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1. Introduction

Let X,, X;,--+, X, be a sample from a k-variate normal population
N(p, 2) where p=(s,---, 1) is the mean vector,

2-_—. . , o-?<oo’ 1:—_—1,2,...’1‘;
0 ot
is the variance covariance matrix and both g and X are unknown. In
a recent paper [1] Khan studied the limiting behavior of a stopping rule
for the sequential estimation of z when the elements of ¥ become in-
finite. In this note we show that the regret is bounded in the limit.
The results obtained here parallel those of Starr and Woodroofe [4] for

the univariate case.
Let

Xu=n 31X, ,  Sh=(n-17" 3 (X~ XY,

where n>2, i=1,2,---, k. Let X,=(X,, -, X:,). Let the loss in-
curred in estimating x by X, be given by

k —
(1) L(n)=i§=3l 2| Xp—ml’+n
where s>0 is a given real number and ,>0, i=1,2,..--, k. Following

[4], we see that

o(n)=EL(n)=n"""C(s) g; Ad4m

(2)
C8)=2*""¥ 2z )"'I'((s+1)/2) ,
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which is minimized for n=m, given by

(8) M= [%C(s) i At

] 2/Cs+2)

The minimum risk, if we use n, observations, is

(4) o(ng)= [-§—+1]no .
Since o¢=(sy,- -, ;) is not known we determine a sample of size N by
means of the following sequential procedure.

Let

(5) N=smallest integer n=m for which n=> <ﬂ ﬁ‘, /LS%,,)WW

where p=(s/2)C(s) and m=k is the starting sample size.

2. Some preliminary results

In the following we write 6=(o,,---, ¢,) and o— o means ¢;— oo,
1=1,2,---, k. Let us write

(6) gx=min (61, 63, -+, @) , o*=max (o, 63, *, 63) ,
(7) 2*=min(21, 22,"', zk) ’ Z*—_:max(lly 12"") zk)

and assume that

(8) *lox — 1 as g— oo .
Note that
(9) Ny= [ﬁka:kl*]?'/(“” =< [ﬂko‘*’l*]z/(“" =n*,

so that, in view of (8)
@10) N[Ny — (A¥[2, )/ 3HD as g—oo .,
In the following let ¢ denote a positive generic constant.

LEMMA 1. P{N<oo}=1

THEOREM 1. (i) lim#n;'N=1 a.s. (ii) lim n;'€N=1.

og—0

We remark that both Lemma 1 and Theorem 1 hold if we replace
the loss function (1) by

k —
(11) L*(n)= Zl} 2| Xn—p|*+log n .



ON SEQUENTIAL ESTIMATION OF THE MEAN VECTOR 323

Lemmas 2 and 3 below are of independent interest. The method
of proof adopted here parallels closely the work of Simons [3].

LEMMA 2. P{N=m}=0(*""") as ¢6— 0 in such a way that (8)
holds.

Proor.

P{N= m} =P (ﬁ é kS‘Em)zmﬂ)g m}
Sim
gi

im Sp2/sm(s+2)/a('81 Js )—Z/s}
i

=P

é m(s+2)/2(ﬁx*a,s*)—l}

IA

P

k
>
1
k
>
1
where we have used the elementary inequality (see [2], p. 264)

k 8/2 k

(Za) spRlal,
p=k"1 if =2, and =1 if s<2. Thus
(12) P{N=m} =P {Xin-» =0 (m—1)m +?/*(fa05%) "'} =O(ax* ™) .
On the other hand
(13) P{N=m}=P { A [/IiSm_(ﬁk)“m‘“”/Z]}
é-l:l- P [ St‘m é(‘gkz*a:k)—lm(ZH)/z}
ag;

=[P (1S Byl ) om(m—1)} )
=0(az*™Y) .
LEMMA 3. For fixed 6, 0<6<1
P {N<0n,} =O0(*™>) as a—oo
and (8) holds.

The methods used in [3] can be similarly modlﬁed to yleld a proof
of Lemma 3. We omit the details.

3. The main result

In this section we return to the quadratic loss function used by
Khan [1]

k —
(14) L= 4| Xp—ml+n ,
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so that

(15) =(3 40",
(16) v(o)=p(n)=2m, ,
and

an N=smallest integer n=m for which n= (i ZiSQ,.)m .
1

Then

(18) Wo)=CL(N)=mE(N~)+E(N) .

Let us write w(e¢)=%(¢)—v(¢) for the regret. Clearly

19) w(e)=ME(N"'—n3") +E(N—n,) .
THEOREM 2. As ¢— oo such that (8) holds

(20) wka)=0(1)

if and only of m=2[/k+1.

PROOF. The proof follows closely the development in [4]. We only
indicate here the modifications necessary and omit the details.

For the necessity part of the proof we follow the analysis on page
287 of [4] and obtain

w(o)ze é Aging (m—mn,) P {N=1m}
m L _
gckl*o‘*<;l;_1) O(o35™P) = (g% ¥m-1)

and the necessity of m=2/k+1 for w(s)=0(1) follows.
For the sufficiency part we obtain, as in [4],

'w(a) §0(0'*)2 {O(a;k(m—l)) +0(0;2)€ I:_(Iv/_n-—n”)z:l } .

0

It only remains to show that

1) g[M] —=0(1)
Ny
as o—oo and (8) holds. On integration by parts we get
22) S[M]§1+2 S“”_"xP{N—no<—zn;/2}dx
Ny 1

+2 S:"AP (N—ny>ni}da ,
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which is inequality (11) in [4]. We have
2 Sf“xP{N—nK—z«/E,}dz
<1, P {N<no/2} +2 S“"_“’ AP{N—n,< — Wng}da
—0(1)+2 S P {}3 4S8 < (ng— Al ; lgno/z}dz :
‘Thus
2 S”“’ P {é ASH < (g — miY; lgno/2}dl
S P {z (St —0?) < [(Mg— Ay —m]: zgno/z}dz
<2 S”/zp{i z,(sg,—az)<—§_ i l>n°/2}d2
|

,zi',P{ P gl — S5
n it Vi 41’6

3

ni; zzm/z} da

A

2$§ 1( ;,i‘) SE|SL, —all'da

where n, is the largest integer <n,/2 (see, for example, [4]). But
1 | Sk, —ai|' Seny*nilei <ceng fe** <c

is bounded. It follows that the first integral in (22) is bounded if m=>=
2/k+1. A similar argument applies to the second integral in (22), prov-
ing (21).
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