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1. Introduction

Suppose that observations from populations =,,--.,r, (k=2) are
normally distributed with unknown means p,---, g, (respectively) and
a common known variance o*. Let p;<-.--<p,, denote the ranked
means. Several ranking and selection procedures take 7 independent
observations from each population, denote the sample mean of the =

observations from =, by X, (i=1,---, k), and utilize the ranked sample

means X;,<---<X,;. (See Dudewicz [3] for details.) We assume
throughout that both the numerical values of y,---, # and the pair-
ings of the gy,---, gy With the populations =,,--., z, are completely
unknown and consider problems of estimation of u; (1<i<k) based on
the statistics provided by the single-stage rule stated above, and utiliz-
ing recent work of Weiss and Wolfowitz.

Generalized maximum likelihood estimators (GMLE’s), introduced
by Weiss and Wolfowitz [5], provide (where available) asymptotically
efficient estimators, whereas this is not always true for MLE’s even if
the latter can be found. Most classical MLE theory assumes i.i.d. ob-
servations and is therefore not applicable in our case; the theory of
Weiss and Wolfowitz [5] allows for more general situations (although
most of their applications are to i.i.d. “non-regular” cases). (Correc-
tions to Weiss and Wolfowitz [5] are contained in Weiss and Wolfowitz
[6], in Weiss and Wolfowitz [8], and in Dudewicz [2]. An additional
example is given in Weiss and Wolfowitz [7].)

Maximum probability estimators (MPE’s) were introduced by Weiss
and Wolfowitz [6] for much the same reason as GMLE’s were introduced
by Weiss and Wolfowitz [5]. Weiss and Wolfowitz [6], pp. 202-208,
proved that, for the case of m=1 parameter, every GMLE is an MPE;
thus MPE’s extend the notion of GMLE’s (and by finding a GMLE we
find a fortiori an MPE). Below we study the extension of this result
to m=1 parameters, first summarizing Weiss and Wolfowitz’s results.
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We then study in detail the MPE of the ranked means. We shall need
the following definitions, conditions, and theorems, all of which are due
to Weiss and Wolfowitz.

DEFINITION 1. Let 8 be a closed region in ®™, 66 with 6 a closed
region such that every finite boundary point of @ is an inner point of 6.

DEFINITION 2. For each n let X(n) denote the (finite) vector of
r.v.’s of which the estimator is to be a function.

DEFINITION 3. Let K,(x|68) be the density, with respect to a ¢-finite
measure p,, of X(n) at the point = (of the appropriate space) when 4
is the “true” value of the unknown parameter.

DEFINITION 4. Let R be a fixed bounded set in R™, let k(n)=
(ki(n),- -+, k.(n)) be such that k(n)— oo, let d=(d,,---, d,), and define

d_R/k(n)= {(zlv' c zm) € é: di—yt/ki(n)=zi!
i=1:"'7 m, (ylr"'7 ym)ER} .

DEFINITION 5. Z, is a maximum probability estimator with respect

to R and k(n) if (for a.e. (1,) value x of X(n)) Z,(x) equals a d € 6 such
that

SS K, (x|6)db,- - -db,=sup S K. (x|6)d6,- - -db,, .

Le8  TrkmI-lr

d—[k(m)]" 1R
ConNDITION 1. For each >0 and 6,6

lim P, [k(n)(Z,—6) € R]=§

uniformly for all § e H={6: |k(n)(0—8,)|<h}.
CONDITION 2. For each 6,¢ 6
lim P, [|k(n)(Z,—0)|<M]=1

Moo
uniformly for all # in some neighborhood of 4,.
CONDITION 3. For each 6,€6 and >0
lim {P, [k(n)(T.—0) € R]—P, [k(n)(T,—6,) € R]} =0

uniformly for all 6 e H={0: |k(n)(6—6,)|<h}.

THEOREM 1. Let {Z,} be an MPE with respect to R and k(n). Sup-
pose {Z,} satisfies Conditions 1 and 2. Let {T,} be any estimator which



MAXIMUM PROBABILITY ESTIMATORS FOR RANKED MEANS 469

satisfies Condition 3. Then (for each 6, ¢ 6)
p=Tim P, [k(n) (T,—00) € E] .

2. Maximum probability estimators for ranked means

THEOREM 2. Let W, be a GMLE (with respect to r=(ry,-*+, 7x)>0)
for the estimation of 0=(6,,---,0,) €O (m=1). Choose R={(yi,-**, Yn):
—1r/2<y,<7/2, 1=1,---, m} and k(n) as for the GMLE. If the MPE
(w.r.t. this R and k(n)) satisfies Conditions 1 and 2, and if the GMLE
satisfies Condition 3, then the GMLE 1is (in the equivalence class of) such
an MPE.

PrRoOOF. Let Z, be the MPE w.r.t. this R and k(n). It then satis-
fies a condition due to Weiss and Wolfowitz (see Theorem (5.3.13) of
Dudewicz [2]). Thus (for each 6, €6)

(1) lim P, [k(n)(W,—6,) € R]=lim P, [k(n)(Z,—6,) € R] .

The GMLE W, satisfies Condition 3 and thus the conclusion of Theorem
1 holds: for each 6,¢6

(2) lim P, [k(n)(Z,—6,) € R]ZTim P,, [k(n)(W,—0;) € E] .

Then (see Weiss and Wolfowitz [6], p. 198) the GMLE is (in the equiv-
alence class of such) an MPE.

The result of Weiss and Wolfowitz [6] for the case m=1 is some-
what stronger than our Theorem 2 for the case m=1: they show that
the MPE satisfies Conditions 1 and 2. (They assume, as we do, that
the GMLE satisfies Condition 3, which is stronger than a condition (A’)
they use elsewhere; see (5.3.5) of Dudewicz [2].) Our result (more
precisely, a slight extension of our result) says that if the MPE for a
problem is “good” (i.e., satisfies Conditions 1 and 2), then the GMLE
(if it meets Condition 3) is equivalent to it. Note that the analog for
m>1 of Weiss and Wolfowitz’s result for m=1 is false. E.g., Weiss
and Wolfowitz [6], p. 198, last paragraph, note an example (with m=2)
where the MPE is not “good” although the GMLE is. (Weiss and
Wolfowitz give a method for attacking the problem, in such cases, by
modifying it slightly and thereby obtaining (often “good”) MPE’s.)

We will now study in detail the MPE of the ranked means. Although
we have seen that, in general, for m>1 parameters even if a GMLE
and an MPE both exist the MPE may not be good, in our case the MPE
is shown (for the case m=2) to have all the good properties of the
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GMLE. Thus, let 6= {[t: M € R ('l:=1, ey, k), =1ty ﬂkzﬂ[k]} and
6=R*, and let X(n), K,(r|g), 1. be specified as*

X(n)z(X[u» Ty va)
( 3 ) Kn(xlo)=Kn(w|.u) f;é‘[)u, X'[k](xl I xk)
=Sy, £ T0)

tn=Lebesgue measure on R*.

Fix r=(r,---, r)>0 and choose k,n)=-:--=k(n)=vn/s, R={(y, -,
Yu): —1/2<y,<7/2, i=1,---,k}. Then
(4) d—[k(n)]'R={(21, -+, z) € 0: d;—y;fk(n)=2,

t=1,---, k, (yl,---,’yk)ER}
={(Z1, ° ,zlc) di

2ki('n)
i=1,---, Ic} ,

S di 7',', ’
=z, <d;+ e (m)

and

(5)  sup (o) Ki(olndu - du

teb

t—[k(m)]71R
b H(r /Do) /YA t1+H{(r1/2)0} /Y7
= sup cee K(x| p)dpry - - dp
Eppeeesty tk—((rk/ﬁ)",/ﬁ t1—{(ry/2)e}/vR

For the case k=2, (5) becomes (when X =z, and X =)

n
(6) sl

e () 25

+exp< 1( UN’;E”)2—%<%1>2>}dﬂmdﬂm

[ S(tz—xz)/(a/f)wz/z S(tl—xl)/(a/ﬁ)w,/z

ty+{(ry/Dal /v Stl+((rl/2)u)/ﬁz

ty—{(rg/Da}/va Yo ~((ry/Dal/va

=sup

tyty LIGg=apriatvm—ryr Nz piorimy—ry2

plexm (= 2t) ) exp (— 54) Jdds

S(zg-xp/(a/ﬁ)w/z S(q—x,)/(«/«nml/z

(tg=/o/VTI=T9/2 J(ty—2)/KalvT)~T /2

* Note that we take the order statistic (X, -+, X[4;) to be fundamental. This
quantity is the naive estimator of x#, and we will be interested in seeing how MPE’s
modify it.
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o2 oo (3]
=sup|{o (ST 3 )0 (57— 3)]
o e)-o(a72-3)

+ d)< xz_’_r) <tl—w2_r1>

7,

oV avn 2
o( ) -o(2oR -]

LEMMA 1. Let dE(V%/U)(xZ—xl), t1=x1+a10'/»\/—ﬁ-, tg:xz—agﬂ/'J%‘.
Then an MPE s (,,t,) with a,, a; which achieve

(7) sup [{@(a;+71/2)— (a1 —1ri/2)} {P(az+12/2) — D@, —72/2)}

" +{9(a,—d+7/2)—D(a,—d —7,/2)} {D(a;—d +71,/2)
—O(ay—d—1y/2)}] .

ProorF. By Definition 5, for our case as specified above (4), the
MPE is (¢, t,) which achieves the supremum in (6). If we use d=
(V7 /o) (x;—2;) and transform via t,=z,+a,6/¥/n, t,=x,—ac/yn, this
(t;, t;) will be specified by the (a,, @) which achieves the

sup [{@(a,+7,/2)— O(a;—r/2)HP(—ay+14/2) — D(— @, —14/2)}

al,az

+{P(a;—d+1/2)—0(a,—d—11/2)} {O(—a;+d +13/2)
—O(—ay,+d—1/2)}] .

Using the relation @(x)=1—0(—x) (x € R), this becomes as specified in
the statement of the lemma.

LEMMA 2. The supremum of Lemma 1 occurs only at (a,, a;) with
0<a<d, 0<a,<d.

PRrROOF. By reasoning as at (5.1.5) in Dudewicz [2], the supremum
must occur at a critical point. However, if we set the partial deriv-
ative with respect to a, equal to zero we obtain

Pa+1/2)—dla—71,/2)  _ _ B(ay—d+1y/2)—P(ay—d—1/2)
Pla;—d+1,/2)— pla,—d—7,/2) B(ay+19/2)— D(a—73/2)

Since the r.h.s. is always <0, the l.h.s. must always be <0. Now,
the denominator of the l.h.s. is positive (negative) iff a,<d (a,>d).
Thus, we must have
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L U N S

a1>0 if a1<d
i.e.
a1<0 if a1>d .

This proves the result for a,; the result for a, follows similarly.

LEMMA 3. By imposing a consistency criterion for estimators sim-
dar to (5.1.4) in Dudewicz [2], we may restrict ourselves to (a,, a,) with
a;+a,=d.

gz PROOF. In order that we have

t,<t,, we must have z,+a/vn =<

d L—ao/yn, ie., a+a=(vVn/o)(,—
:‘\ z)=d.

—— | uta=d Note that, in the region of (a,,

N as)-space in which Lemma 2 tells us

N the supremum of Lemma 1 must lie,

S we have symmetry (of values of Lem-

+A\ ma 1) about the line a,+a,=d; see

5 : y a Figure 1. Thus, our consistency cri-

terion only eliminates an illogical du-

Fig. 1 plicate maximizing point.

LEMMA 4. For any fixed >0, there is a K(ry, 1y, 8) such that if
d=K(ry, 15, 0) then (7) is maximized (in the shaded region I: a,>0, a,>
0, a;+a;=d of Figure 1) inside the disk D: ai+al<a.

PrOOF. Let fi={®(a,+7/2)—D(a;—71/2)} {D(a;+7:/2)—D(as—13/2)},
fo={P(a,—d+7/2)—O(a,—d—1/2)} {d(a,—d+7,/2) —D(a,—d —15/2)}; then
M s swp  (fi+f).

ﬂ'l, n

Now over (a;, a;) € I, f, is maximized at (a,, a;)=(0, 0) and decreases

as a, and a, increase. Thus, if we move (a,, a,) outside D, the loss in

Ji is at least fi((0, 0)) minus the largest value of f((a,, a;)) on the bound-
ary of D inside I; there al4-a2=4, so

sup fi((ay, az))=o§gg, {9(a,+7,/2)—D(a,—1,/2)}

al+al=3

(ul,az) inr
APV —ai+7,/2)—O(Vo—ai—1,/2)}
={@(c,0+1,/2)—D(c;0—14/2)}
- {O(7:/2)— O(—1y/2)}

where we may suppose without loss that ¢,=c,(r,, 7, 6)>0. (This can
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only fail if the supremum occurs at (a;, @,)=(0, d), in which case we
may reverse the roles played by a, and a, in our inequality and the
argument below will go through similarly.) Thus, the loss in f; via
going outside D is at least

{@(r,/2)— (—71/2)} {D(7:/2) — D(—1:/2)}
— {D(c:0+11/2)— D(c,d — 11 /2)HO(73/2) — D(—14/2)}
= {D(13/2) — O(—12/2)} [{D(r,/2) — P(—1,/2)}
— {@(ci0+71/2)— D(cd—11/2)} ]
=cy(ry)es(ry, 72, 0)  (say) .
The gain in f; (which increases as a, and @, increase in I) is less than

sup O(a,—d+7/2)0(a,—d+1:/2)

(a,a9) In I

< sup O(a,—d+max (1, 79))P(a,—d+max (ry, 7))

(“'1""2) in I

= sup @(a,—d-+max (1, 7,))P(a,—d+max (rq, 75))
a1+a,=d
a,,a920

= gugd O(a,—d+max (ry, 7))P(—a,+max (ry, 17)) .
0 ay

We will show that
(8) lim sup @(a,—d~+max (ry, 79))@(—a;+max (ry, 73))=0 .

d—w 05a,<d

Thus, there will exist a K(r, 73, 6) such that d=K(r, 72, 6) implies the
gain is less than ey(ry)cy(ry, 75, 6), which will prove the lemma.

Let X and Y be i.i.d. N(0,1) r.v.’s. Then (8) is equal to

(9) lim sup P[X<a,—d+max (r, 1), Y<—a,+max (r;, )],

d— 0saysd

which involves the probability in a certain rectangle in R? as illust-
rated in Figure 2. Thus, (9) is less than or equal to the limit of the
supremum of the probability to the left of the line X+Y=—d+max

(7'1 ’ ”'z),
Lim Sup. P[X+Y< —d+max (1, 19)]
—oo 0=ayS
=lim P [X4+Y< —d+max (ry, 7)]=0 .

d—oo

THEOREM 3. For peO@n*) ={p: p€8, m—m=n* some p*>0} the
MPE (t,,t,) is equivalent to the GMLE (Xy;, Xy), found in Dudewicz
[2], and thus has the same optimum property as that GMLE.

PrROOF. We wish to show that, for each pe€6(y*) and for each
fixed 6>0,
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(= d +max(ry,r;), max(ry,r,))

max(ry,r,)

Fora,=d

(max(ry,r.), —d +max(ry,7rs))

X+Y=—d+max(r,,r,)
Fig. 2

1=}li_.r£ P, [k(n) max (ltl"'X[l] I, |tz—Xm|)<5]

~limP, [*’ ™ max (ja,|ofy/ T, |a2|a/¢%)<a]

n—soco ag

=lim P, [max (a,, a;)<4d] ,

where the last equality uses Lemma 2. Now by Theorem A-1, the
density of d=(vy 7 /o) (Xy;—X;yy) for y=0 is

a2 (gl ) e (<5 2 ))
where 7=py—py;. Thus 17‘1_12 P,[d=zK(r,, 7, 0)]=1, so using Lemma
A-1,

lim P, [max (a;, @;) <d]=lim P, [max (a,, a,) <6|d=K(r,, r;, §)]=1,

where the last step uses Lemma 4.

3. Suggestions for future work

The present paper has concerned itself with showing that for m=>1
parameters any GMLE is an MPE (Theorem 2 above, which extends a



MAXIMUM PROBABILITY ESTIMATORS FOR RANKED MEANS 475

result Weiss and Wolfowitz gave for the case m=1), and with study-
ing in detail MPE’s for ranked means. In the latter case, and with
m=2, it would be interesting to perform numerical comparisons with
other estimators along the lines of Blumenthal and Cohen [1]. It would
also be of interest to study the behavior of the MPE (¢,, ;) (see Lemma
1) as n, 7, r; change.

Acknowledgements

Thanks are especially due to Professor Lionel Weiss for his sugges-
tions for and guidance of Dudewicz [2], which contains these results.
Thanks are also due to a referee for his comments.

Appendix
The joint density of X,,---, X, is
th"', }Z’k(yli ety ?lk)=f)zl(?l1)' * 'f)zk(yk) (yl € gz; 'i:lr' t k)

where f(-) is the N(g;, ¢*/n) density function (i=1,.- -, k).
It is well-known (e.g. see Dudewicz [4]) that then the joint density
of the ordered X, (i=1,---,k), i.e. of X<+ <X, is

A1) Freee, X, @) @)

ﬂZS f){'l,...,)}k(%(l),”‘; Tocr) SR A
— €5k
0, otherwise
— 1 \k ivp(n‘*#l),,, (%m:{_&) <...<
={ 5, WHloyg( et ) gl Bnte) | gg.ga,
0, otherwise
Ve s [ Lo — oy ) . ( xp(x)‘#[m) <...<
={ 5, WHlopg( Do) g Zmtin) gz g,
0, otherwise .

From the joint density of X,---, Xj;; given at (A-1), we find that
(for »,=<ux,)

S X X‘m(xu &)
= e {exp <—'51a‘[< ?/}%m )2+ < ?/:/%ﬂ )1)
+exp (— 3| (2ot (20 )]
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so that (for y=0), setting 7= —p3»
S %5-%0 W)= S I %, £ (& YYD

|l (-3 (i) )

o - (5

A (T (252 1)

Since, via completing the square,
S“’ exp (—--;—[(a:+a,)2+(x+b)z])dx

_ S°_° exp (_%( w+1(/a;/'t21_’)/2 >2> e g — T g~ @O

it follows that
THEOREM A-1. With =P 1 fO’r yg 0

P R R L)
Let {A,, n=1} and {B,, n=1} be sequences of events on some

probability space (which may depend on n).

LEMMA A-1. If lim P, (B,)=1, then (if either of the following limits
exists) lim P, (4,B,)=1lim P, (4,).

ProOF. Suppose lim P,(B,)=1. Then by taking limits in P,(B,)<
P.(A,UB,)<1 we find lim P, (4,U B,)=1, and hence lim {P,(B,)—P,(4,U
B,)}=0. Taking limits in P, (4,B,)=P.(4,)+ {P.(B.)—P.(4.U B,)} yields
our result.
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