, j,.)’—‘xoo(O, jz:"" .71») : xij(j' 0’ 0""’ 0)
=xu(0, 0,---, 0) : X0(0, Jz,0,--+,0): -+
: X0(0,0,---, 7,) : x,(5,0,---,0) .

THEOREM 4.2. In an s*-factorial, let X¥=[Xg, Xo¥, -+, Xo%_] be the
s" X 8" matrix corresponding to the defining contrast M=(AB"--.-K*"r),,
where at least two of ay,---,a, are mot zero, then the mean and main
effect clumms in X¥ are orthogonal to each other.

Proor. Let U, be a matrix which is constructed using the mean and
main effect columns in X;* and u,(j) be the column vector corresponding
to (0,-++, Ju, 0,---,0) in Uy, and define u,=1. Let Z(j), whose elements
are in Z, be an s"'Xn matrix corresponding to M,=(AB=--:-K);,
where at least two of a;,---, a, are not zero, then in each column of
Z(0), each level number occurs an equal number of times, say p times;
all s* treatment combinations corresponding to any two factors, chosen
from n factors, occur an equal number of times, say v times, in Z(0).

Then, using a property of X, the following relations hold in the
matrix Uy :

uo.uh(j)zﬂgfuzo for j=1,"',8—1; h:l’ 2,...,n

51
un(j)'uh(g)=l‘§)5ijfip=0
for jig; j’ g=09 1;"‘, s_l and h:l, 2,"','"( .

3—1 8-1
u"(j)u"(g):”;;mz:l £iibmg=0
for h#k; j,9=0,1,---,s—1 and h, k=1,2,---,n
and the theorem is proved.

THEOREM 4.3. Let X¥=[X%, Xf] be a 2" ' X 2" matrix correspond-
ing to Z(0) with defining contrast My=(AB*-.-K),, a,=0 or 1 for h=
2,-++,m, 1 a 2"-factorial, then X;* can be rearranged as

(4.9) Xo. = [Xo);y iXoBk] ’

where the parameter order corresponding to column order in X, is M,
K,---,BC---K; W, KW,--+,BC---KW, where W=AB"---K",

Proor. Using the notation (4.7), the column vectors in X;*, corre-
sponding to M, K,---,BC---K; W, KW,---, BC---KW are expressed as
xoo(o’ 0;‘ 'ty 0); xoo(oy 0: ct 1): ) xoo(O: 11 Tty 1); xol(19 Qgy® an)! xoo(oy
0: Yy 1) : xot(lr QAyy °*°y an)’ cccy xoo(Oy 1; Tty 1) : xot(l’ gy *° an)r respec-
tively.
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From the defining contrast My=(AB"- - -K"),),
(4'10) xOI(]-’ Ayt *y an)= ix()()(of 0: ttty 0) y

where the sign 4+ or — is dependent upon whether 1+é a, is an even
h=2

or odd number in this 2"-factorial system. Then,

(4.11)
X0, 0, - -, 1) P xu(l, a0, a,,)=x.m(0, 0,+++,1) : [£x(0, 0,- -, 0)]
= ixoo(o: O’ M) 1)

xoo(O, 1!' ) 1) : xol(]-; [2- PR an)= ixOO(Oy 17’ cty 1) .

Using the results in (4.10) and (4.11), we see that this completes the
proof of the theorem.

5. Construction of saturated fractional replicates

We shall consider mostly the method of constructing saturated main
effect plans in an s"-factorial. Although we could always construct
various saturated non-orthogonal plans for any given parameter set,
the general steps of the construction method may not be too instructive.
The following steps, however, will be common in constructing any frac-
tional replicate for the specified parameters (also, see Banerjee and
Federer [3] and Paik and Federer [5], [6] in this connection). Special
cases will be illustrated in the following examples.

Step 1. Given the design matrix and parameter and observation
vectors, XB=E (y) in any fashion and not necessarily that of the pre-
vious section, we now rearrange the parameter matrix such that the
p parameters, p< N, are arranged to have the p parameters of interest
first and N—p parameters not of interest last to obtain B* rearranged
as [B,, By_,J'. This also rearranges the columns of X such that

(5.1) X*B*=E ()
or

B, 7_
(5.2) X, le[ B }—E OF

where X*=[X;, X;], X, is an NXp matrix, and X; is an NX(N—p)
matrix.

Step 2. Search through rows of X, until there is an X,;, pXp,
which is non-singular.
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Step 8. Corresponding to the rows in X;; will be rows in X, and
treatments in Z. Rearrange the treatments in Z into [Z7, Z]_,)’, where
Z, corresponds to the rows in X;; from X;. The treatment combinations
Z, yield a saturated design for the parameters in B,. This obtained
set is one of the possible sets. All possible sets are found by identify-
ing all X;; which have an inverse.

Example 5.1. Saturated main effect plans in a 2!-factorial.
If we consider a 2-factorial design matrix X©“ with the defining
contrast M=ABCD, then the aliasing scheme is as follows:

M=ABCD, A=BCD, B=ACD, C=ABD, D=ABC,
AB=CD, AC=BD, BC=AD.

After rearranging the rows and columns taking into consideration the
above aliasing scheme and after using Theorems 4.2 and 4.3, we obtain
the following matrix X*:

%k X’*
5.3 X*=| 7" “}
63) [ & =X

where X=X, and in this case, the treatment order is
0000, 1001, 1010, 0011, 1100, 0101, 0110, 1111;

(5.4) .
1000, 0001, 0010, 1011, 0100, 1101, 1110, and 0111,

and the parameter order is
M, D, C, CD, B, BD, BC, BCD;

(5.5)
ABCD, ABC, ABD, AB, ACD, AC, AD, and A.

Now consider the saturated main effect plans in a 2*-factorial. Let
the treatments be arranged such as (5.4) and using the 7th, 6th, and
4th columns in X corresponding to effect BC, BD, and CD, and let U,
be an 8x3 matrix corresponding to parameters BC, BD, CD in Xg,
then we may easily find three independent rows in the matrix U,, and
obtain the saturated main effect plans in a 2‘-factorial.

Let (n, ns, s, 7., n;), where n, is a treatment order number in
(5.4), be one of the plans constructed by the above procedure, then by
recalling Theorems 4.1 and 4.3 we know the following treatment com-
binations are also saturated main effect plans in a 2‘-factorial, i.e., for
treatment 8 being 1000 we obtain

(5.6) (n,+38, n,+8, n;+8, n,+8, n;+8) .
Finally, it will be worthwhile to note that all plans (64 plans) in
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this example belong to the sets generated by the following generators:

0000 0000 0000 0000
0011 0011 0101 0101
(5.7) 0101 1001 1001 1001
0110 1010 1100 1111
1001 0101 0011 0011 .

In these cases, | XX, |=1024=32%

Example 5.2. Saturated main effect plans in a 3’-factorial.
In a 3'-factorial, after rearranging the row order for the defining
contrast M=ABC? we obtain the following matrix:

Xt Xof X
(5.8) X*=| X X* Xf|,

X& Xf Xif
where each X¥ is a 9x9 square matrix, X}=X“", and treatment or-
der is

000, 101, 202, 210, 011, 112, 120, 221, 022;
(5.9) 100, 201, 002, 010, 111, 212, 220, 021, 122;
200, 001, 102, 110, 211, 012, 020, 121, 222,

and the parameter order is
M, C, C), B, BC, BC* B, B!, B(C%;
(6.10) A, AC, AC:, AB, ABC, ABC’ AB:, ABC, AB(C%;

A, AC, A'CY, A'B, A'BC, A'BC*, A'B, A’B'C, and
A'B'C*.

If we rearrange the column order in X* to correspond to the follow-
ing parameter order:

M, A, A, B, B, C, C), BC, BC,---,

and let the first 9x9 submatrix of the rearranged matrix be Ay, and
if we use the symbols M, A, A% B, B: C, C¢, BC, BC® as the symbol
of each corresponding column vector in Ay, respectively, then, from
Theorem 4.2, the column vectors M, A, A} B, B? C, and C* are or-
thogonal to each other and also M, B, B C, C? BC, and BC? are or-
thogonal to each other. Using the Schmidt method of orthogonalizing
the column vectors, we can make BC and BC?® orthogonal vectors to
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the first 7 column vectors. Let such new vectors of BC and BC? be
z, and z, respectively; then, if we find a non-singular 2x 2 matrix from
the 9x2 matrix, [z, 2], we can construct a corresponding information
matrix X, for saturated main effect plans.

Let (n,, n,, ng, ny, 05, ng, n;), where n, is the treatment order num-
ber in (5.9), be one of the plans constructed from the above procedure,
then the following sets of treatment combinations are also saturated
main effect plans in a 3-factorial, i.e.,

(n4+9, 7,49, ns+9, n,+9, ns+9, n+9, n,+9)
and
(5.11) (n,418, n,+-18, ny+18, n,+18, n;+18, ne+18, n,+18) .

In this example, all above plans (81 plans) belong to the sets gen-
erated by the following generators:

000 000 000
011 011 011
022 022 022
101 101 101
112 112 120
120 202 210
202 210 221

In these cases, | X{X,|=419904=3%(2".3%".

Remarks. (i) In the case of saturated main effect plans in a 2
factorial, every | X X),| has one of the four values, i.e., 2304, 1024, 256
or 0. The set generated by a plan (0000, 0111, 1011, 1101, 1110) has the
maximum value 2304. Note that

2304=(3-24*=48",  1024=(2-2?"=32¢,
256=(1-2*=16", and 0=(0-2'%.

Also, note that there are 16(1) plans for which | XX, |=2304, 16(20)
plans for which |XX,|=1024, 16(167) plans for which |X/X,|=256,
and 16(85) plans for which | XX, |=0. (These plans have been com-
pletely enumerated by Paik and Federer [9]; plans for the 2! and 2¢
factorials were also enumerated.)

(ii) In the case of saturated main effect plans in a 8-factorial,
every |X/X;| has one of the five values, i.e., 746496, 419904, 186624,
46656, or 0. The sets generated by the following 9 plans have the
maximum value 746496.
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000 000 000 000 000 000 000 000 000
021 012 012 011 011 012 011 022 022
101 102 021 101 102 101 101 202 202
112 110 102 112 110 110 110 220 220
120 121 110 120 201 211 122 211 011
202 201 211 210 121 021 212 121 101
210 220 220 222 222 222 221 112 110

It is of interest to note that for 2%(3*)=216 that

T46496=[4(216)'  419904=[3(216)  186624=[2(216)]’
46656=[1(216)F, and 0=[0(216)].

For the cases s=2 or 3 and from the property of X, one is led to
consider the values of the determinants of X, =[s(s—1)(s—2)---1]-
[n(s—1)—14] for t=s—1,s,8+1,---,n(s—1) for saturated main effect
plans from an s"-factorial with n(s—1)41 observations, where the num-
ber of plans having | X,| equal to a specific value could be zero as in
the 2? case. It is not difficult to find exceptions to the above. Hence,
the question of the possible values of the determinant of X, remains
an open question, even for s=2.

The complete characterization of all X;, poses some interesting and
difficult combinatorial problems. Partial characterizations in addition to
those presented in this paper, have been made by Raktoe and Federer
[10] and by Werner [13]. Raktoe and Federer [10] have obtained a
lower bound on the number of singular X, for saturated main effect
plans in s*-factorials. Werner [13] has obtained the frequency distri-
bution of plus ones in all X, from saturated main effect plans for the
27-factorial.

6. Alias schemes in some fractional replicates

This section is concerned with some alias schemes in some frac-
tional replications. Ehrenfeld and Zacks [4] and Paik and Federer [7]
presented randomized procedures to obtain an unbiased estimator of B,
in place of B¥=B,+ X;;'X;,By_, which estimates a sum of parameters.
However, a randomized procedure may not be always applicable as, for
example, in the missing data situation where the data are not missing
at random, in situations wherein certain treatments are inadmissible,
or in sequential selection of observations. In such cases, we may want
to know the pattern of X;7'X|, in irregular fractional replicates as this
gives the aliasing scheme.
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6.1. Alias schemes in saturated fractional replicates for the 2'-factorial
In Example 5.1 (saturated main effect plans in a 2'-factorial), sup-
pose that the following partitioned matrix of X is obtained after rear-
ranging the columns in X* (the row order was arranged subject to
M=ABCD) in (5.3).
Xll §X1211 X1212
= széxzzu Xoe |
Xmngzm Xoons

(6.1) X=[ Xu X“}

X Xo

where the parameter order corresponding in X is as follows: M, A,
B, C, D, CD, BD, BC; ABCD, BCD, ACD, ABD, ABC, AB, AC, AD,
and X, is a pXp (p<8) non-singular matrix, X,},, and X, are each
pX(8—p) matrices, Xy is an (8—p)X(8—p) matrix, X;, and X, are
8% p matrices, and X,y and X3}, are 8 X(8—p) matrices.

We know from (5.3) that

[ Xll )(1211 :|=|: X1212:|~ *

sz:[Xm Xlzu] .

so that

Then, X, can be partitioned as follows:

(6.2) Xio=[Xoa11, Xu1, Xpoud] -
Hence,
(6.3) X' X=X X, I, X' Xo] -

It may be easily verified that, in all plans in Example 5.1 (there
are 64 plans), X;;'X,, has the following form :

(6.4) [ X5 X, 1, 2 X7 Xoeu] .
Example 6.1.

1000
1011
1101
1110
0001

This plan may be obtained by the following procedure from the first
plan in (5.7);



CONSTRUCTION OF FRACTIONAL REPLICATES 581

0000 1000 1000
0011 1000 1011
0101 {4 1000 [={ 1101 |, mod 2.
0110 1000 1110
1001 1000 0001

In this case, we obtain the following solution :

-1 0 0 0 0{ 1 1-1{-1-1 1
0-1 0 0 0 —-1-1 1: 1 1 -1

B+ 0 0-1 0 0 1 0 0 —1 0 0|By,=Xi'y,,
0 0 0-1 0. 0 1 0 ©0-1 0
0 0 0 0-1: 0 0 1 0 0-—1

where B,=(M, A, B,C, D) and Bj_,=(ABCD, BCD, ACD, ABD, ABC;
AB, AC, BC; CD, BD, AD). Note that the alias scheme is semi-invariant
under the procedure Z,+J,(,, ,- - -, 1,) described in Section 3.

Similar results may be obtained from the plans which are const-
ructed by the method of Example 5.1 with defining contrasts M=ABC,
M=ABD, M=ACD, M=BCD. (In all these cases, | X}|X);|=1024). None
of the saturated main effect plans except the above plans with | X| X, |
=1024 in the 2‘-factorial has the form in (6.4).

For the 2"-factorial system, saturated fractions with | X}{X},| a maxi-
mum, do not always have the best aliasing structure for X;'X,, given
that complete confounding of effects has better properties than having
an effect in B, partially confounded with all the parameters in B,_,.
The case of p>8 for a 2'-factorial is considered next.

In a 2'-factorial, suppose that M=ABCD, B,=(M, A, B, C, D, AB,
AC, AD, BC), and the matrix X in (6.1) is partitioned as follows:

X, X Xo X X
(6-5) X= l: Xu Xm :|= Xoout Xooz Xios
T X X Xa

where the parameter order corresponding to the columns in X is M,
A, B, C, D, AB, AC, AD, BC; ABCD, BCD, ACD, ABD, ABC, CD,
BD, and X,, is a pXp non-singular matrix, X, is an (N—p)X(N—p)
non-singular matrix, and Xpu~Xg& in (5.8). Then, the treatment de-
signation of observations in the order corresponding to the matrix X
is 0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111, and 1101, and the re-
maining 7 treatments in some order.
Since
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and
XiXw=Iw-pxv-p— X Xn .
Since
X=X - XX, 7' Xy
then

XJIX 2= XliXIZ - .YAng -1X1§X12
= —ngXzz'— z’xX'zé _l(I - zéXzz)
=—X3 X5

Also, since the matrix X, may be partitioned as X, =[— X, — Xps Xosl,

"‘Xzé LN—p)x(N-p)
(6.6) Xi'Xy=—| — X5 | X4 = X5 X3!
X, — Xoha X!

Example 6.2. (p=9) Suppose that the treatment combinations cor-
responding to X;, in (6.5) are 0000, 0011, 0101, 0110, 1001, 1010, 1100,
1111, and 1101. Then

1 0 0 0 0 0 0)
01 0 0 O O O
0o 0 1.0 0 0 O
o 0 0 1 0 O O

Xi'Xe=f 0 0 0 0 1 0 of,
0o 0 0 0 0 1 O
0o 0 0 0 0 o0 1
-1-1-1 1-1-1 1

L 1 1 1-1 1 1 -1

where B,=(M, A, B,C, D, AB, AC, AD, BC) and B}_,=(ABCD, BCD,
ACD, ABD, ABC, CD, BD).
If p=12, we may find a fractional plan in a 2'-factorial such that

ngzng = I4x4 ’

for example, in the case of (0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111,
1100, 1101, 1110, 1111),
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I4x4
XﬁlXu: —ILix
I4x4

where B,=(M, D, C, CD, B, BD, BC, BCD, A, AD, AC, ACD) and Bj_,=
(AB, ABD, ABC, ABCD).

6.2. Some unsaturated main effect fractional replicates

In the saturated main effect plans in an s"-factorial, s>2, we are
unable to find the pattern of X;;'X,, similar to the cases in a 2"-factorial,
because, in general, X}¥+#cX} , where ¢ is some constant, for ¢4 and
J#J' in an s™factorial (s>2). However, we shall present an application
of a method similar to the case in Example 6.1 for some unsaturated
main effect fractional replicates in an s"-factorial (s>2).

Consider the following split-plot type design in a 3’-factorial :

000 100 200
001 101 201
010 110 210 ;
012 112 212
022 122 222

then, from (2.3), and using the partitioning method in 6.1, we may
obtain the following three equations:

Bs'f'[)(llelm’ —I, — X;7' X 1, XIIJQ211]§22=X1le5,1 y
6.7) B+ [Xi'Xpu, (0], (00X Xy, —21, —2X;7" Xppyi) Bu=Xit'ys.s
B+ [ X' X, I X' X, I, Xii' X ) Bu= X755 »

where B,=(M, C, C*, B, B}), By=(Bj, 5ar Blas Bi a2, B:,az),’ where B,=

(BC, BC?, B'C, B'C*, B,,=(A, AC, AC? AB, ABY, B,.,=(ABC, ABC?,

AB'C, AB'CY, B;.:=(A% AXC, A'C% A'B, A'BY, and B, .:=(A’BC, A’BC?,

A’BC, A'B*C?, and X,, is a 5X5 matrix, X,,; is a 5x4 matrix, I is a

5x5 identity matrix, and y;,, y;., and y;; are observation vectors.
From (6.7), we obtain:

Bs‘l‘ X5 l)(12113?4 = %— X' Ws, 1+ Us, e+ Uss)
ﬁs,a+X1;le2llﬁ4,a= %Ifxfl(ys,s —Us,1)

Bs,a? + X1;1X1211§4,a2 = —(]3'— X' (Ys,i— 205,21 Us,) -
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6.3. An aliasing structure property

In the above, an aliasing structure property was mentioned in con-
nection with the examples. The goodness of the aliasing structure pro-
perty will be defined by the number of effects that are partially or
completely confounded with each other. In the absence of any know-
ledge concerning the relative magnitude of the aliased effects, the fewer
the number of effects confounded with each other the more desirable
is the aliasing structure property, that is, the more nearly the aliasing
structure is to complete confounding of effects the more desirable it is.
Likewise, the greater the number of effects partially confounded with
each other the more undesirable is the plan. The fewer the number
of effects that are confounded with any specified effect, the larger will
be the number of effects that can be estimated free from the given
effect.

Now, in order to completely describe the aliasing structure property,
it is necessary to have an ordering of patterned matrices from a diag-
onal matrix to nonzero submatrices on the diagonal with zeros else-
where, to submatrices which form diagonal matrices and on down to a
matrix with no zero elements. Perhaps some classification of the alias-
ing matrix X;7'X;; could be made on the number or proportion of zero
elements in the matrix. When this problem is resolved, the aliasing
property structure with its criterion for goodness will be completely
described. There appears to be little mathematical theory on structur-
ing matrices available at present. The work on the “consecutive-ones”
property in matrices is interesting in this connection.

If one knows (or is willing to assume) that the magnitude of the
parameters in By_, are likely to be small relative to those in B,, then
the aliasing structure property is somewhat irrelevant. However, this
property was introduced to complete the statistical and mathematical
theory for situations wherein it is applicable, i.e., in the sequential
selection of observations in multi-factor experiments without prior know-
ledge concerning the magnitude of the various parameters. Also, in
the sequential selection of combinations resulting in regular fractional
replicates for which the determinants of Xj, is maximum, a subset of
this regular fractional replicate will have the most desirable aliasing
structure property as defined herein and the regular fraction will be
optimal both for the aliasing structure property and in a minimum
variance sense. In super-saturated screening designs, the designs with
the least desirable aliasing structure property may be selected. For
all these situations it is desirable to further the knowledge of the com-
binatorial properties of all possible fractions and to describe properties
of the various fractions.

It should be pointed out that the aliasing structure property de-
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scribed above may be more appropriate in many experimental situations
than is the minimum variance (maximum value of the determinant of
X\ X,) property. Hence a fractional replicate may result in a maximum
value of | X|{X;,| but may have an undesirable aliasing structure. In
this case, a plan for which | XX, | is not maximum would be selected
in preference to one for which | X/ X;;| was maximum.
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