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1. Introduction

Our work is an extension of Bahadur’s representation of sample
quantiles : we shall show the same asymptotic relation between Wilcoxon
two-sample statistic and the Hodges-Lehmann (H-L) estimator based on
it as that between the sample distribution and the sample quantile
which is obtained by Bahadur [1] and, thereafter, refined and extended
by some authors (for example, see Kiefer [6], [7], and Sen [10]. Earlier
than Bahadur, Okamoto [9] obtains a similar result which is, how-
ever, represented “in probability ”). In the case of the Wilcoxon one-
sample test, Geertsema [2] obtained the similar representation as in (5)
of Theorem below. But our results in the two-sample case are more
sharpened by using Lemmas 2 and 3 below. These results illustrate
that in particular cases there are more closed relations than those be-
tween a general estimating function and the estimator based on it
(which are studied by Huber [4], and Inagaki [5], for example). See
Hodges and Lehmann [3] and Van Eeden [12] for discussions about H-L
estimators.

2. Theorem

Let X,,--+, X,,-++; Y4,-++,Y,, -+ be independent 'random variables
such that X,,---, X, -- are identically distributed according to a prob-
ability distribution F(x) and that Y;,---, Y,,--- are according to F'(x—40,)
where 6, is a fixed but unknown real number. For m+mn (=N, say)
observations X,,---, X,,; Y;,-+, Y, and any real number 4, put

(1) W ol0)=—— 33 31 8(¥s—X,—0)

1
mn j=1

where d(x)=1, if =0, and =0, if £<0. Then W, (0) is Wilcoxon two-
sample statistic. Let FX(x) denote the sample distribution function of
X, -+, X,. We may rewrite W, ,(9) as
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(2) Wi o®) =2 33 FX(Y,—0) .
n k=1

It is easy to see that W, ,(0) is a non-increasing function of # with
Wan(—o0)=1 and W, (0)=0,

. W...(o)} N and further, that
g 1 e
") e EWan0=|"_Fu—-0+0)
- dF(y)
e — =p@), say,
and then, especially, p(6,)=1/2.
Put Zj,k=Yk—Xj, j=19' s, My
—‘} 1 k=1,...,n, and let their order
0 1 1 mn

Zyy  Z Z(mn) ¢ Statistics be Z(l) <Z(z) e L

Zmny- Then it follows that
the H-L estimator of 4, based on Wilcoxon statistic is

(3) (9,,,,,,=median{Z,,,‘; J=1,--,m, k=1,---,n}.
That is, it hods that
(4) WGt ) S 12 EWpo(B) -

Then we have an asymptotic representation of the H-L estimator é,,,,,:

THEOREM. Assume: (a). The distribution function F(x) has the
first and second derivatives, F'(x)=f(x) and F"(x)=f"(x) (say), which
are bounded for —oco<x<oo. (b) For X sample size m and Y sample
size n, a8 N=m+n (say)— oo, m/N—1 (0<i<1). Put

(5) Onin=00+ 1" [W,, (6)—1/2]+ Ry 0

where r=§°° {f@))idz. Then it holds that

(6) R, .=O0(N-*(log N)"(log log N)**) , as N—oo,
with probability one. Further it holds that

lim sup [NY*(8,,,—6,)/(2 log log N)"*]=[122(1 — )],
(7)
lim inf [NY*(8,,,—6,)/(2 log log N)*|= —[122(1 — )[?] "2

with probability one.

By Theorem and Lemma 2 below, it is easy to prove that the



ASYMPTOTIC REPRESENTATION OF THE HODGES-LEHMANN ESTIMATOR 459

H-L estimator 4, is asymptotically normally distributed :

(8) NY¥f,.,—0)— N0, [1241—)I?™"), in law, as N—>oo .

3. Some lemmas

Let ¢; and ¢, be positive constants to be chosen later, and let {a,},
{by} and {7y} be sequences of positive constants such that, as N—co,

ay~c.N"(log log N)"*,
(9) by~N',
rx~C:N~¥(log N)"*(log log N)"*.
Consider the interval with the central point y:
(10) L(y)=(—ax+y, y+ay)
and its division points:
11) e xY)=y+aybyt-r, for integers |7|<by .
For sample size m and N such as in Assumption (b) of Theorem, put
Gu(@, Y)=[Fr @) —Fa@)]-[F@)-F®)],
Hy(y)=sup {|Gu(®, Y)|; @€ I(y)} .

Then, since F¥ and F are non-decreasing, it follows that for x € [5,»(¥),
e, n(¥)]

(12)

Gu(®, W) SF 5 rir, ¥ ) — FX ()] = [F (7:5(¥)) — F ()]
=G0, 5 ¥), Y)FF 311, 5¥) — F (7.4(¥))]

and, similarly, that

G, Y ZGn(9:5(Y)s Y)—[F 0r i1, 5(¥) — F(:0(¥))] -
Hence it follows that

(13) Hy(y)=max {|G.(7.5¥), ¥)|; —by=r=by}
+max {F(9,1,x¥)—F(0,5¥); —by=r=by}
=HFy)+B~xy), say.

Suppose that | f(z)|<M, for —co<x< oo, then we have from (11) that
F(5,15¥¥)—F(,5(¥)) < M-ayb3!, and hence, that

(14) B Y)=M-ayby!
where the right hand is independent of y.
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In general, let Uy,---, U, be independent and identically distributed
(i.i.d.) r.v.’s with mean 0 and variance ¢°* and be bounded by constant
c¢. Then Bernstein’s inequality holds (see Uspensky [12], pp. 204-206):

(15) P{Ui+- +U,|=t} <2 exp i—t2/<2ma’+%ct>} :

Denote by B(m, p) the number of successes in m Bernoulli trials with
the probability of success, ». Then Bernstein’s inequality implies that

16)  P{|B(m, p)-mplzt)szexp {—t/(2mp1-p)+2¢)} .

Now, since the probability distribution of |G,.(7,4(¥), ¥)| is the same
as that of m™'|B(m, p,y)—m-p,y| wWhere p,y=|F(.x¥)—F@)|=M-ay
(from (11)), it follows from (16) that

A7) PUIGara(w), 1) 27} <2 exp | —(mr) (2mM-aN+-§mrN)} .

Therefore we have from (13) and (17) that
(18) PlHIW)zrxls | 3 PUGm®), 9) 1274}
—On=r=Oy

§4b,.,exp{—mr}/<2M-aﬂ+§—rN)}=pN , (say),

where py is independent of y. The above-mentioned are the essential
points of Lemma 1 due to Bahadur [1] but added that bounds in (14)
and (18), M-ayby' and py, are independent of y (—oco<y< o).

LEMMA 1. Under the same assumptions as in Theorem, it holds that

(19) Ky=sup {|[Wanl0) = Won(0)]+1'(0—60)|; 0 € I(60)} ,  (say),
=O0(N~*(log N)"(log log N)*) , as N— oo,

with probability one.

PROOF. According to Assumption (a), suppose that |f(x)| and
[f'(x)|=M, for —co<x<oco. From (2) and (12) it follows that

%kE {[Fr(Ye—0)— F(Ye—00)]—[F(Y,—60)— F(Y,—6,)]}

o BP0~ F-o+ " (f@)de-(0-0)]

Il

12 12
GV, Yem0)+{[ -1 32 f(¥a—0)

k=1
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+{7_ t@rds]-0-00+ = 5 r@a0-012]

where Y,=Y,—0,0—(1—w,)0, 0<w,<1. It follows from (11)-(15), (19),
(20), and Assumption (a) that

@) Ky=|L 5 K- 0)+M-aubiy]
HL S sv-a {7 veyds| au+ara)

We have from (10) that
M-aybi'~M-c,N-3(log log N)*,
M-a%[2~(M-ci2)N~'log log N .

It follows from (10) and Assumption (b) and by the law of the iterated
logarithm for bounded r.v.’s (see Loéve [8], p. 260) that

(22)

@) a|E 5 00— (f@)rda| =0 loglog N,

as N— oo, with probability one. On the other hand, from (18) we have
that

@4 P{L 3 HAV—0)zr] <3 PHA G020
< VEy (P [HF(Yi—0)Z7v| Y1)
=n

'pN‘

From Assumption (b) it is easy to see that
(25) lim [log n-puflog N=—2—(1-)/(2M-c)

Choosing ¢, to be sufficiently large for e,, we can make the limit in
(25) < —1 and so, we have by Borel-Cantelli lemma that

(26) % 21 HF(Y,—0)=O(N-"(log N)"(log log N}y,  as N—oo,
k=

with probability one. From (21), (22), (23), and (26), the conclusion (19)
of this lemma is obtained.

Consider Wilcoxon statistic and its projection:

W,on(0)=—— 3 31 8(Ye—b— X)) ,
mn j=1k=1
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and

WiB) =~ ST F(Y,—0)— L T F(X)+L  (say).
i=1 m i=1 2

3|~

Suppose that the distribution function F is continuous and let

Xj’ =F(Xj) and Y,::F(Yk..._oo) ,
j=1,---, m,o.-; k:l’...’n

Then X/,---, X},---; Y{,---,Y/,... are i.i.d. according to Uniform dis-
tribution U(0,1). Since &(Y,—60,—X,)=0Y{—X/), j=1,2,---; k=1,

2,:+- with probability one, we may as well discuss about
I/anzL E E B(ch —XJ,) 4
mm j=1i=1
and
wh=Lsy-Lsx+l,  (ay),
n k=1 m j=1 2

as Wmn(ao) and van(eo)-

LEMMA 2. Under Assumption (b) of Theorem, it holds that for any
a (0<a<l)

(27) (Won— W5 |=O(N"=<*),  as N—oo,
with probability one.

ProOF. For y=(y;,---, ¥,), let

zw== 35 [sw-XD-n+X/-1],  i=t-m.
n k=1 2
Then Z\(y),---, Z.(y) are i.i.d. r.v.’s with mean 0 and variance
28 =EZ z__{___ [ Yo —Yar . Yo —Ya») :“ ,
(28) =g +2 5 [+ L e | Be

where yu,<¥u» are the smaller one and the bigger one between y, and
Y, respectively. Since |d(y—2x)—y+2—1/2|<1/2, for 0z, y<1, which
implies that |Z,(y)|<1/2, we have by Bernstein’s inequality (15) that
(29) P“%—é z,(y)|gt}gz exp {—m=t2/<2ma;+_;-mt>} .

Next if we substitute Y=(Y/,--,Y,) for y into ¢}, we can see that
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_1 { n [ 1 Yo—Yau (Y(k)_Y(k’))z:“_ 1
E¢=—{"2+2 E|— k = )
i T T I S A— 12n

and

D S ‘
E (a,, 12n> n(n—1)/360n" .
By the fact that W,,—Wx=(1/m)3 Z,Y), it follows from (29) that
j=1

G)  PUWA-Walzti=E [P[|L B 7m)|207|]
m j=1
<Ey {2 exp [—mt*/(20% +£/3)]} .
Since 2 exp [—mt?/(2¢%+1/3)]<2 and
E (¢%)'=n(n—1)/360n'+(1/12n):=(Tn—2)/720n° ,
it follows by Chebyshev’s inequality that

(31) Ey {2 exp [—mt*/(20% +1/3)]}
<2exp [—mt}/(2-e+t/3)]+2 P {0} =¢}
<2 exp [—mt(2-e+1/3)]+ 2+ (Tn—2)/(T120n’ -¢?) .

For a (0<a<1), choose o such that a<a’<1l and let t=m~"*"<* and
e=n""" in (81). Then we have from (30) and (31) that

P {l Wmn—annlgm_l/z—aﬂ}
<2exp {—m 2|20+ m V" "[3)} + 2.0 (Tn—2)[T20n}
=0y , say .

1t is easy to see that
Ilém {log 6y/log N} =lim {log [2n*(Tn—2)/720n%]/log N'}
—o0 N—oo
=—24d<-1.

Thus, by Borel-Cantelli lemma the conclusion (27) of this lemma is
proved.

Suppose Assumption (b) of Theorem, then it holds by the law of
the iterated logarithm for the sum of independent r.v.’s, W,%,, that

}vim sup [NVA(W X —1/2)/(2 log log N)"*]=[122(1—2)]',

and

lim inf [N"A(W % —1/2)/(2 log log N)"*]=—[1221-2)]""",

N—ooo
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with probability one. Therefore by Lemma 2 we have the following
lemma:

LEMMA 3. Under Assumption (b) of Theorem, the law of the iterated
logarithm for Wilcoxon statistic, W,,, holds:

lim sup [NY¥(W,.,—1/2)/(2 log log N)"?]=[122(1—2)]*?,
N—roo
(32)
llvim inf [NYA(W,.,—1/2)/(2 log log N)"*]|=—[122(1—2)]7"?,
with probability one.

LEMMA 4. Under the same assumptions as those of Theorem, for
constant ¢, chosen suitably, it holds that, with probability one, H-L esti-

mator 6, € I(8), for all sufficiently large N.
PROOF. Since W,.(#) is non-increasing in 6, it follows that

(33) inf {| Wa(6)—1/21; 60 ¢ In(60)}
=min {l Wmn(oﬂ_alv)_ 1/2 l’ l Wmn(00+aN)_ 1/2 ‘} .
Now,

lWmn(00+aN)_1/2|gF'aN_IWmn(00+aN)_Wmn(00)+P'a’Nl
—|Wmn(00)_1/2| .

Thus, it follows from (12), Lemmas 1 and 3 that, with probability one,

| Wan(Bo+ax)—1/2|Z(I"- c;—e)- N~(log log N)'*
—(c:+¢)- N~Y(log N)"*(log log N)'*
— {[64(1—2)]""*+¢} - N~"*(log log N)"*,

for any ¢>0 and all sufficiently large N, and hence, that, with prob-
ability one,

| Won(Os+ay)—1/2|Z{["-¢,—[62(1 —2)]"/*—¢'} - N~"(log log N)'2,

for any ¢>0 and all sufficiently large N. Choose ¢, to be so large that
{I-c;—[62(1—A)]*—¢'}=A (say)>0. Then we have that with prob-
ability one,

(34) | Waa(fo+ay)—1/2|= A- N"*(log log N)"*,
for all sufficiently large N, and similarly, that, with probability one,
(35) | Wan(6o—ay)—1/2|Z A- N"*(log log N)"*,

for all sufficiently large N. Subsequently from (83), (84) and (85) it
holds that with probability one,
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(36) inf {| Wo.(6)—1/2]; 6 ¢ Iy(6)} 2 A- N~"*(log log N)"*

for all sufficiently large N.
On the other hand it holds from (4) that

37) |Wm,,(ém,,)—1/2|gzl;, with probability one,

and further, that 1/mn~1/A(1—2)N?, as N—oo. Hence from (36) and

(837) it holds that with probability one, 6., € I,(6,), for all sufficiently
large N. The proof of this lemma is complete.

4, Proof of theorem

Choose constants ¢; and ¢, as in Section 3. From Lemma 4 and
(20) it follows that with probability one,

| (W osalGin) = Wi 0]+ I+ (Gra—60) | S Ky,
for all sufficiently large N, and hence, from (37) and Lemma 1 that
111/2— Wrna(0)1+ I+ (Br— ) |=O(N ~*(log N'}"*(log log N)*) ,

as N—oco, with probability one. That is, (6) in Theorem is proved.
Furthermore from (6) and Lemma 3 we see that (7) holds.

Acknowledgement
The author is grateful to the referee for his comments.

THE INSTITUTE OF STATISTICAL MATHEMATICS

REFERENCES

[1] Bahadur, R. R. (1966). A note on quantiles in large samples, Ann. Math. Statist., 37,
577-580.

[2] Geertsema, J. C. (1970). Sequential confidence intervals based on rank tests, Ann.
Math. Statist., 41, 1016-1026.

[3]1 Hodges, J. L., Jr. and Lehmann, E. L. (1963). Estimates of location based on rank
tests, Ann. Math. Statist., 34, 598-611.

[4]1 Huber, P. J. (1967). The behavior of maximum likelihood estimators under non-
standard conditions, Proc. Fifth Berkeley Symp. Math. Statist. Prob., 1, 221-233.

[5] Inagaki, N. (1973). Asymptotic relations between the likelihood estimating function
and the maximum likelihood estimator, Ann. Inst. Statist. Math., 25, 1-26.

[6] Kiefer, J. (1967). On Bahadur’s representation of sample quantiles, Ann. Math. Statist.,
38, 1323-1342.

[7] Kiefer, J. (1970). Deviations between the sample quantile process and the sample df,
Nonparametric Techniques in Statistical Inference (Ed: M. L. Puri), Cambridge Univ.
Press, N. Y., 299-320.



[8]
[91]
[10]

[11]
[12]

NOBUO INAGAKI

Loeve, M. (1963). Probability Theory, Von Nostrand, Princeton.

Okamoto, M. (1955). A relation between order statistics and the sample cumulative
distribution function, (in Japanese), Seminar Reports Osaka Statistical Association, 1,
18-19.

Sen, P. K. (1972). On the Bahadur representation of sample quantiles for sequences
of ¢-mixing random variables, J. Multi-variate Analysis, 2, 77-95.

Uspensky, J. V. (1937). Introduction to Mathematical Probability, McGraw-Hill, N.Y.

Van Eeden, C. (1968). Nonparametric Estimation, Les Presses de 1'Universite de
Montreal.



