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Summary

In attacking the problem of this paper (see Section 1), the authors
were confronted with finding the distribution of a (kxk) matrix of
random variables R=P'VP, where PP'=X"!, and where the (kX k) sym-
metric matrix X! has the Wishart distribution, matrix [(n—1)V]™*, and
degrees of freedom (n—1), with V a (kxk) symmetric positive definite
matrix of constants. This distribution (when P is lower triangular with
positive diagonal elements), and a related result, has recently been
found by the authors and given in Tan and Guttman [7]. In this paper
we use these results (stated here without proof in Theorems 1.1 and 1.2)
to help us construct a p-expectation tolerance region, when sampling
is from the k-variate normal, N(g, ¥), where ¥ is positive definite.

1. The problem and its solution

We consider the case of sampling on a (kx1) vector random vari-
able X which is normally distributed with mean vector g and non-
singular variance-covariance matrix Y. On the basis of a sample of »
independent observations (X;,---, X,) on X, we wish to construct a
tolerance region S=S[(X),- -, X,)] which is such that

(1) the coverage of S, say C[S], where

(L1 cIs1=|_dNya )
is of p-expectation, that is
(1.2) E{CIS]}=8,

where the expectation is taken with respect to the posterior distribu-
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tion of the parameters g and ¥ (or, equivalently, with respect to the
posterior of g and ¥-'), and

(2) S is an estimator of the “central” 1008% of the distribution
being sampled, which is the set AP given by

(1.3) AP={y|(y— ) I -1 =ri1-4}

where, in general, %, is the point exceeded with probability 7 using
the central Chi-square distribution with m degrees of freedom.

In view of requirements (1) and (2) above, a widely used region is
of the form (see, for example, Paulson [5], Fraser and Guttman [3],
amongst others)

(1.4) S=8[(x,- -+, x)]={yl@—%)V ' (y—*x)=C;}

where (x;,---, x,) is the observed sample, C; is a constant chosen to
satisfy (1.2), with

n
x=n"'3x;,
i=1

(1.5)
V=(n—1)" 3 (6—%)(x— X

representing the observed sample mean vector and sample variance-
covariance matrix, respectively.
Now the left-hand side of (1.2) is

w6 Eesn=|, | [eo=2pexp (L w—pr2w-pm}]

Xp g, 3%, - -, X, ldydpd

where 2 is the k(k+3)/2 parameter space {(g, ¥™')| —oco<py;<oo, all 7;
X! is positive definite}. We may now write (1.6) as

an  Bsn=| | pwlmropie 2x, xldpdzdy

where p[g, 2%, -, x,] is the posterior of g and X' and will be
discussed below. From (1.7), we see that E {C[S]} may be interpreted
as the unconditional probability that ye S, where conditionally on g
and ¥ (or g and ¥'), Y~N(g, ¥). Further, (1.6) implies that we may
evaluate the unconditional probability of ¥ € S by first finding the con-
ditional probability of ¥ € S, given (g, ¥~!), and then “unconditionalize”
by multiplying by the (posterior) probability of g and X', and inte-
grate over all possible values of g and X'

Before we do this, we now discuss the posterior probability of g
and 37!, As is well known (for example, see Guttman [4] for details),



USE OF THE DISGUISED WISHART DISTRIBUTION 551

the posterior of (g, ¥~!), given the sample (xy,---, x,), is (if the usual
“in-ignorance” priors for g and X! are applicable)

(1.8) p[[l, z‘_llxly"'!xn]
=c| 1+ exp {—% [tr (1= DV n(u— %Y 2 (u— D)

where
c= nk/?(,n —_— l)k(n—l)lz I V |(1l-l)/2/2k‘n/2n.k(k+1)/4 { ﬁ I'[(,n — ,,:)lz] } .
i=1

(The abbreviation tr M stands for the trace of the matrix M). Now
since J! is positive definite, there exists a (¥ X k) non-singular matrix P
such that PP'=J3"'. Note that |P|=|X"!|"*=|P’|. Suppose we now let

1.9) t=P'(p—-%x), I '=I"
so that
p=x+P) ', I'=rt.
The Jacobian J of this transformation is
(1.10) J=|(P) | L|=| Pt =] 27

Hence, from (1.8) we see that
(1.11) plz, It x,- .-, X, ]=c"exp {—%r’r}c”ll‘“l"‘"‘"”’
X eXp { ——;— [tr (n— 1)VZ‘"]}
with
¢ =n**2rx) ¥,
k
¢! =(n—1)kn-bR| Y |(n=Dr2 / 2""“"/211-""‘“’“{i];[l F[(n—-i)/Z]} .

That is to say, t=P'(g—X) is a posteriori, N(0, (1/n),) and independ-
ent of X!, where ¥ '~W((n—1)V]? (n—1)), that is, X! has the
Wishart distribution, matrix [(r—1)V]™!, and degrees of freedom (n—1).

Now in view of (1.6) and (1.11), we may proceed as follows. Write

(1.12) E{C[S]} = Sa Pr{(Y—%)V-YY—%)<C,|pt, 1}
XD (g, 27y, o, Xaldped L™t

Now, conditionally on (g, '), we have that Z=P'(Y—g) is normally
distributed with mean 0, and variance-covariance matrix
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(1.13) P'YP=P'(PP')P=1, .

Thus we may write (1.12) as

(1.14)  E{C[S]}= Sn Pr{[P'(Y—p)+P'(p—X)P'V(P)"

X[P'(Y—p)+P'(p—X)=Csl pr, 7'}
xp e, Tt Xy, 0, Xa)dpd X

- So Pr {[Z+ P'(u—&)]'(P'VP) [ Z+ P'(u—%)]

éCﬁIp’ r—l}p [ﬂv 2-1|x17° ) xn]dyd - ’

where Z~N(0, I,). Unconditionally, then, inspection of (1.13) shows
that Z is independent of g and X¥~' and hence of z=P’'(#—x) and P.
Now suppose we perform the transformation (1.9) in (1.14). It is easy
to see that we may now write

(1.15)  E{C[S]}= SA Pr{[Z+7](P'VP) ' [Z+71<C,|7, )

Xp (@) p[E Xy, -, X,ldvd X!
=Pr [U’R—lUécﬁ‘xl!' ) xn] ’

where U~ N(0, (1+1/n)I,) is independent of R=P'VP, V is given by
(1.5) and is a symmetric (kxk) positive definite matrix of constants,
and PP'=}"!, with 2'~W([(r—1)V]}, n—1). We note that we may
write (1.15) as
(1.16) E{C[S]} =Pr [T'R'T=<nC;/(n+1)|xy, -+, X,] ,
where T is N(0, I,) and independent of R=P'VP.

Now if we wish S to be of p-expectation, that is, satisfy the re-
quirement (1.2), we are now confronted with the problem of choosing
C; so that E{C[S]}, as given by (1.16), has the value 8. To help an-

swer this question, we first need the following theorems, which are
proved in Tan and Guttman [7].

THEOREM 1.1. Let the (kx k) symmetric positive definite matrixz X!
be distributed as W([(n—1)V]1, n—1). If ¥ '=PP’, where P is a (kXxk)
lower triangular matrix with positive diagonal elements, then the distri-
bution of R=P'VP is given by

W1 fR)=cl RIoe| T ri
=1

exp {——;— tr R(n—l)}

where, denoting the (s—t)th element of R by r,,,

Tuw =R/l Rasn ) i=1,-+, k-1
(1.17a)
Teecry=Te)"*
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and Ry, is that submatrixz of R defined by
R(£)=(rcc) ’ 8, t=i’ i+1,""k’
with

(1.17b) co=(n-—1)"‘"'"/2/2"‘""”271"‘"‘"’/‘{;[:'[1 ri—iy2l} -

Using Theorem 1.1, it is easy to prove the following theorem.

THEOREM 1.2. Let T=N(0, I,), and suppose T independent of R,
where R has the distribution (1.17) of Theorem 1.1. Then the distribu-
tion of Q=T'R™'T s such that
(1.18) Q=(n—1)kFy,_:/(n—k) ,
where F, ,._. is the Snedecor-F variable, with (k, n—k) degrees of freedom.

We may now apply Theorem 1.2 to answer our problem, for re-
turning to (1.16) and using (1.18), we have that

(1.19) E{C[S]} =Pr {(n—1)kFy,._i/(n—k) EnCpsl(n+1)| Xy, - -, X} -
Hence, in view of requirement (1.2), we wish C, to be such that
(1.20) Pr (F, o e Sn(n—k)Cyl[k(n+1)(n—1)]| X1, - -, Xa} =8
which, of course, implies that

(1.21) n(m—k)Cyllk(n+1)(n—1)]=Fen_x1-s

where F ., .._s is the point exceeded with probability 1—3 when using
the Snedecor-F variable with (k, n—k) degrees of freedom. Hence, C;
is given by

(1.22) Co=Q+n"k(n—1)Fynra-pl(n—Fk) .

To summarize, then, the region (1.4), with C, given by (1.22), has
coverage whose posterior expectation is 8. The result generalizes that
given by Aitchison and Sculthorpe [1] for k=1, that is, when sampling
is from the univariate normal.

2. Some additional remarks

1. The authors were interested in the distribution of R, given in
Theorem 1.1, not only because of the particular tolerance region problem
that we were considering, but because of our interest in this distribution
per se. In fact, the authors conjecture that the matrix variable R and
its distribution (1.17) is useful in “factor analysis” and are studying
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this area of statistical inference with this conjecture in mind.
2. An interesting point that emerges is the following. Referring
to Theorem 1.1, suppose we write V as

V=B'B.
Then
R=P'B'BP=RR, ,

where R,=BP, with PP'=X"'=W([(n—1)V]", n—1). Now let H=R,R!
(#R). Of course, we can write H as H=B(Y!)B’, and as shown in
Tan and Guttman [7], the distribution of H is, interestingly (but well-
known), to be that of the Wishart, in fact, W((n—1)"'I;, n—1); but,
to repeat, the distribution of R=P’'B’'BP is of course, given by (1.17)
of Theorem 1.1. It is for this reason that we call R a disguised
Wishart variable.

3. Lastly, we point out that the problem of Section 1 can be an-
swered without knowledge of the distribution of R=P'VP, as given in
(1.17). In fact, there are two different ways of doing this, and each
way, of course, gives the same results as those of Section 1 above. One
way, which will not be discussed here, is given in Guttman [4] and
uses that Bayesian concept called the predictive distribution. Another
argument uses the following theorem.

THEOREM 2.1. Suppose the (kxk) positive definite matriz X' is
distributed as W([(n—1)V1™, n—1), with V a positive definite matriz of
constants. Let Q=T'(P'VP)™'T, where ¥~'=PP' with P any (kxk) non-
singular matrix, and where T is independent of X' (and hence of P)
and distributed as N(0,I). Then, the distribution of Q is such that

(2.1) Q~(n—1)kF; . i/(n—F) .

PrROOF. We have that the distribution of X! is

(2.2) f(l‘—l) =¢, l V I(n—l)/Z I l‘—l |(n—k—2)/2 exp [_ % {tr (n_ I)VZ'—I}:I

with ¢, given by (1.17b). Now since V is positive definite, there exists
a (kX k) nonsingular matrix B such that V=B'B. Accordingly, we may
write @ as

2.3) Q=T'(P'VP)'T=T'(P'B'BP)"'T .

If we let Z=(B')"'(P')"'T, then Q=2Z'Z. Now, conditionally on P, or
equivalently, on X!, Z~N(0, (BPP'B')™)=N(0, (B'B’)™"), so that
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@4 fEE=@0 Bl 2 exs [ - LiBrp ]

Hence, using (2.2), we have that unconditionally, Z has distribution
which is such that

(2.5) f(Z)OC Sr_l lr—ll(n—k—l)/z
X exp { -—% [tr (n—1)B'BY-t+tr B'zz’BZ'“]}dZ“‘ .
That is to say,

@6) S [, 137
X exp [——;-{tr IY(B(n—1)I+22'|B)} ]d):-l :
The integrand of the above integral is, up to the normalizing constant,
the density of a Wishart W(B'[(n—1)I,+22']B, n) variable and hence
(2.7) f@)<{| B'||(n—1)I+2z2'|| B[} ™*,
or
f(2)oo(1+2'z/(n—1))™2,

a form suggestive of the multivariate Student-t distribution of order k.
Using well-known properties of this distribution (see, for example, Tiao
and Guttman [6], amongst others), we have that

- I'{[(n—Fk)+Kk]/2} n—k 2z'z —[n—k)/2+k/2]
@8 = BT A= o o)

or, put another way,

n—Fk
L= |"—FfZ
n—1

is distributed as the multivariate Student-t distribution with (n—k) de-
grees of freedom. Using another well-known property of this distri-
bution (see Tiao and Guttman [6], p. 799), we have that

L’L == kF k,n—k
so that

r=k gz _iF,,.,
n—1
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or
Q=Z'Z=T'R'T=(n—1)kF} ._./(n—k)
and the theorem is proved.

We are now at the same point as in (1.18) of Section 1, and so
the same conclusions may be made precisely as in (1.19) and following,
in Section 1.
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