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1. Introduction and summary

The exact representations of the probability density function (p.d.f.)
of the multivariate quadratic form of the central case in normal sample
were obtained by Hayakawa [4], Khatri [18], and Shah [14] by the use
of the zonal polynomials and Laguerre polynomials of matrix argument.
The exact representations of the p.d.f.’s of the latent roots of the
multivariate quadratic form in non-central case were also treated in
Hayakawa [5], [6] in terms of the new polynomial P(T, A). Recently
Hayakawa [8] obtained the asymptotic expansion of the distribution of
the determinant of the multivariate quadratic form in central case.
In this paper, we will extend the result of [8] to the non-central case.
A certain condition on the limiting behaviour of the latent roots of the
quadratic form is assumed together with the boundedness of the non-
centrality parameters. We also give the asymptotic expansion of the
p.d.f. of the trace of the multivariate quadratic form. Using these
results, we have the asymptotic expansion of Cornish-Fisher type for
these statistics. All the results could be extended similarly to com-
plex normal sample case.

2. Some useful results

Let T and U be mXxn (m<mn) matrices, and let A be an nxn di-
agonal matrix, i.e., A=diag(a,, @, -, a,), a,=a,=---=a,>0. Then
the polynomial P(T, A) is defined by

(1)  etr(—TT"P(T, A)
—(— 1)t SU etr (—2iTU") etr (— UU")CAUAUNAU ,
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where dUzﬁ ;[E[ du., and the integral is done on whole mn dimensional
a=1 =1

Euclidian space, and C(UAU’) is a zonal polynomial of UAU’ corre-
sponding to a partition & of k, James [12].
We can see the following relations.

(2) P.0, A)=(—1)"(m/2).C(A)"
(3) P(T, L)=H(T)=(—1)L*%TT), p=(m+1)2,

where H(T) and L ?(TT') are the generalized Hermite polynomial
and the generalized Laguerre polynomial, respectively, Hayakawa [5]
and Constantine [1].

The exact expressions for P(T, A)’s up to k=4 are listed in Haya-
kawa [6].

LEMMA 1. Let P(T, A) be a polynomial corresponding to a partition
wk={ki, ks, -+, kn} of k into not more than m parts for an mXxXn matrix

T and an nxn matriz A, and a(x)=3 k.(k.—a), and put T=T(I+

zAY"2, A=(I+zA) " A(I+5A) ™ for ||8Al<1, where || Al implies the
maximum value of the absolute values of the latent roots of A. Then the
Sfollowing equalities hold.

(4) g (&*/(k—7r)!) 33 P(T, A)=d(z, T, A)x™ X3 P(T, 4),
’r=0’ 19 2)' D)

where d(x, T, A)=det (I+xA) " etr {T(I—(I+xA)")T'}, and = is a parti-
tion of .

(5) g (@/k!) 3 () PAT, A)=d(x, T, Az} Po(T, A)—(1/2)Pa(T, A)] .

ProoF. To prove (4) and (5), we need two formulas which were
obtained by Sugiura and Fujikoshi [15].

(6) g] (@*/(k—7)!) > C(UAU")=u" etr (xUAU’) E C(UAU"),
(7) g(w"/k!) 3 a(e)CAUAU") =z* etr (sUAU")[Cx(UAU")

—(1/2)C(UAU")] .
Using the definition of P(T, A) and (6), we have

3 @(k—7)1) 5 PAT, 4)

1 The right hand side of (36) in [5] should be multiplied by (7/2)..
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—etr (TT")(—z) 7" SU etr (—2iTU") etr (— UU")
. etr (—sUAU") S C(UAUU

o etr (TT") det (I+A) ™~ 1)z
: SU etr (— UT") etr (—2i T(I+wA)-T")
3 CAUU+2A) AT +2A)"U" AU

=x"etr (TT") etr (— T(I+zA)'T")
- det (I+24) ™ 51 P(T, ) .

We have (5) by similar way as (4) by the use of (7).

Note. More details for the weighted sums of P.(T, A) may be
found in Hayakawa [9].

COROLLARY 1. If we set A=1I, and x=—y, we have same results
as Fugikoshi ([3], Lemma 8) with S=TT' by (3). If we set T=0 and
x=—1, we also have same results as Fugikosht ([3], Lemma 3) with b=
m/2 by (2).

3. Asymptotic expansions of the distributions for two functions of
XAX

38.1. The asymptotic expansion of the distribution of det XAX'
Let X be an m Xn matrix with probability density function (p.d.f.)
(8) ™ (det 23) "2 etr (— 21 XX'[2) ,

and A a diagonal matrix such that A=diag(a,, a;, -, a,), ;2@ =---
=a,>0, and M an mXxn arbitrary matrix with rank m. Then the
following theorem holds.

PRroPOSITION 1 (Hayakawa [6], Theorem 3). Let X, A and M be
defined above, then the joint p.d.f. of the latent roots A=diag (2, 4,
coe, ) Of Z=n" 3V X—M)A(X—M)Y2'2 is expressed as follows.

(9) i‘, SIR.f(4), for the minimum value of {a,}=a,>q¢>0,

where
F( )= (n/2q)y™*z™ Y [(m|2) (12 £)CAL,)) ™
- etr {—(n/2g)4}(det A)"~""PC((n/2q)4) U, (4—2) ,

and
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(10) kIR, =(det B)™" etr (—2)(—1)*
- P((i[V 2)Z " M(B—I)™", [-B™)

where B=A/q, 2=M'3"'M/2 and i=+—1. Furthermore, R,>0 for all
partition £ of k, and

(11) S R=1.

k=0 =«
We have the similar set of results of Lemma 1 as follows.
LEMMA 2. Let R.’s be defined as (10), and

t,=tr(B—IyY, s,=trBB-Iy"2, 3j=1,2,3,
and w=tr (BQ)?,

then the following equalities hold.

(12) F(T, A)=2 g S kR, =mt,+s, .
(13) F(T, A)=2 i S k(k—1)R,

=m[(m/[2)t}+1,]+mit,s,+(1/2)si+2s, .

(14) F(T, A)=4 3 3 k(k—1)(k—2)R.
k=3 =«
=(m}[2)t}+ 8m b, +mis+ (3/2) (M 4 2mi,)s,
+(8/2)mt (s} +48;)+12s,+ 65,8, 4 (1/2)s .
(15) F(T, A)=4 ki S awR.
=mti+m(m+1)t;+2(m+1)s,4+ 28+ o .

Using the p.d.f. (9), the characteristic function of 1=+vn/(2m) log {det(Z/q)}
is expressed as

(16) PO=hpr.u(0)
where

_ (2T Ly(n]2 4 it ] (Zm)
an out)=(2) )
18 =5 5 R, 2T/,
as) or. (=3} 3 R

The asymptotic expansion of ¢(t) is given by (12) in Hayakawa [7], and
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19)  er.4®) =é 3 R.{1+(2/v2mn) (it)e+(2(it)*/(2mn))k(k—1)

—(1/(2mny2mn)) {(4m(it)a,(x) — (4/3) (it)'F(k— 1) (k—2)}
+0(1/n")} .

We can rewrite (19) by using Lemma 2,

20)  or,4t)=1+(F(T, A)/¥V2mn)(it) +(FLT, A)/(2mn)) (it}
—(1/(2mnv2mn)) {mF(T, A)(it)—Q1/3)Fy(T, A)(it)'}
+0(1/n?) .

By combining (12) of [7] and (20), we have the asymptotic expansion
of ¢(t) as follows.

@) o(t)=exp (—t2/2)[1—(1/¢—2mn) z Lu(it)= - (1/2mm) é L ity
—(1/2mnv/Zmn) é ls,,(it)’“'1+0(1/n2)] ,

where
a=mp—F,, ly=1/3,
ly=Fy—mpF,+mp(mp+2)/2,
ly=(mp+1—Fy)[3, 1=1/18,

(22)  ly=m(2m’+3m—1)/64+mF,,
lpy=mp(mp+2) (mp+4)/6—mp(mp+2)F,/2+mpF;—Fy/3 ,
lyy=(bm*p*+20mp+12)/30—(mp+1)F,/3+F3[3 ,
ly=(mp+2—F)/18, ls=1/162,

and F,=F(T, A), a=1,2, 3,4 are given in Lemma 2. Inverting (21),
we have a following theorem.

THEOREM 1. Let X be an mXxXn matriz with p.d.f. (9), M an mXxXn
arbitrary matriz with rank m, A an nmxmn diagonal matriz, diag(a,,
Qgy vy Qr)y G A - - 20, >0. Let nZ=3""X—M)AX—M)YZ"'"?. Then
the asymptotic expansion of the distribution of 2=+n/(2m)log {det (Z/q)}
is given under the conditions tr (A—qL)=qtr (B—I)=0(1) and tr 3"'MM’
=tr 2=0Q) as follows.

(23) P (A=2)=0(x)+(1/v2mn) é 1,09 D(x) +(1/(2mmn)) é 1, 0%(x)

+(1/@mnyZmn)) %l3n¢‘2“"’(x)+0(1/n2) :
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where 1,,’s are given by (22) and &“(x) stands for the ath derivative of
the distribution function @(x) of a standard mormal random variable.

Note. The term of order 1/n* of this expansion has been obtained
in Hayakawa [10].

COROLLARY 2. If we set M=0 in (23), then we have the asymptotic
expansion of the distribution of the determinant of the central quadratic
Sform which is same result as (7) in Hayakawa [T].

3.2. The asymptotic expansion of the p.d.f. of tr I (X—M)AX—M)

The exact p.d.f. of munT=tr I-(X—M)AX—M) for 0<q<a, is
given by

(24) (mn/[2q)"*(1/I"(mn[2)) exp { —(mn/2q) T} T2~
- 33 (mn/2) Ty (mn/2), S B, ,

where R.’s are given as (10), and the power series converges absolutely
for all T>0, ([2], (62)).

THEOREM 2. Let T be distributed with p.d.f. (24), then the asym-
ptotic expansion of the p.d.f. of x=+mnj2log (T/q) is given by

(25) f(x)=¢(x){1+ By/v2mn+ By/(2mn)+ By/(2mnv'2mn)+0(1/n2)} ,
where

$(x)=exp (—a%/2)[v2x ,

B,=—{2}3—2F}},

B,=2'18 — 21+ 2F))/6+x(F\+ F;)—(1/3+ F)

B,= —[2°/162 —&'(1+ F)/18+2*(2+ 15F,+10F)/30
— (14 6F,+21F;+3Fy)/9+x(F\+12F,+3F})/3] ,

(26)

where F,’s are same as ones of Lemma 2.
PROOF. Since T=gq exp (v2/mnzx), the p.d.f. of x is expressed as
(27) (mn/[2)™*~P(1/I(mn/2)) exp (¥Vmn/2x)
- exp { —(mn/2) exp (vV2/mn z)}
- 33 ((mn/2)(mnj2),) exp {kv2lmna} 3 R, ,
which converges absolutely for all x. We can check easily that the

first term and the second term of (27) can be expanded in the follow-
ing forms, respectively.
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(28)  exp (—2Y2)/v2x [1—a*/(8v2mn)+(1/(2mn)){«*/18 —x*/6 —1/3}
+(1/2mnv2mn) {2°/162—«"/18+ 2*/15— 2°/9} 4 (1/n)]

29) 14 Fy/vZmn+(1/2mn) {z}(F,+ Fy)—F;} 4+(1/2mnv/2mn)
+ {2 (Fy+ 6F+2F)[3—a(Fy+4Fy)} +0(1/n) .

Combining (28) and (29), we have (25).

Remark. Let X=[x!, x}, -, x,] and M=[gf, pt},-- -, p£)’, and put
x=[x,, %z, *, Xn] and p=[pe, s, -, )], then

tr 2 X-M)AX-MY=(x—p)(E"' @A) (x—p) .

This implies that the asymptotic expansion of the distribution of Ymn(2
.log (T/q) can be obtained from Theorem 2 by replacing m with 1, n
with mn, and noticing

F,=4 ki:,' 2 a(s)R.=4 kﬁg S k(k—1)R.=2F, .

Hill and Davis [11] obtained the general formula of the asymptotic
expansion of Cornish-Fisher type. Using (23) of [11], we have the fol-
lowing corollary.

COROLLARY 3. Let u be the pth percentile of the standard mormal
random variable, and xz the pth one of 2=+n/2m log {det (2/q)}, then

(30) 2 =u— G/V2mn+ Gy/(2mn)— G;/2mny2mn)+0(1/n%) ,
where

Gi=mp—1/3—mt,—s,+u*/3,
3l1)  Gy={mp—4/9+mt,+2s}u+u’/9,

Gy=Gy+ G’ + Gyut*

G =(4/9)mts+m't}+(m(3m* +8m +2)/3)t,
F(2/3)(3m+3m 4 2)sy+ 2mtss, + Mo+ 4s,
+mH2m? +3m—1)/6—2mp/3—116/405 ,

G =2mp[3—152/405— (4/9)mt;—(2/3)mt,— (4/3)s;—4s; ,
Gyu=4/135 .
Let y be the pth percentile of Ymnj2tr {T(X—M)A(X—MY)[q}, then
(32) y=u—G,[V2Zmn+Gy/(2mn)— Gs/(2mny2mn)+0(1/n*) ,

where
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G =2/3—mt,—s,+u/3 ,
(33) Go= {mts+25,+5/9) u+u'/9 ,
Gy=Gy+ G+ Gyt |
G = — 116/405 + (4/9)mts + mé: + (m(3m+5)/3)t,
+(2/3)(3m+5)8,+2t:8,+w+4s, ,
Gy =118/405— (4/9)mts— (2/3)mt, — (4/3)s,— 4s, ,
Gy =4/135 .

4. Corresponding results for complex Gaussian variables

In this section we shall state the results for complex Gaussian dis-
tribution.

Let T=T*+1T"=(tf)+i(t};) and U=U*+iU'=(U%)+i(U%,) be mxn
(m<m) complex arbitrary matrices whose ranks are m, respectively, and
A an nXxXn positive definite Hermitian matrix. We define P(T, A) as

(34)  etr (— TT)B(T, A)
=(-—1)"7r"’"'gv etr (—UT") etr (—i(TT'+UT"))CAUAT")AU ,

where dU=T][ T[] dufdul,, and the integral is done on whole 2mn di-

a=1 =1 ~
mensional Euclidian space. The explicit expressions for P(T, A)’s up
to k=3 may be found in [5]. We have completely similar set of results
as Lemma 1.

LEMMA 3. Let B(T, A) defined by (34) be a polynomial correspond-
ing to partition k={k,,---, k,} of k into not more than m parts for T
and A defined above. Put T=T(I+aA)" and A=I+zA) "2 A(I+xA)"
Sfor ||xA||<1. Then the following equalities hold.

(35) i S (@*/(k—r))PAT, A)=d(z, T, A)x" > B(T, 4) ,
(36) 31 (@ k) @0 +0P(T, 4)

=d(x, T, A)[Po(T, A)— BT, 4)],

where Gy(e)=3) k.(k.—2a) and d(z, T, A)=det (I+zA)™ etr (T(I—(I+
zA) ) T"}.

PrROOF. We can show (35) and (36) completely same way as Lemma, 1
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by using (2.10) and (2.11) in [8].

_ Note. We have similar set of the more weighted formulas for
P(T, A) in [10].

To have the similar theorem as Theorem 1 for complex case, we use
the following proposition.

ProOPOSITION 2 (Theorem 8, [6]). Let X be an m Xn complex matrix
with p.d.f. z~™etr (—3'MM’), A=diag (a;," -, a,), &;=a=---=2a,>0,
and M an mXxn arbitrary complex matrix, then the joint p.d.f. of the

latent roots A=diag (A, "+, i) of nZ=3"HX—M)A(X—M)Z'* is ex-
pressed as follows,

37) SSRSW,  for 0<q<a,,
where
(38)  FUMy=(n)qy"(z" [(Tn(n; D) W(m)CAL,))) etr (—(nfg)d)(det Ay
- C(n/g)4) A=)
and
(39) kIR.,=(det B) ™ etr (—2)(—1)*P.(iT*, I-B™),
where T*=[T%, T'lnxs and T=T2+iT'=3""M(B—I)"*, and B=A/q
and Q=M'3"'M. R.>0, for all partition £ of k with probability one,

(40) S R=1.

k=0 =«

Combining Lemma 3 and this proposition, we have the following theo-
rem by completely same way as Theorem 2.

LEMMA 4. Let R.s be defined as (39), and §,=tr (B—I)’, 3,=tr B(B—
Iy-12, j=1,2,8, and @=tr (B2), then the following equalities hold,

41) F=3 > kR=mi+5

k=1 «
42) F= i S k(k—1)R,
=mlt Zf + 'mzz+ 22151 +28,+38}
43) F,= i S (e—1) (k—2) R,

=mPB 4 3m? L, by + 2mby+ 35,(MP B+ mt,) + 3mi (3! + 28,) + 63,
+68,8,+8
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44  F=33@w+hE,
=mE+mity,+2ms,+ 268, + @ .
THEOREM 3. Let X, M, A and nZ be defined as in Proposition 2.

Then the asymptotic expansion of the distribution function of §=Vn/m
-log (det (Z/q)) is given as

(45) O()+(1/vmm) 2 1. 0%(z) +(1/mn) z', 1, 0%(z)

+(Umny/mm) 31 0% () +O(L/n)

and all the coefficients are obtained by the following transformations of
parameters in (22),

(46) p—m
L.—2,,, 7=1,2,8, except Iy ,
ln=(1/12){m*2m*—1)+6mF}} ,
(F, F)—@F, 2F),  (Fi, F)—@F,, 4F) ,
respectively.
Note. The term of order 1/n* has been calculated in [10].
Since the p.d.f. of mnT=tr 3-(X—M)A(X—M) is given by
@7 f(T)=(mn/q)"(1/I(mn)) exp (—(mn/q)T) T
-é(((mn/q)f’)"/(mn)k)gﬁ., 0<g<a,, ([6], (85)),

we have the following theorem.

THEOREM 4. Let T be distributed with p.d.f. (47), then the asym-
ptotic expansion of the p.d.f. of x=vmn log(f‘/q) 18 given by

~ 3 o _
(48) F@=3@){1+3) Bl(/mmy-+0om))]
and all the coefficients are obtained by changing the parameters in (26)
as following rule:
(49) B,—2'B,, j=1,2,3
(F17F2)'_’(2F119 2F2) ’ (Fa, F4)—’(4ﬁa; 41;:'4) .

We have the asymptotic expansion of the pth percentile of i= vnfm
-log {det (Z/g)} and vmn tr I-(X—M)A(X—M), similar as the real case.
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COROLLARY 4. Let u be the pth pe:rcentile of the standard mormal
random variable, and x the pth ome of A, then
(50) 2=u—B,/Ymn+ B,/mn— B/mnv/mn+0(1/n?) ,
where
B,=(1/6)(3m*—1)—mt,—5,+u/6
B, = {m*/4—1/9+(1/2){m#}+28,} }u+u’/36
By= By + Byu*+ Byu*,

(51) . - - - .
By =(1/6)[2mt;+3m it + (83mP+m)t,+6mt8,+3mw 163,

+(6m*+2)8,+m*—m?+29/135]
Biy=(1/6)[m¥/2 —38/135 —2mts— mt,— 28, — 63;]

By=1/270 .
Let y be the pth percentile of vmm tr 3-Y(X—M)A(X—M), then
(52) y=1u— B Vmn-+Bymn— Byjmnvymn+0(1/n?) ,
where

B,=1/3—mf,—5,+ul/6
By= {5/36--(1/2)mi, + ;) u+u/36
éa = ésx + ﬁszu2+ B%zu;u4 ,

(53) A . - . .

+(6m?+2)5,+29/135]
Bu=(1/6)[59/270 — 2mi,— mf,— 25,— 6]
Byu=1/210 .
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