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- Summary

In estimating the mean p, of one variable in a bivariate normal
distribution, the experimenter can use the other variable, x, as an aux-
iliary variable to increase precision. In particular, if g, is known, he
can use the regression estimator. When g, is unknown, a preliminary
test can be performed and the estimator will be made to depend on the
result of the preliminary test. The bias and mean square error of the
preliminary test estimator are obtained and the relative efficiency is
are discussed.

1. Introduction

In estimating the population mean of a variable y, the precision of
the estimator may be increased by the use of an auxiliary variable «
which is correlated with y. When the relationship between y and z is
a straight line, a linear regression estimator can be constructed. We
assume that z and y have a bivariate normal distribution with means
¢- and p,, variances o and o2 respectively and correlation coefficient p.
Suppose a random sample of size » is taken and a regression estimator
of p, is used; it is well known that the variance of the regression esti-
mator is (1—p%s/n. When p is large, there is a substantial reduction
in variance. The construction of a linear regression estimator of g,
requires the knowledge of p,. In case p, is unknown, we may perform
a preliminary test for the hypothesis H, : p,=p,, where g, is some con-
stant that the investigator believes that the population mean g, should
be. If H, is accepted, we use the regression estimator; otherwise, we
use the ordinary estimator 7. We shall call this estimator the prelimi-
nary test estimator. This can arise in the following situation. The
experimenter wishes to estimate the mean yield per acre of a certain
crop. It is known that yield is highly correlated with the moisture
content in soil. Hence the moisture content can be used as an auxiliary
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variable. The experimenter usually does not know the population mean
value of the moisture content ; but from the amount of rainfall reported
by weather bureau (or other sources of information such as underground
water, manual watering, type of soil, etc.), he believes that the popula-
tion mean should be p,. After the sample is obtained, the experimenter
can perform a preliminary test of the hypothesis that the population
mean of the auxiliary variable is g. If the hypothesis is not signifi-
cant, the regression estimator is used; otherwise he simply uses the
ordinary sample mean. Another example is given in Dempster ([3], p.
327). Although Example 8.1 in Dempster’s book considers a trivariate
normal distribution and interval estimation, the idea of utilizing regres-.
sion estimator is the same as in this paper. Papers in the area of pre-
liminary test estimation include Bancroft [1], Bennett [2], Han and Ban-
croft [4], Kale and Bancroft [5], Kitagawa [6], Mosteller [7], and others.

This paper will derive the bias and mean square error (MSE) of
the preliminary test estimator when the covariance matrix is known or
unknown. Relative efficiency of the preliminary test estimator to the
usual estimator ¥ is studied and tables are computed for selecting the
level of significance of the preliminary test.

2. Bias and mean square error when the covariance matrix is known

Suppose (%, ¥:), ©=1,2,---,n is a random sample from the bivariate
normal distribution with means g, p,, variances o;, o; and correlation
coefficient p. In this section we assume that g, and g, are unknown;
o2, o, and p are known. Without loss of generality we may let o;=
oi=1. If p, is known, the regression estimator is ¥+ p(y,—%) where
z and ¥ are the sample means. The variance of the estimator is re-
duced to (1—p*)/n. When g, is unknown, the estimator of p, is made
to depend on the outcome of the preliminary test for H;: x,=0 (here
without loss of generality we let g,=0). Hence

g—p% if |VTE|<2
2.1) y*=
Y if [Vnz(>z,,
where Z and y are the sample means and z, is the 100(1—a/2)% point
of the standard normal distribution.
The expectation of y* is

(2.2) E@"=E {y—pz/|vnz|=2} P{lVnZ|=2.}
+E{y/lvn 2>z} P{lvn >z}
=E @)—pE (z/|vn Z|=2} P{lvVn Tz} .

Since E (y)=p,, therefore the second term is the bias of y*. Denoting
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the bias by B and using the fact that z is distributed as N(g,, 1/n),
we obtain

(2.3) B=—pE{z/|vnz|s2.} P{lvnZ|=<z}
(" —ymp = vlas
_S—znlﬁi v 2r exp{ 2(9: #I)}dx
_V2p

exp {—(z2+a?)/2} sinh (az,,)—%{d)(z,,—a)—-q)(—z,—-a)} ,
where a=y/np, and @(x) is the cumulative distribution function of N(0, 1).
When a=0, B=—pp, which is the bias of always using the regression
estimator. On the other hand, when a=1, the estimator is % and B=0.

It is easily seen that the bias changes sign when p or a changes
sign. Therefore, we need only to study the bias when a and p are

=

positive. It is noted that +n B is a function of @, p and a«. Table 1
gives the values of —y/7m B for some choices of p and «. The bias is
zero when p,=0, i.e., when the hypothesis H, is true.
Table 1 Values of —vn B
a=.05 a=.10 a=.20 a=.50
a P e e p
1 5 .9 1 5 .9 1 5 .9 a5 .9
0 0 0 0 ()} 0 0 0 0 0 0 0 0
0.5 .034 .171 .308 | .026 .131 .236 | .016 .080 .144 | .003 .016 .029
1.0 .058 .292 .525 | .042 .212 .382 | .025 .123 .221 | .005 .023 .041
1.5 .066 .320 .502 | .044 .222 .399 | .024 .118 .212 | .004 .019 .035
2.0 .057 .285 .513 .035 .174 .313 .017 .083 .149 .002 .012 .021
2.5 .039 .196 .353 | .021 .107 .193 | .009 .045 .080 | .001 .005 .009
3.0 .022 .108 .194 | .010 .052 .093 | .004 .019 .034 | .000 .002 .003

For fixed n, « and p, the magnitude of bias first increases then de-
creases to zero as p, increases. In general, the magnitude of bias is
an increasing function of p and a decreasing function of a.

In order to find the MSE of %*, we note that

(2.4) MSE (y*)=E #*)—[E @)+ B*
E (*®) can be written as
(2.5) E@*)=E{F—pz)/|lvn x|z} P{lVnZ|=2]}
+E{@#/vnz|>2) P{lVnz|>2)
=E@)-20E{zy/|lvnz|s2)} P{lVnT|=2.}
+o E{#/vnz|=z} P{lvnZ|=sz}).

It is easily seen that E (y°)=1/n+;. Since # and y have a bivariate
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normal distribution, the last two terms on the right hand side of (2.5)
can be evaluated directly. Let f(x,y) be the bivariate normal density
of  and ¥, we have

—  — za/"h_'“ hed —— — — S .
E{zy/lvnz|sz} P{lvnz|<z} =S_z . S_» zyf(z, y)dydz .
After some algebra, this integral is found to be

V2
Van
+ (£ + s [0~ )~ 0(—z~a)] -

(2.6)

exp {—(22+a?)/2} [ 55_ sinh (az.,)]

Similarly we find

2.7 E{@Z/|lvrnz|sz}P{lvrz|=z}

V2
W

exp {—(ei+0?)/2} | o= cosh (az,)+ —/o sinh (a2,
+1a+a)i0e.—0—0(-2-0) .
Therefore by (2.4) we obtain that
MSE 7)== [1+f(@)]
where

@8  fla)= ‘i,_é;;’z exp {— (0"} 2. cosh (az,)—a sinh (az,)]

—o'1—ad)[P(z,—a)—D(—z,—a)] .

When a=0, MSE (7*)=1/n—p(1/n—p2) which is the MSE of the regres-
sion estimator. When a=1, MSE (y*)=1/n which is the variance of .

3. Relative efficiency of 7*

In practice, the experimenter wants to select an estimator for g,
with the smallest bias and MSE. Since bias is a part of MSE, it is
reasonable to consider only the MSE. The relative efficiency of * to
the usual estimator 7 is defined to be

3.1) €= 7 / MSE®) 1+f(a)’

MSE (y*)
where f(a) is given in (2.8). ¢ is a function of @ and «. The experi-
menter has prior information that g, is close to 0 but the exact value
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of p, is unknown. He would like to select an estimator, or the level
of the preliminary test, such that the relative efficiency is the largest
when p,=0 and is at least as large as ¢, when p,#0. With such a
selection procedure, the experimenter has a guaranteed protection in
the sense that the relative efficiency of * is no less than ¢,. This
selection procedure was first recommended by Han and Bancroft [4].

Table 2 gives the values of ¢, for p=0.1 (0.1) 0.9, the correspond-
ing a level to use and the maximum relative efficiency e* which occurs
at p,=0. For given values of p and e,, the experimenter enters the
table to select the « level to use for the preliminary test. If the null
hypothesis is true, the relative efficiency of %* can be as large as e*.
It is noted that f(a) in (2.8) is a symmetric function of p and there-
fore Table 2 can also be used for negative values of p.

Table 2 Relative efficiency of #*

L 1 .2 3 4 5 6 .7 .8 .9
50 | ¢* 1.00 1.00 1.01 1.01 1.02 1.03 1.04 1.05 1.06
: e 1.00 1.00 .99 .99 .98 .97 .96 .95 .93
40 | ¢ 1.00 1.01 1.01 1.02 1.03 1.05 1.07 1.09 1.12
: e 1.00 .99 .99 .97 .96 .94 .93 .91 .88
30 | € 1.00 1.01 1.02 1.04 1.06 1.08 1.12 1.16 1.21

e 1. 99 97 .96 .93 .91 .88 .8 .81

20 et 1.00 1.01 1.03 1.06 1.10 1.14 1.21 1.29 1.40
: e 1.00 .98 .96 .93 .89 .8 .80 .76 .71

e* 1.01 1.02 1.05 1.10 1.16 1.25 1.38 1.56 1.83
e .99 .96 .92 .87 .81 .74 .68 .62 .56

05 e* 1.01 1.03 1.07 1.13 1.22 1.35 1.55 1.86 2.40
: e .99 .94 .8 .81 .73 .66 .58 .52 .46

From Table 2, we observe that when p is small, say 0.2 or less,
the relative efficiencies are close to unity. This is because the estima-
tor has no significant change for small values of p. Hence, there is
little difference whether one selects a=.05 or .50. When p becomes
large, we expect that the regression estimator is better and the relative
efficiencies fluctuate. If the experimenter decides that the relative ef-
ficiency should be at least .80, then with the selection procedure given
above, he would use a=.05 for the preliminary test when p=.4. With
such a choice, the relative efficiency of %* is at least .81 and can be
as large as 1.13 when the null hypothesis of the preliminary test is
true. If p=.9, he would use «=.30, then the guaranteed relative ef-
ficiency is .81 and it can be as high as 1.21.

4. Bias and mean square error when the covariance matrix is unknown

When ¢;, o, and p are unknown, the preliminary test estimator
becomes
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g-Sz if |t<t,

(4.1) 7= S
g if ltl>ta ’

where

_ 5 i
“Vemeny STAET
Su=2 @D, S=2 w7,

and ¢, is the 100(1—a/2)% point of ¢ distribution with n—1 degrees of
freedom.
The expected value of ¥’ is

4.2) E @)=E [7- i:v F/|tI<t.| P (It1st.)

£

+E [§/]t1>t] P (t]>t.)
=m—E [ S z)01<t, | P(tist)

T

Therefore, the second term is the bias. Let f(%) be the normal density
of z and ¢(S,, S,,, S,) be the density of S,, S, and S,, which have a
Wishart distribution, then

E[%’—Elltlét,}P(ltlét.)

= g . g St 3 F@9(S., Suy S,)dEAS.ASAS, .
It1st, z

Following Rao [8], we make the following transformation.

S S,,—pS 1 \
4.3 W,=22 W,=2=z " POz Wy=——(S,—S2,/S,
( ) 1 0‘: ’ 2 O'y.z‘JS—z 3 U;.z (Sy S y/S )

where B=pg,/s, and o:.,.=0l(1—p’). After making the substitution and
integrating out W;, W, and W, successively, we obtain

3 (n—1)/2—1
44 Blas "5 Hopnn
; >

where g is the kth moment of N(g,/ca,, n/c) and

(4.5) HF%![-————”(’;;: ' Lexp {“%(ﬁ_)z}

where ¢=1+(n—1)/t:. Here we assume that » is odd and =3, so that
(n—1)/2 is an integer.



The bias in (4.4) decreases as 7 increases.
p or p, changes sign.

REGRESSION ESTIMATION FOR BIVARIATE NORMAL DISTRIBUTIONS

341

It changes sign when

) Therefore, we shall compute the bias for posi-
tive p and p,. Table 3 gives the bias for n=9 which may represent
the behavior of the bias.

Table 3 Values of —Bias/oy, #=9

a=.05 a=.10 a=.20 a=.50
|0z ) P o P
.1 .5 .9 .1 5 .9 1 .5 .9 .1 .5 .9

0 0 0 0 0 0 0 0 0 0 0 0 0
0.3 .018 .092 .166 .014 .069 .124 008 .040 .073 .001 .007 .013
0.6 .029 .143 .257 .018 .091 .163 .009 .043 .077 .001 .005 .010
0.9 .023 .114 .206 .011 .056 .102 004 .020 .035 0 .001 .003
1.2 .010 .051 .092 .004 .018 .033 001 .004 .008 0 0 0
1.5 .002 .013 .023 .001 .003 .006 0 0 .001 0 0 0

In general, the magnitude of the bias first increases then decreases to
zero as p.fo, increases; it is an increasing function of p and a decreas-
ing function of «. Hence, the behavior of the bias is similar to the
case when the covariance matrix is known.

To derive the mean square error, we first find E (3"%).
tation is

This expec-

(4.6) E@)=E|(7-223) [1tist.| P (tI<t)

T

+E [@/It|>t]P (] >t.)
=E@)-2E( SSW zgltl<t.) P (¢I<t)

xz

2
x

+E (%Ezlltléta> P (t]<t.) .

Again, we use the transformation given in (4.3); and the last two terms
on the right hand side of (4.6) are found to be, for odd values of =,

Se zg)1t|< <
E(Zrawlitst) P(slst)
(n—1)/2—1

= igo ABHi[(pv_ﬂﬂw)az”;t+l+ﬁaz’#;t+2] .

2
x

E (%v—&*/ltlgt.) P (t|<t.)

(n~-1)/2—-1 (n—1)/2—-3

= 3 o:fH .+ Oz

4
itaite o
i=0 n—3 i=1

Since E (#*)=pi+0oi/n, we obtain by (2.4)
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M ~ (n—1)/2—1 (n—-1)/2—-1
@n MR LN He ey TR Bt
¥ - z -
1 -De-2 . ,
+m § (1—p)H sy -

As a partial check, when a=0, the regression estimator is always used
and the mean square error becomes

Lo gmofe )]

g ; [ (7

When a=1, we only use ¥ to estimate p, and MSE (¥')=q2/n.

5. Relative efficiency of 3’

In order to evaluate the gain and loss of precision of the prelimi-
nary test estimator %', we consider the relative efficiency of %’ to the
usual estimator y. This is defined to be

Since ¢’ is symmetric about p=0 and p,=0, so we only need to consider
p=0 and p,=0. The values of ¢’ are calculated by using computer for
selected values of n, p and a. After studying the graphs of ¢/, we find
that, in general, for fixed values of 7, p and «, the relative efficiency has
a maximum larger than unity at g,=0. When g, increases, ¢’ decreases
first to a minimum and then increases to unity. This shows a typical
behavior of a preliminary test estimator. This is, we expect to gain in
precision when p,/g, is close to zero and lose for moderate values of p./q..
When p./s, tends to infinity, ' and ¥ are asymptotically equivalent.

In order to consider the selection of the level a of the preliminary
test, we compute, as in Section 3, the maximum relative efficiency e*
and the smallest relative efficiency ¢,. Table 4 gives the value of ¢,
for n=5,17,9, 11, 15, 19, the corresponding « level to use and e¢*. Since
p is unknown, we can compute the sample correlation coefficient as an
estimate.

As Table 4 shows, when p is small and the sample size is small,
one does not gain in precision by using the regression estimator. There-
fore, if p is .3 or less and n is less than 10, the experimenter should
always use 7 as the estimator. When p is large, say .5 and larger, he
can determine the smallest relative efficient he wishes to have and select
the «a level from the table. Because the experimenter has prior infor-
mation that the true value of g, is close to y,, consequently, the use
of the preliminary test estimator results in higher precision.
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Table 4 Relative efficiency of 7’

0 n=>5 n="7 n=9
a 3 .5 7 .9 . .5 7 9 . .5 7 .9

3 3
50 e* .99 1.01 1.04 1.08 1.00 1.01 1.04 1.07 1.00 1.01 1.04 1.07
: e .98 .97 .95 .93 99 .98 .96 .93 .99 .98 .96 .93
40 e* .98 1.01 1.07 1.15 99 1.02 1.07 1.14 1.00 1.03 1.07 1.13
' e .97 .95 .91 .87 97 .95 .92 .88 .98 .95 .92 .88
30 et .97 1.02 1.12 1.27 99 1.04 1.12 1.25 1.00 1.04 1.12 1.24
: e .94 .90 .8 .78 .95 .92 .86 .80 96 .92 .86 .79
20 e* .94 1.03 1.19 1.50 97 1.05 1.20 1.47 .99 1.07 1.20 1.45
: e .88 .82 .74 .65 91 .8 .76 .67 .92 .85 .75 .66
10 e* .90 1.02 1.29 1.99 95 1.08 1.33 1.96 .98 1.10 1.35 1.93
: e .76 .67 .56 .46 82 .72 .60 .49 .84 .71 .58 .46
05 e* .8 1.00 1.35 2.52 93 1.09 1.44 2.54 .97 1.13 1.48 2.52
: e .61 .51 .40 .31 71 .59 .46 .35 .74 .58 .4 .33

I n=I11 n=15 n=19
a . .5 7 .9 . .5 v .9 .3 .5 7 .9

.30

.10

.05

3
1.01 1.04 1.07 1.00 1.02 1.04 1.07 1.00 1.02 1.04 1.07
99

3
e* 1.00
[} .99 .98 .96 .93 . .98 .96 .93 .99 .98 .95 .93
e* 1.00 1.03 1.07 1.13 1.00 1.03 1.07 1.13 1.01 1.03 1.07 1.12
€ .98 .93 .92 .87 98 .95 .91 .86 .98 .95. 91 .86
et 1.00 1.04 1.12 1.24 1.01 1.05 1.12 1.23 1.01 1.05 1.12 1.23
€ .96 .91 .8 .78 96 .91 .84 .76 .9 .91 .83 .75
e* 1.00 1.07 1.20 1.44 1.01 1.08 1.21 1.43 1.01 1.08 1.21 1.42
2} 92 84 .74 .64 .92 .83 .72 .61 .92 .82 .70 .59
e* 1.00 1.12 1.36 1.91 1.01 1.13 1.37 1.89 1.02 1.14 1.37 1.88
€0 .84 .69 .55 .43 .83 .66 .51 .39 .82 .64 .48 .36
et .99 1.15 1.49 2.50 1.02 1.17 1.51 2.48 1.03 1.18 1.52 2.47
2} .74 .56 .41 .30 .72 .51 .36 .25 71 .48 .32 .23
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