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1. Introduction

Quadratic estimators of the variance components associated with
random-effects models are in common use. If the experimental design
is a balanced completely-nested one, if the usual independence and nor-
mality assumptions are appropriate, and if the estimators are those
derived by analysis-of-variance techniques, then each of the estimators,
save that of the residual variance, is distributed as a linear difference
between two independent chi-square variates. More generally, any
quadratic form in multivariate-normal data and in particular any quad-
ratic variance-component estimator based on such data is either distri-
buted as a linear difference between two independent chi-squares or,
as Press [2] has shown, its distribution can be represented as a mixture
of such distributions.

In cases where a quadratic estimator of a variance component can
take on negative values, it is common practice to replace negative esti-
mates by zero. If the data are multivariate-normal, the distribution
of the modified estimator is identical to that of a truncated (at zero)
linear difference between independent chi-squares or is a mixture of
such truncated distributions.

It will be our purpose to investigate the distribution of a truncated
linear difference between independent chi-square variates. Rather than
assume that the truncation is from below and at zero, we will consider
the more general situation where the truncation is either from above
or below or both and at arbitrary values. In particular, we will obtain
expressions for the probability density function, distribution function,
moments, moment generating function, and characteristic function of
such a distribution. In the case of the probability density funection,
distribution function, and moments, emphasis will be on obtaining repre-
sentations that appear to be convenient computational forms. Extensive
use will be made of known results on hypergeometric functions.

Previously, Press [2] obtained the probability density function of a
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linear difference between independent chi-squares in terms of a conflu-
ent hypergeometric function of the second kind. Wang [56] found a
simpler expression for the probability density function for the special
case where the degrees of freedom associated with both chi-squares are
even. She also gave, for that same special case, convenient expressions
for the moments of that distribution, after its truncation from below
at zero.

2. Notation and preliminary results
Define
X':am—ﬁ Wz ’

where « and 8 are positive constants, and W; and W, are independent
chi-square variates having m and n degrees of freedom, respectively.
Truncation of X from above and/or below yields the random variable

W if X>y,
Y={ X if =Xz,
Yo if X<y,

where ¥, and ¥, are known constants with —oco <y, <y, < co.

A chi-square variate with » degrees of freedom has kth moment
2%(r/2),, where (a),=1 and (a),=a(a+1)---(a+k—1), k=1, 2,-.-; moment
generating function

M@O)=(1-20)"", 6<1/2;
and characteristic function
CO)=(1—2i6)""".
It follows that X has kth moment

(1) @y 33 (% ) 0wz,

where {=p/a; moment generating function
(2) Mx(0)=Q1—2a0)""*1+2p6)™,  (—28)7'<0<(2a)7";
and characteristic function
Cx(6) = (1—2aif)~™(1+2Bi6) " .
Take
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Ule, d; 2)=[1/I'(c)] S“ e (Lt dE, 630, 130,

to be a confluent hypergeometric function of the second kind, and put

b: t)= {rrs=9i2p—t/Ca U[S/z, ('r+s)/2; (a+b)t/(2ab)]
’ Qr+8)/2 r/2ps/2 F(’I‘ /2)

(3) g(r, s, a,

for r=1,2,--+; s=1,2,---; a>0, b>0; and ¢>0.
From [2], we have that the probability density function of X is

g(m! n, a, ﬂ;x) if x>0,

(4) Fola)= gln, m, B, a; —x) if <0,

" r(mf24+nj2—1)

A DR T Dl

It will prove convenient to express the distribution functions of X
and Y and the moments, moment generating function, and character-
istic function of Y in terms of the function

Su te*g(r, s, a, b; t)dt for >0,
(5)  G(r,s,a,b;k,z,u)y={ -°
0 for u=0,

where k=0,1,2,---.
Note that, for v<0,
(6) So tte?g(s, 7, b, a; —t)dt=(—1)*G(s, r, b, a; k, —2z, —v) .

The distribution function of X is
G(m’ n, a’.B;O’ Or x)-{-G(n, m, .87 a;O’ 0’ °°) if m_Z_O!

F (rv)=l
¥ G(n, m, B, a; 0,0, ©)—G(n, m, 8, a; 0,0, —x) if £<0.

Denote by P, (-) the distribution function of an F random variable
having r and s degrees of freedom. Note that

P, [(nf)/(ma)]=Fx(0)=G(n, m, 8, a; 0, 0, o) .
The distribution function of Y is
1 if y=zu,,
F,(y)={ Fx(v) if »=y<u.,
0 if y<y,.
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If y, and y, are finite, Fy(-) is discontinuous at those points. It
makes a jump of Fi(y,) at y, and 1—Fy(y,) at y,. At other points, the
probability density function of Y is

) if y<y<y,

Fyy)= )
0 if y<y, or y>y,.
Define
{ G(m’ n, a, B; k, 2, ul)_G(mr n,a,fB; k, z, uo)
if 0=u<uy,
Hue, ta; b, 2)=1 G(m, n, a, 8; k, 2z, w)+(—1)*G(n, m, 13., a; k, —z, —uy)
lf u0<0§ul ’

(_l)k[G(n’ m, ﬁ) a; k, —R2, —uo)
_G(n’ m, .B, a; k; —2, —ul)] if U <u; <0 ;

and
H*(uy, uos k, 2)=H(wy, Uo; K, 2)+ute™ Fy(ue) +ute™[1— Fx(u,)]
for —oo<uy<u; < oo,
H*(co, wy; k, 2)=H(o0, ug; k, 2)+use™ o Fx(uy)
for —oo<uy,
H*(u,, —oco; k, 2)=H(u,, —0; k, 2)+ute[1 — Fyr(u,)]
for u,<oo,
and

H*(c0, —o0; k, 2)=H(c0, —o0; k, 2),

with 0°=1.
The kth moment of Y is H*(y,, % ; k, 0), and its moment generating
function and characteristic function are

M, (0)=H*(y:, %, 0, 0) ,
0>(—2p)7" if #,<0 and < (2a)7! if ¥,>0,
and
CY(0)=H*(yl’ 'yo; 0, 7:0) ’

respectively.

It is clear that the problem of evaluating the probability density
function of X or Y can be reduced to one of evaluating g(r, s, a, b; t)
for appropriate values of that function’s parameters. Moreover, to
evaluate the distribution function of X or Y and the moments and
moment generating function of Y, it suffices to evaluate G(», s, a, b; k,
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8, w) for appropriate values of 7, s, @, and b and for ¥=0,1,2,---,6
real, and #>0. For the most part, we will find it convenient to carry
out the analysis for all such (k, 8, u) triplets, rather than to separately
consider only those particular triplets that are relevant to the evalua-
tion of the distribution function, the moments, and the moment gener-
ating function, respectively. Because, in (5), t%* is ‘absorbed’ by
g(r, s,a, b;t), the more general approach is no more difficult. It has
the advantage of avoiding repetition. Since the expressions for both
the moment generating function and the moments are to be obtained
directly, the derivatives at zero of expressions for the moment gener-
ating function can be compared with the corresponding expressions for
the moments, so as to obtain a check on the correctness of the results.

Expressions for the characteristic function Cy(4) of Y will not be
given explicitly ; however, substitution of i@ for 4, in any of the ex-
pressions indicated for the moment generating function My(6), produces
a valid representation for Cy(6), provided that representation is mean-
ingful.

3. Evaluation of g(r, s, a,b;x). Useful relationships
It is easy to show that, for ¢>0,
(7) g(r, s, a, b; t)=cg(r, 8, ca,cb; ct) .

The recurrence relations for confluent hypergeometric functions
given by (13.4.15)-(13.4.20) of Slater [4] yield

(8) g(r,sa,b;t)=(0b/a)(r—2)"{[tla™' +b7")+s—r+4]
- g(r—2,8+2,a,b; t)+(bfa)(s+2)
< g(r—4,s+4,a,b; 1)},
(9) g(r s a,b;t)=bla+b)'(r—2)"{[t(a'+b7")+s+r—4]
° g(’r—zy s, a, b; t)_(t/a’)g(r'—4) 8, a, b; t)} ’
(10) g(r, s, a, b; t)=[a(r—2)]"'[bsg(r—2, s+2, a, b; t)
+tg(r—2,s,a,b;%)],
(11)  g(r,s, a,b; t)=(a+b)"'[bg(r—2, s, a, b; t)+ag(r, s—2, a, b; )],
(12)  g(r, s, a,b; t)=bla+b)(r—2){[tla™*+b7")+s]
cg(r—2, 8, a,b; t)+(bsfa)g(r—4, s+2,a,b; t)},
and |
(13) g(r, s, a, b; t)=(bla)(r—2)"{[t(@a ' +b V) +slg(r—2, s+2,a, b; t)
. —(t/a)g(r_4! s+2, a, b; t)} .
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The probability density function of a chi-square variate with r
degrees of freedom is

[21‘/2['(,'./2)]—lt(r/Z)—le—LIZ , 0<t< oo,
p()=
0, elsewhere .
The domain of the function g can be extended by putting
g9(r, 0, a, b; t)=(1/a)p.(t/a)

for r=1,2,--+; a>0; b>0; t>0. The relationships (7)-(18) remain valid.
Thus, tables of the chi-square density may be of use in evaluating the
densities of X and Y.

Case (i): r an even integer. For ¢>0 and p=1,2,.--,
-1 p__‘l L _
(14) Ule, c+p; x)=[1/I"(c)] ,2;( ; ) S et ti-1qt
= 0

=5 (pgl)(c»x*-f :

j=0
Substitution of this expression into (3) gives

(15) g(r,s,a,b; x):[azr/zp(,r/z)]—l[a/(a_I_b)]a/ze-;/(za,)

S ("2 ) 0f2) 26/ @+ b afay o
i=0 J

for r=2,4,6,---.

Case (ii): s an even integer. Denote by P,(-) the distribution func-
tion of a chi-square variate with « degrees of freedom. For p=1,2,---
and 2¢=1,2,--.,

U(p, p+c; x)=[1/I'(p)] Sj e~ D(y—1)P"r-dy
=r@le 3 (P71 [T e
j=0 2 1
=[S (p_.l)(—l)""“x‘°‘f1“(c+ i)
=0\ g
. [1_P2c+2j(2a7)] .

Substituting this expression into (3), we find

g(r, s, a, b; x)=[b2"*I"(s/2)]"'[b/(a +b)] %"/ *>

S5 (2 rp2t2ai(a+ DV —afoy e

* {1= P,y lw(a+b)/(ab)]}
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for s=2,4,6,.--.
Case (iii): Both r and s are odd integers. Let

c;(u, v)=——"2— ('"(‘); i=1,2,.--.
1

Take
D(u, v; 2) =§.}, c,(u, v)2’

to be a confluent hypergeometric function of the first kind. This series
is absolutely convergent for all values of u, v, and 2, save v=0, —1,
—2,---. Its remainder after ¢ terms will be denoted by the symbol

R, (u, v; z)=j§ c,(u, v)2’ .
=q

The numerical evaluation of U[s/2, (r+8)/2; (a+b)x/(2ab)] and con-
sequently of g¢(r,s,a,b;x) can be accomplished for r=1,3,5,---, s=
1,3,5,---, by applying the well-known relationship

(16) U(v, 1+p; t)=[(=1)*p! [ (v—p)]"'L(v, 1+p; t)
-1
+H@E=DYL O] S o (v—p, 1)/,
for p=0, 1, 2,..-; where, taking ¢(t)=1"(¢)/['(t) to be the logarithmic
derivative of the gamma function and y=—¢(1)=0.5772156649. .- to

be {Euler’s constant, L(v,1+p;t) is obtained by adding together the
three convergent series

an (=r=Int)0(v, 1+p;?),

(18) 20,0, 1+PPHL+5+0)—$(0+3)]
and

(19) Seo, 1+ S u

Here, the meaningless sums Z‘, and Z} are interpreted as zero.

The series (17), (18), and (19) can be approximated by their partial
sums. We now show, for 0<v<1l+p and t>0, how to estimate the
errors incurred in these approximations. These results, together with
(16) and tables of the gamma function, allow us to calculate U(v, 1+p; t),
for such v, p, and ¢ values, with known accuracy.

Denote by [v] the largest integer that is less than v. By assump-
tion 0<v<1+4p and £>0, so that
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(20) 0<R (v, 1+p; ) <R,(1+[v], 1+p;?) .
Furthermore, since ¢'(y)>0 and ¢"(y)<0 for y>0, we have

0< 3 ¢,(v, L+ PIP(L+5+0)—9(v+3)]

(21) <[¢Q+g+Dp)—p(v+@)R (v, 1+ p; t)
(22) <[¢Q+g+p)— v+ IR, (1 +[v], 14+p; ) .

Also, for ¢=1,

oo

0< 5‘_. ¢,(v, 1+ p)t! E u!

8

= Z Je;(v, 1+p)t?
—vt(1+p) R,(1+v,2+p; 1)

(23) svt(1+p) 'R (2+[v], 2+p; 1) .
The recurrence relationship
(24) ww+1)0(y, w; t)—(w+1)(w+t)d(y, w+1; 1)

+i(w—y+1)P(y, w+2;8)=0;
together with the formulas
235, 55 t)=¢
and
(5, 1+7; )=(—1)jlt/[1—ee,.(—=D)],  J=1,2,--,

where e,(t)zzq] t’/7!; can be used to construct convenient procedures for
Jj=0

computing R,(1+[v], 1+p;t) and R, (2+[v], 2+p;t) and thus, in light
of (20), (22), and (23), can be used for estimating errors resulting from
the use of partial sums in place of the series (17), (18), and (19), and
for determining the number of terms that need be included in each
partial sum.

For many v, p, and ¢ values, it may be advantageous to modify
the outlined procedures for approximating the series (17), (18), and (19)
with known accuracy. Existing tables, Kummer’s transformations, re-
currence relationships like (24), and/or other techniques from the theory
of confluent hypergeometric functions (see e.g. [3] or [4]) can often be
utilized to approximate @(v, 14p;t) and consequently the series (17) in
more efficient fashion than the partial-sum approach described above.
Our more efficient approximation for @(v, 1+p; t) also yields R (v, 1+p; t)
which, upon applying (21), can also be used to estimate the error re-
sulting from approximating (18) by one of its partial sums. Note that
this error estimate is more precise than the one based on R,(1+[v],
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1+p;t). Similarly, it may be possible to approximate &(1+v, 2+p;t)
and consequently R, ,(1+v,2+4p;t) to known accuracy with techniques
not requiring the computation of R, (24[v], 2+p;t); thus permitting
more precise, and possibly easier, estimation of errors resulting from
truncation of the series (19).

4, Evaluation of G(r,s,a,b;k, 0, ). Useful relationships
Using (7), we find
G(r,s,a,b; k, 8, x)=c*G(r, s, ca, cb; k, 0]c, cx) .

Upon substituting the expression (8) for g into the definition (5),
we obtain

G(r,s,a,b; k, 0, x)
=(bfa)(r=2)" (@' +b)G(r—2,s+2,a,b; k+1, 0, x)
+(s—r+4)G(r—2,8+2,a,b; k, 6, x)
+(bja)(s+2)G(r—4, s+4,a,b; k, 0, x)} .

Recurrence relations for G, corresponding to (9)-(13), can easily be ob-
tained in the same way.

The domain of G can be extended by defining G(, 0, a, b; k, 6, x) in
terms of g(r, 0, a, b; -) through application of (5). Our recurrence re-
lations for G remain valid. Thus, tables of the chi-square distribution
function may prove useful in evaluating the distribution functions of
X and Y and the moments of Y.

By making use of (1), (2), (4), and (6), we obtain

(25) G(r,s,a,b; k, 0, c0)=(—1)**'G(s, , b, a; k, 0, o)
+eay 3 (4 )(—blayer),r/2)c,

and
(26) G(r,s8,a,b;0, 80, co)=(1—2a6)""*(142b6)*"*
—G(S, T, b’ a; Oy —01 OO) ’
—1/(2b)<08<1/(2a) .

Case (i): r an even integer. Using (15), we find

G(r,s,a,b; k, 0, x)
= (a2 (r[2)] {a/(a+b)}"

r/2—1

S <’r‘/2:—1)(8/2)1[21)/(0/_‘_b)]ja-r/2+j+1
0 J

Jj=



442 DAVID A. HARVILLE

: So frive=i-1 axp [ —t(1—2a6)/(2a))dt
=2 (/] af(a-+ D)o

r/2—1

’ 25 (T/Zj—l>(8/2)1[2b/(0'+b)]f‘(1_zag)-r/z-uj

Jj=

z(1-2a8)/a
. S Yy ilgviidy
0

o T E2)r2=3) [ b
@7) = (2o la@+b 3 LAY (a +b)

+ (1—2a0)7""" "I Py gy [2(1—200)[a] ;

for r=2,4,6,--+; 6<1/(2a); 0=Sx=<oo.
In particular,

@) G a,bik, 0, o) =(aflafa+b) 5 GRLL=D
b I —7/2—k+]
(2o

for r=2,4,6,---; 6<1/(2a).
Applying the well-known relationship

P,2x)=[(v+1)] '2"®(v, 1 +v; —2x)
to (27), we obtain, for 0<x< oo, the alternate representation

G(r,s,a,b; k, 0, x)
=a*[%/(2a)]"*[a/(a+b)]"
S (5/2), (2ab )
i= W r[2—5—-1)r/2+k—J) \2(a+b)
- O[r24+k—3, r24+k—j+1; —x(1—2a8)/(2a)] ;
r=2,4,6,--+; 6<1/(2a).

Case (ii): s an even integer. By working with the joint probability
distribution of the random variables W, and X, we obtain the repre-
sentation

(29) £O=Wp | pawpleu—t/sldu

£
max (0,¢/

for the probability density function of X.
Using (29), together with (4) and (6), we find; for s=2,4,6,..-;
—1/(2b)<0<1/(2a); 0<x <00}
G(r,s,a,b; k, 0, x)
=(_1)k+1G(8; ) b’ a; kr "'01 °°)
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+am | _awe (" pluplau—tpld
=(—1)**'G(s, r, b, a; k, —8, o)
+a*(a/b) Sz_/: dvvFe™™ S:u o p,(u)p,[a(u—v)/bldu
(30) =(—1y**'G(s, r, b, a; k, —0, )
+Gy(r,8,a,b; k, 6, )+Gyr,s,a,b; k, 6, x)
where
G(r,s,a,b; k, 0, x)

—a*(a/b) So' dup,(u) g e a(u—v)bldy
=t [ dup, ) |7 u—byjaresrmon )y

=a* Sm dup (u)e*™ 5 < k )u’(—b/a)"" S“ y e "p(y)dy
0 i=0 J [}

— (—2b)¥(1— 2a8)~""*(1 + 2bg)~*2-*
338 )i o122e- ~ayL1-+260)/ 1 ~200))
- P, 5y[2(1—2a8)/a]

and
Gyr,s8,a,b;k, 0, x)
—a¥a/b) S”/ dup,(u) S_’w Ve p Ja(u—v)bldv

=aX(@b)y 2 T | dup e

s (s/ 2— l)wfz—f—l( -1y Sﬂa piH g RO/,
i=0 J - -

— ( —_ 2b)k[b/(a + b)]r/z(l + 2b0)—3/2—k62(1+2b0)/(25)
VS (r2)(8/2—g) (_a )
AT <a+b ) (1+260)
* syl —2(11+206)/(2b)1{1— P, 5 y[x(a +b)/(ab)]} .

Note that G(s, r, b, a; k, —8, o), which appears on the right-hand
side of (80), can be evaluated from (28). Expression (28), together with
(25) and (26), can also be used to evaluate G(r, s, a, b; k, 0, o) and G(r,
8,a,b;0,0, o) for s=2,4,6,---.

oo

Case (iii) : General case. Take
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e ) — I'(c) Yt — f\e=d=1{1 _ $,\-a
F(@, b, ¢ 9) =gt Sot 1=ty (1—tz)~dt ,

Rec>Reb>0, |arg (1—2)|<x,

to be the analytic continuation of the hypergeometric function.
- For the Laplace transform of y*~'U(c, d; y), we have

Sw ey 'Ule, d; y)dy
0

={ rra+v—d
I'l+c+v—d)

}F(v, 14+v—d,14+c+v—d;1—2)

providing Re v>0, Red<Re v+1, Re z>0 (Equation (8.2.51) of Slater [3]
and its extension by analytic continuation); so that

G(r,s,a,b; k, 0, )
=[2(r+a)/2ar/2bl/217(,r/2)]—l[2ab/(a+b)]r/2+8/2+k

. Sw yr/2+l/2+k—l exp [_yb(l _w)/(a + b)]

- U(8/2, r[2+5/2; y)dy
ol @\ b N\ P+ 1) (r[2+3/2+k)
_(2“)<a+b> <a+b> T(r/2)(s/2+k+1)

- Flr/2+s/2+k, k+1, s/24+k+1; a(1+2b6)/(a+b)]

for 6<1/(2a).
By making use of linear transformation formulas for the hyper-

geometric function ((9.5.2) and (9.5.8) in Lebedev’s book [1]), we ob-
tain alternate representations

(1)  G(r,s,a,b;k, 0, )
= @ay(_ o) () LUA DI T 8240) ) _pgpyen

atb/ \a+b T(r/2)(s2+k+1)
. F1—7/2, k+1, 8/2+k+1; —(a/b)(142b8)/(1—2a6)] ,
0<1/(2a),

and

(32) G(r,s,a,b; k, 8, )

— a2 " LEADI(r/248/2+k) ({ _onor-ri-i

—(2a)<a+b> I'(r/2)[(s/2+k+1) (1=2a0)7"

- F[1—7/2, 8/2, s/2+k+1; a(1+2b6)/(a+b)] ,
6<1/(2a) .

In particular, the representation (31) yields
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(33) G(r,s,a,b; k, 0, o0)

ol @\ b\ T(k+1)I(r/2+8/2+k)
‘(2“)<a+b> <a+b> L(r[2)(s/2+k+1)
- F1—7/2,k+1, s/2+k+1; —afb) .

This expression is an especially fruitful computational form.
For r=2, 4,6,---, it reduces to

(84) G(r,s,a,b;k,0, 0)= (2a)k( o )r/2+=/z-1
-1 (1 _pl2—g/2—k 2—4),
> (1—r/2—s] : Ur/2=9x (_pjgy,

providing an alternative to (28) for computing purposes.
For a/b<1 and r=1,3,5,---, terms (r—1)/2, (r+1)/2, (r+3)/2,---
of the right-hand side of

— (1—7/2)(k+1), 1
35) F(Q—r/2,k+1,s/24+k+1; —afb)= go 2tk 1), (—a/db)
comprise a convergent alternating series, whose remainder is smaller
in absolute value than the first neglected term and has the same sign;
so that, by making use of the series representation (35), G(r, s, a, b; k,
0, o) can be calculated to any desired accuracy.

In evaluating G(r,s, a, b; k, 0, ©) from (25) for s=2,4,6,---, for-
mula (84) can be used as an alternative to (28) for computing G(s, r, b,
a;k,0, o). Similarly, if a/b=1 and s=1,3,5,.---, G(s, 7, b,a;k, 0, c0),
which appears on the right-hand side of the expression (25) for G(r, s,
a,b;k, 0, ), can be evaluated by making use of (31) and the series
representation (35).

From (32), we obtain

G(r, s, a,b; k, 0, )
= @a(rj2-+s/2) 3 (X )2l (r12512),1 (- 1701+ Doy
(L= P dGla) 5+23)/r1)

so that this function can also be computed from tables of the F' distri-
bution function or the incomplete beta function.
For 0<x < oo, we find

2Dt ri2p i (r[2)(8/2)G(T, 8, @, b; K, 8, )
= S: duw > (1 +u) 7t S: ritte/ti=1
- exp { —t{u(1+a/b)+1—2a6]/(2a)}dt
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=(r/2+8/2+k) a7+ exp [ —x(1 —2a6)/(2a)]
: g : WY1 4)"! exp [—ua(a-+b)/(2ab)]

- {1, r/24+8/24+k+1; x[u(l+a/b)+1—2a8]/(2a)}du
=(r/2+8/2+ k) 'xT*r4* exp [—2(1—2a6)/(20)]
. [x/(2a)] L (P o -
= 2 ts2 k1), B ( j >(1+“/b)j(1 200y
- I'(s/2+5)Uls/2+ 3, r[2+8/2+ 7 ; x(a+b)/(2ab)]
(36) =g exp [—2(1—2a6)/(2a)]
o I'(s/2+7)
B it o2k, DI
- Uls/2+7, r[2+s/2+ 7 ; z(a+b)/(2ab)]
O[5 +1, r/2+8/2+k++1; 2(1—2a6)/(20)] ,
0<1/(2a) .
Using Kummer’s transformation, we obtain an alternate representa-
tion

2rroltqritp i (¢ [2)(s/2)G(T, 8, @, b; k, 6, )
— /22 I'(s/2+7)
= R e, T2y
- Uls/2+ 3, r[2+8/2+ 5 ; 2(a+b)/(2ab)]
- O[r[2+58/2+k, v[2+8/2+k+j+1; —2(1—2a6)/(2a)] ,
0<2 <00, 6<1/(2a).

We now consider ; for r=1, 3,5,.--; s=1,3,5,.--; estimation of the
error incurred in approximating the series appearing on the right-hand
side of (36) by a partial sum.

We will need the simple inequalities

0<I(e)Ule, d; t)<I'(c—38)U(c—4é,d; t), t>0, ¢>c—0d>0,
and
0<P(c, d;t)y<e, t>0, d>c>0,

and formula (14).
Putting r*=r41 and s*=s—1, we find that, for r=1,3,5,.--,
s=1,8,5,---, and for any positive integer v,

0< jz [[(s/2+ 5)/(r[2+8/2+ k), 11] [2(a +b)/(2ab)}

- Uls/2+3, r[2+3/2+ 5 ; x(a+Db)/(2ab)]
- O[5 +1, r/24+8/2+k+5+1; x(1—2a6)/(2a)]
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@37 <g‘$ [(s*/2+ 5)/(r*[2+8*/2+ k) 11] [2(a+D)/(2ab) )

- Uls*[2+ 7, *[2+8*/2+ ] ; w(a-+Db)/(2ab)]
- O[5 +1, r¥248*24+-k+ 5 +1; x(1—2a6)/(2a)]

<eimmn/an 33 [[(g%24 )/ (r*/2+8*/2+ ), 1] (e -+B)/(2ab)
+ Uls*/2+3, 7*[2+8*/2+ 5 2(a-+b)/(2ab)]
=[(a+D)/(2ab)] "6/ 53 [(r*/2+-8%/2+-h), ]

S ("*/2‘1)F<s*/2+p+j) [2(a-+b)/(2ab)]?

=0 P

(68)  =la(athfabyrreammen S (T (b 2abyy»
{ I(s*/2+p+1) % I(s*/2+p+7) }
PR+ R+ 2 th—p) i (P2 2R, )

0<z< o0, 0<1/(20).

For r=1,3,5,..., 8=3,5,7,---, we note that the error bound (37)
equals

(39) OAr+/2 T /2hs* /2 P(,,.* /2) P(s* /z)x—r/z-s/z—k
. gUTWO/COCG(rk g* q bk, 0, x)

—-:2;: [I'(s*/2+ 5)/(r[2+ 8[2+ k) ;.11 [x(a +b)/(2ab) )’

- Uls*/2+3, r[2+8/2+ 5 ; 2(a+b)/(2ab)]
- O[+1, r[2+8/2+k++1; 2(1—2a0)/(2a)] .

Here, G(r*, s*, a,b;k, 6, ) can be computed, for example, from (27);
Uls*/2+7, r[2+8/2+ 7 ; 2(a+b)/(2ab)] can be calculated from (14); and
O[7+1, r/2+8/2+k+5+1; x(1—2a8)/(2a)] can be evaluated by using the
recurrence relationship (24) together with its two accompanying formulas.

The error estimate (38) is less precise than (39); however it should
prove easier to compute. Also, it can be calculated for s=1.

To use (36) to approximate G(r,s,a,b;k,0,x) for r=1,3,5,---,
s=1,3,5,---, by replacing the infinite series with a partial sum, we
must of course be able to compute the terms of the series. The eval-
uation of @[j+1, r/2+s/2+k+j+1; 2(1—2a8)/(2a)] can be accomplished
as described above. A method for approximating U[s/2+ 7, r/2+8/2+5;
x(a+b)/(2ab)] to any desired accuracy can be found in Section 3 under
Case (iii).
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