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Summary

In [1] a new procedure is given to estimate the root of a regression
equation. The purposes of this paper are to extend the Lemma 1 in
[1] and to give a process involving a randomly determined sequence of
observations for finding themaximum of a regression function. The
process is similar to that of [1]. Kiefer and Wolfowitz [2] gave a sto-
chastic approximation procedure for the latter purpose. Their process
needs the condition of the unimodality of the regression function which
is not required for our case.

1. Notation and definition

Let (.Q:]ﬁ:o[1 (X:xY,), ﬂ?) be a Cartesian product measurable space,

where X;=[0,1) and Y,=(—o0, ). Let B,,=[(1—1)/2", i/2™) 1=1, 2,
«e+, 2™ m=0,1,--. and let {k(m); m=0,1,---} be a strictly increasing
sequence of integers and k(0)=1.

For each z€[0,1), o=(x,, ¥;; ®:, ¥2;-++) €2, and n=1,2,---, let us
define

T(@)=2, ,  Y@)=Ya
and
Nn(x’ w)zk(mo) ’

where my=max {m; §[J; 2;(0) € Bn;, € B,; and 0<j=n]=k(m)}. The
symbol #[A], denotes the number of the elements of the set A. Let

B,,(m, 0))=Bm°40 ’

where N,(%, w)=k(m,) and « € B,,;,. Let C,(z, ») be the set of z,(») be-
longing to B,(x, ») with the smallest subscripts k(m, and define the
random functions by
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1
— %
N, (2, ®) 20,0

an(xi w)=h{N,.(x, (0)} exp {—Nn(x: w)IMn(xy w)_alh} ’

M, (x, w)= yi(o) ,

(%, ®)=h{N.(z, ©)} exp {—N,,(x, w)[m?x) Mo, 0)— Mz, w)]b} .
x'e(0,1
where h(-)>0 and b is a positive constant,

bu@, @) =an(a, @) | e, st
and

bitw, o) =ai(@, 0| ailet, s .

Let P, ., and P, ., be the probability measures on [0, 1) with prob-
ability density functions 8,(z, ») and Bj(x, »), respectively. The above
notations are well defined.

Let F, be a probability measure on (R', B') for every z€[0,1),
where R!'=(—o0, ), and &' is its Borel os-field. If

(1) F.(A) is measurable for every A e &,

then there exists a probability measure P on (2, B) such that, for
every n=1,2,..-,

(2) if Be B and B'=u;},(B), then
P{B'|z(w)=2;, y(@)=y; 1=1,2,---, n} =Ppn(..)(B)

and such that,

(3) if Be$ and B'=y;'(B), then
P{B'|z(w)=2;, y(0)=y; 1=1,--+,n j=1,---, n—1}
=F, (B),

and further there exists a probability measure P’ on (2, B) such that,

(4) if Be ' and B'=x;},(B), then
P'{B'|z(0)=2;, y(0)=y; 1=1, -+, n} =Py w(B)

and such that,

(5) if Be B and B'=y;!(B), then
P'{B’lxi(w)zxi, yj(a)).—_yj, 1=1,--,m j=1’. ..y n—l}
=F, (B).

Since the condition (1) implies the measurability of M (:c)=s ydF(y),
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2(@0) =Yn(0) — M{2.(w)}
can be defined as a random variable for every n=1,2,---, and let

1

’ —_ =
Mn (w’ (D)— Nn(m, (0) zj(D)EECn(J,')

z(®) .

2. On sup |M/(x, o)’ N(x, @)

Lemma 1 in [1] is essential and especially its condition decides the
k(m). It can be extended as follows.

LEMMA 1. If, for positive integer r,

(6) | - M@)aF.@)<v<e
and

(7) 5 2mke(m) T < oo
then

(8) P{w; sup [| M)(z, 0)|?N,(x, ®): n=1,2,---, 2 €[0, 1)]=00}
=P’{co; sup []Mn’(w, w)le'n(x) (l)): n=1,2,---,z€[0, 1)]=°°}
=0.
Note. This lemma is available if only a probability measure on

(2, B) satisfies the conditions (2) and (3) for some P, and F,, that is,
it is valid for any form of B,.

PrOOF OF LEMMA 1. It is sufficient to prove the lemma only in
case of P. Another part of this lemma follows in an exactly same
manner.

Let

P.=P{o; sup [| M!(z, 0)|"Ny(2, ©): n=1,2,--, x €[0, 1)]=c0}
then
(9) szyﬂ P{w; There exist some ¢, m, n and x such that
B,.,=B,(x, ) and that |M/(z, 0)|N,(2, 0)/*>K.}
‘ ggﬂ "%)P{w; There exist some ¢, » and « such that

B,,=B,(x, ») and that | M/(z, ®)| Nu(z, 0)*>K.} .

Let m fix and define the following notations for i=1,2,..-, 2™
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i) For every Ac¢ B!
FA)=2n S FL{A+M(@)}de ,
B

where A+M(x)={y+M(x); yc€ A}. From the condition (1) it is seen
that F, is well defined as a probability measure on (R!, 8').

ii) For I=1,..-,k(m) and o€ 2, t(l, o) is the Ith smallest index
J that z,o)e€ B,;, when such index does not exist it is defined as
t(l, w)=o0.

iii) 2i(l, ) is defined at z,qu(®) if t(l, w)# 0. If t(l, 0)= oo,
2i(l, ) is the random selection of numbers distributed as F;.

Then, since . .(®) has the uniform distribution on B, if t(l, )
#oo, the conditional distribution of z{(I, w) given t,(l, ») is mutually
independent and has respectively the distribution F, for ¢=1,-..,2™
and I=1,---, k(m). Hence 2(l, »), 1=1,..-,2™, I=1,.--, k(m), are mutu-
ally independent and have respectively the distribution F;.

Since S ydF(y)=M(x),

\viFw=, 2{{vF.dy+me)do

S B 2
SBM 2 S (y—M(z))dF(y)dx
0

I

and
\varw={, 2| w-Ma)-iFwizsv.

Then, from the fact that the total number of terms in expansion
of (a;+ - --+a;)” which contain no first order factors is less than a(r)k’,
where a(r) is not depend on %, it follows that

E {;vﬁ’ 2, w)} " <alrk(m)V .

Hence, from the definition of 2{(l, »), the assumptions (7) and (9), it
follows

K—oo m=0

(10) P.<lim 3P {w; |;g"" 2, w)|>Kk(m)“"" for some i=1,---,2"‘}

i (m)
<tim 3 5P fo; 5 2t )| > Khmy+]
k(m) o0r
e E{;J 21, w)}
=lim >3 X

K—oo m=0 i=1 Kﬂrk(m)zr—zr/b
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. 1 2 2m
g}{l_l};lo KZr m2=0 k(m)r—Zr/b a(,r)V
=0.

This lemma can be applied to Theorem 1 [1], i.e., if a condition
[ t-M@)arm=V<e

is added, k(m)=2" may be chosen and it may be thought reasonable.

3. Estimation of maximum point
LEMMA 2. If the conditions of Lemma 1 are satisfied and further if
M@)<M<oo  for x€[0,1)
and an increasing sequence h(m) satisfies the condition

o 1

(11) = ="

then, for every x €[0, 1), either N,(x, w) or N/(x, ) diverges to the in-
finity a.e. (P'), where N/!(2, 0)=lim N(x—e¢, ).
e—+0

PrOOF. Let z° be an element of [0,1) and fix it. Let E=[i/2",
//2¥) be a neighbourhood of z° and define the set

F,.={o; Both N,(, ») and N)/(x, o) are constants
with » where n=m on xc E} .
Let’s prove P'(F,)=0 for m=1,2,.--. Let B;={o; z(w)¢c E} for

4=1,2,---. Then it follows from the extended Borel’s 0-1 law (see,
e.g. [3], p. 398) that

(12)  both of events {w; ﬁllan(w)@o} and {w; éP-‘B"“B,.(w)<°0}

are equivalent, where B, is the minimal sub-s-field generated
by Bi,---, B, and I, is an indicator function of B,.

Fix an o € F, such that |M/(z, ®)|°’N (%, ») is bounded by c¢=c(w)<
oco. Then, for any z € [0, 1),
1

N,,(x, (0) zj(w)ezc'n(x,m)

< {_0_} P M<en M
~ U N,(x, o) - )

(13) M(%, 0)=M,)(x, )+ M(x;(w))
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It follows from (13) that for any 2 ¢ E and n=m

arlz(xv w)gh(Nm(x’ (D)) exp '—Nm(x’ w) {cl/b'l—M_Mm(x’ w)}b
=c'(w, m, E)=c¢'>0.

From (11), (14) and the fact

ai(®, ) Sh(N (2, w)) =h(n)

it follows that

© B, © oo S a’,t(x’ w)dx
2 Pl n—an—_—-Z E {S B,’l_l(w, w)dw} =2 E —IE—————
n=1 n=1 E n=1 1)

. al(x, wydx

SE cdx
m  h(n)

=00 .,

Ms

=

n

Then o€ F, implies f‘,IBn(w)=oo a.e. from (12). On the other
hand from the definitions ”;f' F,, and N,(z, ), if » belongs to F,, then
{n; z(0) € E} is finite. Then P'(F,)=0 and P'<Q F,,,):O. Since ,
k', v and 4 are arbitrary, either N,(z, w) or N,.’(?v-,lw) diverges to the

infinity a.e..

(15)

(16)
1
and
(18)

THEOREM. If the conditions (6), (7) and (11) are satisfied, and fur-
ther if

M(z)=max M(x) and sgg M(x)< M(z,) for every neigh-
0sz<1 x

bourhood G of =z,,

M(x) is continuous at x,,

for some positive constant ¢, (1/2™)h(k(m))>c m=1,2,---

{h(m)e~™; m=1,2,---} is bounded for every a>0

then, for every open interval E with x,,

(19)

and
(20)

lim SE Bz, w)dz=1 a.. (P")

lim Z,(0)=2, a.e. (P,

where m[%ul() M (z, 0)=M,(%.(0), ®).
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ProoF. Since, from Lemma 2,

P'{w; N,(r, w) or N/(r, ®)—c0 as n—oo for every ra-
tional number r€[0,1)} =1

it follows from the definition of N,(x, w) that N,(x, w)— oo uniformly

as n—oo a.e.. Then

i) for any open neighbourhood E of =z, there exist real numbers
¢>0 and N=N(e, 0) such that

(21) M(x,) —max M(x)>e for any n=N,
JEAn

where A,= g B, (z, o)
rEER
iil) for any positive number ¢, there exists an integer N'=N'(c, 0)
such that n=N'’ and z € B,(%,, ») imply | M(x,)—M(x)|<e
and
ili) for any real number ¢>0, there exists N"”"=N"(e, w) such that

|M/(2, w)|Se  for all n=N".

In fact, i) is shown from the uniform convergence to 0 of the width
of B,(z, ») a.e., which is the consequence of uniform divergence of
N,(x, »); ii) is easily proved from (16); iii) is shown in consequence of
Lemma 1 and Lemma 2.

Let Ny=Ny(e, o)=max {N(e, ), N'(c/4, ), N"(¢/8, »)}. Then, from i),

1
N, (z, ®) z@é @
<e/8+M(x))—e  for x¢ E and n=N,

(22) Mz, 0©)=M,)(x, )+ M(x(w))

and, from ii) and iii),

(23) m[‘%x) M(x, w)=M,(x,, ®)
z€[0,1

1
N(2y, ®) =z e%(zo, D)
= —efd+ M(x))—e/8=—3¢/8+ M(x,) for n=N,.

Now, from (22) and (23), we obtain
(24) max M (', o)— M, (x, w)=¢/2 for x ¢ £ and n=N,

2’ €[0,1)

= M2, 0)+ Mz,(0))

and, for the complement E° of E,
SEC h{N,(z, )} exp — N,(x, 0)(¢/2)’dx

SH,, al(x, wydx

|, Bila, o)z
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SE" h{N,(z, )} exp — N,(x, w)(¢/2)’dx
= R ie(m)]

where H, is a set B,(z, ») such that m:[:tx) M(x', 0)=M (2", ®) for some
z'e[0,1

x" € B,(x, ») and Ny(x", w)=Fk(m).
Then, from (17) and (18),

S Bi(x, w)dx—1 as n—oo a.s. (P).
E

The second part of the theorem can be proved from i) and ii) in
the proof.

Remark 1. In the proof of the theorem, the property of diver-
gence of N,(z,») to the infinity at every z€[0,1) is essential; This
property is a necessary condition if M(z) is not unimodal.

2. Under the same conditions of the theorem, it is easily seen
that maximum points of 8.(x, ») converge to z, a.e.. For the proof the
property of the remark 1 and the condition (11) are used. Thus when
going back to the case of estimation of the root of M(x)=a, the con-
dition (11) permits that maximum points of both M,(z, w) and B.(z, ®)
converge to x, a.e.. Though this characteristic is favourable, the diver-
gence of N,(x, w) at any x € [0, 1) implies that the distribution of 8,(x, »)
converges loosely to x,.

3. There exist sequences k(m) and h(m) which satisfy the condi-
tions in Theorem. We may take, for instance, as follows.

r=1, K(m)=the integer part of (2"m?)’*~?% b>2, h(m)=m
or

r=2,8,---, k(m)=2", b>2, (b—2)/b>1/r, k(m)=m .

NARA MEDICAL COLLEGE
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