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Summary

In this paper we continue the study of the extension of the Gauss-
Markov theorem to certain general kinds of multiresponse models. In
particular we obtain necessary and sufficient conditions, for the general
incomplete multiresponse (GIM) model and the multiple design multi-
response (MDM) model, such that unique best linear unbiased estimates
(BLUE’s) exist for all elements in a subset of the set of all estimable
linear functions of the location parameters. Also, the theory is illust-
rated by a couple of nontrivial examples.

1. Introduction and preliminaries

Assume that a set of n experimental units is divided into w dis-
joint subsets S;, (i=1,2,---, u), of n, units. Further assume that the
subset {V;, ,---, V‘m} of the p response {V;,---, V,} is measured on the
units of S;,. Let X denote the unknown dispersion matrix of the p re-
sponses and let Yi(n,xp), (¢=1,---,u), be the matrix of observations
on the units of S;,. For Y;, the standard multiresponse (SM) model is
applicable, i.e.

(1.1a) E(Y)=A(&,,, EL,”) ;
(l.lb) Var(Y¢)=I,.¢®Z¢ ’ i=17 29“';'”’ ;

where A(m;xXm) is the design-model matrix for S;, (&, -, e‘m) is the

set of p, columns of the (m X p) matrix of unknown parameters £é=(§,,
..+, &,) corresponding to the p, responses measured on S; and 3, is the
principal submatrix of 3 corresponding to the p, responses measured on
S,. Then the model given by (1.1a, b) is called the GIM model. Now,
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let U,={S;|V, is measured on the units of S,, (¢=1,---,%)}. If there
is a permutation of (1,---, p), say (ry,---, ), such that U,2---20,
then the GIM model reduces to an important special case, viz. the hier-
archical multiresponse (HM) model. Without loss of generality, this can
be written as

(1.2a) E(Y)=A«8:, &,---, &)
(1.2b) Var (Y)=1,,&®2%;; 1=1,---,p.

Actually, in Roy and Srivastava [2] where the HM model was first in-
troduced, it appeared in a more general form than the above in that
the &, were allowed to be of different dimensions for different 7. We
shall however work with the less general form (1.2a, b) in this paper.
Finally, the MDM model is given by

(1.3a) E(Y)=(A&, -, A%,
(1.3b) Var (Y)=L®3,

where the symbols have the same meaning as before. Thus here we are
allowed to have different design matrices A, corresponding to the dif-
ferent responses V,. However, the model is responsewise complete
since on each unit, every response is measured.

In Srivastava [3], (here-after referred to as paper I), the problem

of linear estimation of all parameters in the set 6= {0|0 is of the form

p . .
>lclé., and @ is estlmable} where ¢/ are any row vectors of appropri-
r=1

ate size, is considered. Also, necessary and sufficient conditions are de-
rived (under each of the above models) such that there exists a (unique)
best linear unbiased estimator (BLUE) for every §e¢®. A design satis-
fying these necessary and sufficient conditions is called an orthogonal
multiresponse design (OMD) with respect to 6.

Similarly, if &%, then a design is said to be an OMD with re-
spect to @*, if there exists a BLUE for every 6 € *. In Section 2 of
this paper we give necessary and sufficient conditions on the GIM and
HM models such that a design is an OMD with respect to *, where
6* is a given subset of ©. Section 3 is concerned similarly with the
MDM model. Finally, for each model, the theory is illustrated by some
important special cases.

2. Orthogonality under the GIM and the HM models

Consider first the standard uniresponse model

(2.1a) BG)=[4]141[§ =46+ 48,
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(2.1b) Var (y)=7I, ,

where &(m—kx1), &(kx1) and ¢* are unknown. Throughout this sec-
tion, for any matrix B, the matrix B~ will designate the Moore-Penrose
inverse of B, and B* will denote a conditional inverse of B (i.e., B* is
such that BB*B=B). Let W, and W, denote respectively the column
spaces of A=[A,|A,] and (I—A;A7)A;. Then it is easy to see that W,
cW,.

LEMMA 2.1. If g'y is the BLUE of ¢'§; then gcW,.
ProOF. Let

_[AT—ATA(AIT—AAD)As) AT A, AT)
2 A*—[ (AYI—AATD) A A(I- AAY) ] '

Then it is easily checked that a conditional inverse of (A4'A) is (A'A)*
=A*(A*) and further that (AA¥)=(A*YA'=AA*, A*AA*¥=A* AA*A
=A. Thus

g’ =[0'| (A A*A’=[0' | 1A* = (AY(I— A A7) Ap) " Ai(I— ALAT) .

This completes the proof.

LEMMA 2.2. Given geW,, there exists a vector ¢’ in the row space
of A, such that g’y is the BLUE of c/§,.

PrROOF. Let g=(I—A,A7)A;l, then E (¢'y)=VAlI—AAT)A:4:=c¢,
(say). Using the same argument as in the proof of the last lemma, the
BLUE of ¢§; is

(2.3) =V AYI— A AD) AL AYI— A AD A AT A Ay -

Noting that (I—A,A4;7) is idempotent and that X'=X'X(X'X) X' for
any matrix X, Eq. (2.3) reduces to cé,=UA(I-AA)y=gy. This
completes the proof.

We consider next the hierarchical model defined by (1.2a,b). Let
B{(mxm,)=[Al| AL --| A}, (r=1,---, p), where m,=n,+N, +- - +7p.
Letting y.(m,x1), (r=1,---, p), denote the vector of observations on

response V,, we can write E(y,)=B.§,. Given 0=<i} cié,) €0, let

r=1
g'y., (r=1,---, p), be the BLUE of ¢/, when the data on all responses
except the rth (i.e., y,) are ignored. Then (5=§p] g'y. is called the
r=1
‘ piecewise estimator’ of 4.

Let W,, (r=1,---,p), be the column space of B,, W. (of dimen-
sionality p,, say) be the space orthogonal to W, and the columns of
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the (m,xp,) matrix K, be an orthogonal basis of W,. Let O, denote
a (2XJj) matrix, each element of which is zero. From Theorems 2.4
and 2.5 of paper I, we have that under the HM model a necessary and
sufficient condition that there exists a BLUE of 6 ¢ © is that

(2.3a) K;[_O.‘M] =0,,:,

r

(2.3b) [Op,,(m,-m,)IKr’]gn‘——op,,,l ’ (r>s; r,8=1,.--, D) ,

where (5=\2 gly. is the piecewise estimator of #. Further if the BLUE
r=1

of 6 exists then it is given by the piecewise estimator 4.

For r=1,---, p, let &,=[§/,|&/;] where &, and &,, have respectively
(m—Fk,) and k, elements and where interest is supposed to lie in the
parameter &,,. Thus

(2'5) E(yr)zBrer:[Brl I Br2][ :rl ] = rl$r1+Brzer2 ’ (T=1, ) p) ’

72

where the partition of B, is induced by that in &,. Let W,, (r=1,
-+, p), denote the column space of the (m,xk,) matrix

(2.6) 4,=(I-B,B;)B,, .
Now, we are assuming that interest lies in the estimation of the
elements ¢ in the set

2.7 6*= {0|06 6 and 6 is of the form f‘_, c£2$,2} .
r=1

If a HM design is an OMD with respect to 6* then clearly the BLUE
of # must exist for every @ ¢ 6*.

THEOREM 2.1. A mnecessary and sufficient condition that a HM de-
sign is an OMD with respect to ©* is that

(2.82) K.’[%';ML] =0,,, »

r

(2.8b) [O;-,.,(m,—m,)[Kr’]Aszop,.,k, ’ (r>s; r,8=1,---,p).

PROOF OF SUFFICIENCY. Let #¢ 6* and let é:i gly. denote the
r=1

piecewise estimator of §. By Lemma 2.1, g, € W,, for r=1,.--, p. Let
g.=4,1,, (r=1,---,p). Now for r>s, we have from (2.8a) that

) )
2.9 K,,I: (mg—m,),1 ] — K’[ (mg—m,)k, ]lr—_‘ 0 .
(2.9) e et
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Similarly, from (2.8b)
(2'10) [Op,.,(M,—'m,.) | K,’]g,= [Op,.(m,—m,.) I Krl]A:l: =0.
Thus the BLUE of # exists and is given by 6.

PROOF OF NECESSITY. Let e,(k,x1), (¢=1,---,k,; r=1,---, p), de-
note a vector with unity in the ith position and zeros elsewhere. Now
for fixed values of r and 1, (4,e;,) € W,;, and by Lemma 2.2 there exists
an element # € 6* such that (4,e,)'y, is the piecewise estimator of 4.
Hence by assumption, (4,e;)y, is the BLUE of # and from (2.4a, b) we
have

2.112) K [2@;’"3—‘] =0,,.,
Areir
2.11b) [0, nmo K VAi€a=0, .,  8=1,---,7—1.

Letting » run from 1 to p and 4 run from 1 to k,, this clearly implies
that Egs. (2.8a, b) hold.

Suppose r>s, (r,s=1,---,p). We must introduce some further
notation at this point since we are allowing for the possibility that
&,.(k,x1), and &,(k,x1) are not of the same dimension, and since B,
consists of the last m, rows of B,. Let (BX)Y=[Ai|---|4;_]. Thus

(2.12) Bi=[Ail-- - | A71=[(B) | B7] .

Furthermore, we define the partitions BX=[BX!|B}:] and B,=[B.|B:]
to be such that the number of columns in B} and in B/, equals the num-
ber of elements in &;;, (j=1,2; i=r,s). Recall from (2.5) that &, has
(m—k;) or k, columns accordingly as j=1 or 2. Also note that B,,=
Brrj’ (r=1,---,p; i=12), and

; BX{|BX: - .
(2.13) B:=[BLIB§2]=[ e B“”] , (r>s; r,s=1,---,p; i=1,8).
rl 72

Consider Eq. (2.8b). The matrix 4,(m,xk,), (s=1,---,p), can be
written in the form

— I(m,—m,.)l 0 —_ B3*,-§ ot
(2.14) A,_([ = Im,] [ = ]Bu)B.za (r>s) .
Thus Eq. (2.8b) is equivalent to
(2.15) K!([0|I,]—B:B;)B,=0 .

Now K/B,=0 by the definition of K,. Thus since B,=[B;,|B;,] we have
K/B:,=0 and Eq. (2.15) is equivalent to
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(2.16) [0|K/]1B,,=0 .

But (2.12) and (2.13) indicate that this equation is always satisfied since
the last m, rows of B, (i.e., rows of B:,) consist of part of the matrix
B,.. Thus it is found that in Theorem 2.1 the condition (2.8b) may be
removed without invalidating the result. We have established

COROLLARY 2.1. In the HM model a mecessary and sufficient condi-
tion that a design be an OMD with respect to 6* is that Eq. (2.8a) be

satisfied.

For r>s, (r,s=1,.--, p), let K/=[(K};)'|(K})'], where (K;}) and (KJ)
have respectively (m,—m,) and m, columns. Write B, in the form

By ]

k7
2.17 B,= [_1
(2.17) B,

Brl

Since K/B,=0 we have

(2.18) (K3) Bi=—(KJ3)'B,s
The left-hand side of (2.8a) equals
(2.19) (Ks3) (I, — B.1B;)B,,=(K.) B.;—(K.3) B,\B:iB,, .
Thus from (2.18), Eq. (2.8a) is equivalent to
(2-20a) (K.Y B+ (K5 B.B:B,=0,
or
*r
(2.20b) K;[E%sj] —0.

In other words, (2.8a) is equivalent to the requirement that the rows
of [(B¥))|(B,.B;B,;)’] belong to W,, the column space of B,, or

B ],

2.21) R(B,):R[B, T

THEOREM 2.2. Under the HM model a mecessary and sufficient con-
dition that a design be an OMD with respect to 6* is that

(2-22) R(B1)=R(Bl|41-2141-a| e lAl-p) ’
Where A;,-=[(B;';;)’ | (Brl 1; r2)’]! (')"2-——2, 3) ) p)-

PROOF OF NECESSITY. Hold s=1 and let » take on each of the
values 2, 3,---, p in Eq. (2.21).

PROOF OF SUFFICIENCY. Let r>s, (4-, s=1,---, p), and recall that
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B/=[A]|---|4l_,|B]. Also note that B}, ({=r, s), consists of the last
(m,—m,) rows of BFi. Eq. (2.22) implies that there exists a matrix
L, (say) such that (B,L,)'=[(B%})'|(B.B:B,)']. Hence (B, Lr)’—[(B =)' |
(B,1B;B,;)']. Thus Eq. (2.21) is satisfied for »>s, (r,s=1,---, p). This
completes the proof.

The special case when 6*=6 was given in Theorem 5.4 (Paper I).
This is easily checked since ®*=6 implies that (2.22) reduces to R(B;,)=
> R(4).

Consider now the GIM model defined in Egs. (1.1a, b). Hold » fixed
and select s=1,---, p such that s#r. Letting y, denote the vector of
observations on response V, we can write

@23)  B@)=B4&=B.BJ[$],  =1.p).
r2
Without loss of generality we can assume that B!=[(B},)|B..,], where
B,,, consists of the rows of B, which correspond to units on which both
responses V, and V, are measured and B}, consists of the remaining
rows of B,.
For notation let

£3 ki *i
@24)  B,= [ g"" } - [ g;" { g;" ] =[B,|B.l
780 T8l 782

(r#s; r,s=1,---,p; 1=1,8),

where the number of columns in Bi,;, BY;, or B;; is the same as the
number of elements in &, for all permissible values of the suffixes. Also,

note that
Brl= [_@z] , B'_z [ Brsz] ,

T
81 782

(2.25)
rln - [Bnl l Br:z ’ Brtl): [B:u I Biw] .

Starting with Theorem 3.2 (Paper I), and proceeding in a manner
similar to that used to prove Theorems 2.1 and 2.2 above, we can also
establish Theorem 2.3, the generalization of Theorem 5.3 (Paper I). We
are omitting the proof here because of its length.

THEOREM 2.3. Under the GIM model, a necessary and sufficient con-
dition that a design be an OMD with respect to 9*={0=§_, clénll e @}

r=1
s that

(2'26) R(B,-)=R(B,|E,.,) ’ (/"'—1&3; r,8=1,.--, p) ’
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where
(2.27) E,=[(B%) |(BiuB:iB.)'] .

The verification in special cases of the conditions (2.22) and (2.26)
of Theorems 2.2 or 2.3, is often made easier by using the identity

(2.28) XX =XX'X)*X'

where X is an arbitrary matrix and (X’X)* denotes any conditional in-
verse of (X'X).
We now illustrate the theory of this section by

Example 1. Let p=2 and w=3, where response V,, (r=1,2), is
measured on the sets S, and S;. Let

(2.292)  A,(n.x2)=[x.|px.], &=(x,B8), (r=1,2),

(2.29b)  Aymyx2)= [_xoip_%] :

Xy

where x,#0, (1=1, 2, 3, 4), and p#0. Now R(B))=R(A]|A})=2, R(By)
=R(4;)=2 and R(Bf)=R(4,)=1. Thus since R(B,)#R(B)+R(B%),
we have by Theorem 5.3 (Paper I) that the design is not orthogonal -
with respect to 6. Define 6*={0|0=c,8,+¢c,8;, where ¢, and ¢, are real
numbers}. From (2.24) and (2.25), we have Bi=px,;, BL.=[x}|0'], By
=[x;|x5|0'], and Bi=[px}|pxi|xi]. Thus Bj=(xx;,+x%,)"[x;|x4[0'],
and (BiuB:;By) =[px5|0']. From (2.27), we have E/,=[px!|px}|0’], and
hence

X1 | pXy | pX1
(2.30) R(By|E)=R) X3| pXs | pXs |=2 .
0 Xy 0

Similarly R(B;|E;)=2. Thus from Theorem 2.3, the design is orthogo-
nal with respect to 6*. Similarly, it can be checked that the hierar-
chical design obtained by ignoring one of the sets S, or S,, is also
orthogonal with respect to ©*.

3. The MDM model

Consider the MDM model defined by (1.3a, b). Let W,, (r=1,---, p),

denote the column space of A, and let W, denote the space orthogonal
to W,. It is shown in paper I that a necessary and sufficient condition
that there exists a BLUE of # €6 is that

(3'1) g£031=0 ’ (7':,&8; 7, s=1,-.-, p; j=11' ) [4‘3) ’
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where p,=n—R(A,), the columns of K,=[4,|- - [6.,,] form an orthogonal
basis of W,, and é:i g'y. is the piecewise estimator of 4.
r=1

Let &/=[§/,|8], (r=1,---, p), where &, and &, have respectively
(m—Fk,) and k, elements, and define

3.2) O* = {0]06 6 and 0 is of the form Zf‘, cierz} .

Also let W,; denote the column space of 4,=(I,—A, A;)A,, where the
partition A,=[A4,,|4,)] is induced by the partition of & =[&/,|&%].

THEOREM 3.1. Under the MDM model a necessary and sufficient con-
dition that the total design be an OMD with respect to 6* is that W*C
W where W= () W,, and W= W,.

r=1 r=1

PROOF OF SUFFICIENCY. Let ¢ 6* and let 6=3)g’y,. By Lemma
r=1 .
21, g, €eW,, (r=1,---,p). Thus g, e W*, and by assumption g, e W,
for all s=1,---, p. Hence g.K,=0, (r#s; r,s=1,---, p).

PROOF OF NECESSITY. Let g, W*, i.e. g,€ W, for some value of
r=1,2,---,p. Suppose g, € W,;, where r is now considered fixed. By

Lemma 2.2 there exists an element 6, € 6% such that éozg.ﬁy, is the
piecewise estimator of §,. Now using conditions (3.1) with fixed » and
s=1,---,p we find that g{K,=0. Thus g,e W, for s=1,---, p, and we

can conclude that W*cW= ﬁ w,.
s§=1

COROLLARY 3.1. Under the MDM model a mecessary and sufficient
condition that a design be an OMD with respect to ©* is that

3.3) R(A,|4,)=R(A,), (r,s=1,---,p) .

PROOF OF SUFFICIENCY. If R(A,|4,)=R(A,) for r,s=1,-..,p, then
clearly the columns of 4, belong to W,. Hence W, is contained in W,
for r,s=1,---, p, (that is, L’J WaC ﬁ W,) and we conclude from Theo-

§=1 r=1
rem 3.1 that the design is an OMD with respect to 6*.

PROOF OF NECESSITY. Reversing the above argument we have by
Theorem 3.1 that if a design is an OMD with respect to 6* then

OW.CAW,. Thus WyCW, and hence R(A,|4)=R(A,) for r,s=1,
8§=1 r=1
c--’p.

We now illustrate the above by
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Example 2. Consider the following system

Column Blocks
@ G 4)
I{ A|B|C

Row In|B|{C|D
Blocks 111 | ¢ |D| 4
IV|D|A|B

(3.4)

QW | > |3

Suppose that there are two responses and four treatments (A, B, G, D)
under study and that the four row blocks (I-IV) above constitute a
good block system for response V;, while the four column blocks ((1)-
(4)) constitute a good block system for response V,. Also suppose that
the row blocks are homogeneous with respect to V;, and the column
blocks are homogeneous with respect to V,. Assume that the rows of
the observation matrix Y=(y,, y.) are arranged such that the four ob-
gervations on treatment A occur first, the four observations on treat-
ment B occur next, etc. Let

e:1=(ﬂn ﬁslr ﬁszy .8:3! 13:4) and e:2=(7m! Tsbs Tseo Tcd) ’ (S—_—'l, 2)

where g, denotes the overall mean for the sth response, 8,; denotes the
effect of block j on the sth response and z,,, 7., 7:c, 7.« denote, respec-
tively, the effects of treatments A, B,C, D on the sth response. We
have

(3.5) E (y)=[Aul Ad]l: :‘1 ] =AufutAnke (s=1,2),
32

where A,,=[Js.|X,] (say), and A,=(L,®J,,). Here J,, and I, denote

respectively the (axb) matrix each element of which is unity, and the

(axa) identity matrix. Also, CQD denotes the Kronecker product of

the matrices C and D, i.e. C®Q D=((c,;D)), where c,; are the elements

of C.

Let 6*= {0]0 is a treatment contrast of the form é ded}' Now
§=1

it is easily checked by writing out the matrices in full that R(4,)=7
while R(A;|A;)=8. Thus by Theorem 5.1 (Paper I) the design is not
orthogonal with respect to 6. However, for s=1,2, we have

_1(5_:1&] A A *:[2._0'_.] =1.2
4.,4,1 4I4 ) ( 81 sl) 0 (4)_1L ’ (S ) )-

Thus A,A;=Au(ALAn)*AL=@)"(J.u®L), and 4,=[L&J,)— ()" (Jii®

(3.6) A;IAﬂ:[
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Ji)l (s=1,2). Now A,=[Jis:| X[ (L)), (s=1,2), and clearly Eq.
(8.8) of Corollary 3.1 is satisfied. Hence the design is orthogonal with
respect to 6*.

As the above example indicates, orthogonality under the MDM model
often exists with respect to important subsets 6*. In a separate com-
munication we would attempt to characterize such situations using the
concept of the relationship algebra (see, for example [1]) of a design.
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