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Summary

For a set of independent but not necessarily identically distributed
random variables, a simple Kolmogorov-Smirnov-type test is proposed
for testing the hypothesis of symmetry (about a common and specified
point). The exact and asymptotic (null hypothesis) distributions of some
allied statistics are obtained, and the Bahadur-efficiency of the test is
studied.

1. Introduction

Let {X;} be a sequence of independent real valued random variables
with continuous distribution functions (df) {F(x)}, all defined on (—oo,
o) and not necessarily identical. Based on a sample (X;,---, X,), we
want to test the null hypothesis (H,) that all the df Fy,.--, F, are
symmetric around their respective (specified) medians. Without any
loss of generality, we may take all these medians to be equal to O,
and thus, frame H, as

1.1) H,: Fy(x)+ F(—x)=1 for all x=0, and i=1,---,n.

Let ¢(u) be equal to 0 or 1 according as <0 or =0, and let
(1.2) Fi@)=n"3c@—X), Fo@=n"3F(), —o<rlo.
i=1 i=1

Thus, F* is the empirical df and it estimates unbiasedly the average

df -F_'(n)'
In testing the null hypothesis (1.2), we are interested in the fol-
lowing alternative hypotheses: ’

H, : sup [For(@)+ Fo(—2)]>1,
(1.3)
H,: irg [Fon(®)+ Fo(—2)]1<1 ;
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(1.4) .H;=H1UH2 . Sglo) ]F(n)(x)+ﬁ(n)(—x)—1|>0 .

When F\=...=F,=F, H, means that F(x)>1—F(—x), at least for
some =0, or writing X for a random variable following the df F'(x),
—X 1is neither identically distributed as nor stochastically smaller than
X in the usual sense. In this case, H; means that F(x)#1—F(—x)
and covers all types of departure from symmetry. In many practical
problems, though it may be unwise to impose the restriction that F,=
...=F,=F, it may not be unreasonable to assume that when (1.1) does
not hold, F,,---, F, have a common pattern of skewness. For example,
let Fyx)=F)x—m;) and F{e¢YF,, 1=1,---,n, where J,={F: F(x)+
F(—=x)=1, for all x>0}, and the m, are location parameters. If the m,
have all the same sign, F},---, F, are either all positively or all nega-
tively skew, no matter whatever be their forms. Thus, (1.3) and (1.4)
cover such situations. However, unlike the one-sample location prob-
lem, we are not confining ourselves to translation alternatives only.
Thus, let FXx) be a strictly increasing df belonging to &F,, and Fi(x)
be F{(v(zx)), where v/(x), i=1,---,n are strictly increasing continuous
functions which are not everywhere odd, i.e., for which v,(x)+v(—)
=0 does not hold for all £=0. Then, if the v, resemble each other in
the sense that there are points (x=0) at which »,(x)> —v(—=), for all
4=1,---,n, H; will hold. A similar case holds for H;. We also note
that unlike the classical one-sample goodness of fit problem (where the
Kolmogorov test applies), our hypothesis is not a simple one (as under
(1.1), the true df’s F},---, F, remain unspecified).

For testing the null hypothesis, we keep in mind (1.3) and (1.4),

and replacing the average df Fl,, by the empirical df F¥, consider the
following Kolmogorov-Smirnov type statistics :

D,’:=s1§£.) [Fr@)+FX(—=2—)—1],

(1.5)
D;=sgg [1-FX@x)—FX(—2-)] ;

(1.6) D,=max [Dy, D;]=sup | B @)+ F(—x—)—1] .

Note that F* is a step-function, and hence, to avoid some complications
in the distribution theory, we have taken F}(—xz—) for F}(—x), x=0.

The small sample null distributions of D}, D; and D, are deduced
in Section 2, and tabulated too, for n<16. Section 3 deals with asymp-
totic null distributions of these statistics. Section 4 is concerned with
the non-null distribution theory. The last section is devoted to the
study of the Bahadur-efficiency of the test based on D, with respect
to the sign test.
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2. Exact null distributions: An application of the random walk model

Since F* is a step function assuming the values t/n, 1=1,---, n,
the process {n[F*(x)+F}(—x—)—1]; =0} can only assume the inte-
gral values between —n and n. Thus, the permissible values of nD;,
nD; and nD, are the integers 0,1,..-,n, but not all of these are ad-
missible. We denote by F,=(F,---, F,), and let

(2‘1) gg:{Fn:Ftegth i:‘ly"’yn}-
Then, we have the following.
THEOREM 2.1. For every F, € ) [i.e., under (1.1)] and k=1,---, n,
(2.2) P {nD; =k} =P {nD; =k} =j§k (k/7) P{N,=j—k},
where

2"j<j> ’ j—k=2r, r=0,1,2,.-.,

23 P {N,=j—k}={ "
and for every k=1,
2.4) P (nD, =k} =2 ;2 (—1) P {nD; =(2j+1)k} ,

where u=[n/2k]—1, k=1, and (2.4) is equal to one for k=1.

PrOOF. Let Y,=-.--=Y, be the ordered values of |X|,---,|X.]
arranged in descending order of magnitude. Let t,,=F(—Y,), for
1<i<n, so that 0=t¢,,=t..,<--- étn,n§Fcn)(0)=1/2 (as F,e F=>F ¢
%,). Since, F},---, F, are symmetric and continuous, ties among |Xj|,

.-+, |X,|, and hence, among t,,,---, t,, can be neglected in probability.
Thus, 0<t, <+ <t,,<1/2, in probability. Define then V,(t)=n"*[GX({)

—t], 0<t<1, where G,T(t):n“i‘éc(t—-ﬁ(n,(Xi)), and let

(2.5) VXt)=V.(t—)+V.(1-1), 0=st=1/2.

For t<t,,, n'?VX(t)=0. At t=t,,+, nV}*({) is either +1 or —1, de-
pending upon whether the random variable X, associated with Y, has
negative or positive sign. The process 'V *(t) continues to have the
same value until t=t,,+, where it makes another jump of 41 or —1,
depending on whether the X, associated with Y,_, is negative or not.
And thus the process continues. Hence, on I=(0, 1/2), n'*V *({t) makes
n jumps (at t,.,+-+,t,,) and each jump is either +1 or —1.



290 SHOUTIR KISHORE CHATTERJEE AND PRANAB KUMAR SEN

Let p,=P {Y,in=|X,]}, i, j=1,---,m, (thus S p=1, q:=1,---,n).
=1

Since, for F, e &, the df of X, is symmetric about 0, 1<i<mn,
(2.6) P{Y,_.,: corresponds to a positive X}
=j2=l pu‘P {Xj>0l IXJ|=Yn—i+1} =(1/2) j?‘:lpq=1/2 ’

as the distribution of sign X, is independent of | X;| when F’, € &, 1=1,
«++,n. Thus, the jumps (+1 or —1) at t,, are both equally likely with
probability 1/2. Moreover, for F, € &., the vector (sign X, -, sign X,)
is distributed independently of (|X.l,---,|X,|) and sign X,---, sign X,
are also mutually stochastically independent. Hence, the jumps of
n?V.x(t) at t,.,+-, t., are mutually independent. Finally, the values
of nD;(=sup n VX)), nDy(=sup [—n*V¥(@®)]) and nD,(=sup [n V() [)
are independent of the particular realization of ¢,=(t,, -, t..) €L
Hence, we conclude that (i) the distribution of nD; (or »D;) (under
H,) is the same as that of the maximum positive (or negative) displace-
ment in n steps of a symmetric random walk starting from the origin,
and (ii) the distribution of nD, agrees with that of the corresponding
maximum absolute displacement. Thus, (2.2) follows directly from The-
orem 1 (Section 8) of Takacs ([9], p. 24). Using an alternative standard
expression given in Uspensky ([10], p. 149), (2.2) can also be written as

2.7 9-(n-1> g <7:>_5k(’rsl,>2_n ’

where s=[(n—k)/2] and 4§, is 0 or 1 according as n—Fk is odd or even.

For the proof of (2.4), we have on writing Q*(a, n) (or Q(a, »)) for
the probability that a particle starting a symmetric random walk at
the origin with the absorbing barrier at a (or barriers at +a), a>0,
will be absorbed at the barrier in course of time n,

(2.8) P {nD,<Kk'}=1—-2Q( +1, n);
(2.9) P {nD;<k'}=1—-Q*(K'+1,n) .
Also, from Uspensky ([10], p. 156), we obtain that

(2.10) Qk'+1, n)=Q*(¥' +1, n)—Q*(3k'+3, n)+Q*(5k’'+5, n)
— (- DQH(@uA D, W) 5
u=[(n/2k')—1] .
Then, (2.4) readily follows from (2.8)—(2.10) and (2.2), by letting k'=
k—1. Q.E.D.

We may remark that (2.2) and (2.4) are not affected by the het-
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erogeneity of the F,, so long as (1.1) holds. In the particular case of
Fi=...=F,=Fc¢%,, the proof of the theorem simplifies considerably.

The probabilities in (2.2) and (2.4) are computed for n<16, and
presented in Tables 1 and 2.

3. Asymptotic distribution theory under the null hypothesis

Here we consider certain asymptotic expressions for (a) P {n'?D;}=
y}, P{n?D; =y} and P {n'*D,zy} and (b) P{Dizy}, P{D,=y} and
P {D,=v)}, where y (0<y<oo) is fixed. For this, let

@D o@=@) | lexp(—¢/DdE,  —eo<y<eo.

Then, we have the following theorem.

THEOREM 3.1. For every fixed y (0<y< o), under H, (i.e., VF, € F3),

3.2) lim P {n'*D; Zy} =lim P {n'?D;; 2y} =20(—y) ;
(8.3) lim P {n'?D, =y} = 4[ ;: (=1 'o(—(2k— l)y)] .

ProOF. Let 7, be the number of successes in n independent Ber-
noullian trials with probability 1/2. Then, by (2.2) and (2.7),

(8.4) P {n*D;izy}=P {n'D; zy}
=2P{r.Zs,} —6, P {r.=s.}
=2P {(n " 2r,—n)=n""*2s,—n)} —d, P {r.=s.} ,

where s,=[n/2—n"?y[2], so that n~'*2s,—n)— —y, as n—oo. Also, by
the DeMoivre-Laplace theorem, the right hand side of (3.4) tends to
@(—y) as n—oo. Hence, (3.2) follows from (3.4). A similar proof ap-
plies to (3.3). Q.E.D.

Remark. By standard arguments [such as in Feller ([5], p. 230)],
one could have approximated the random walk of Section 2 by a Brown-
ian movement process, and then used the well-known results on the
maximum (or absolute maximum) displacement of such a process to
provide alternative proofs of (8.2) and (3.3).

For every ¢: 0<e<1/2, let us now define

B5)  pl)=(1+2) W1 —2)"W20 ;  p(e)=0 for e=1/2.

It is then easy to verify that p(¢) is strictly | in e: 0<e<1/2, with
0(0)=1 and lil’!/l p(e)=1/2. Hence for any 1>1
£—1/2
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(3.6) o(Ae)fp(e) <1,  for all 0<e=<2/2.

THEOREM 3.2. Under H,, for every e: 0<e<1,

(3.7 P {D;ze} =P {D; z¢} =2[po(¢/2)]",
(3.8) lim [n"* log P {D z¢}]=log p(¢/2) ;

(3.9) P{D.z¢}=4[o(s/2)]", and lim[n'log P{D,2c}]=log p(¢/2) .

PrOOF. By (2.2) and (3.4), P {D; =¢}=P {D; 2¢}<2P {r,<s*}, where
s¥*=[n(1—¢)/2]. Since, 7, is a sum of independent and bounded valued
random variables, (3.7) follows from the Theorem 1 of Hoeffding [6],
and (3.8) follows from Lemma 1 of Abrahamson [1], attributed to
Bahadur and Rao [3]. Also, noting that for every ¢>0 and nx1,

(3.10) P{Dize} <P {D,z¢} <P (D} ze} +P{Drz¢}
(8.9) follows readily from (3.7) and (3.8). Q.E.D.

4. Asymptotic non-null distribution theory
Let us define for every n (=1),

5} =sup [Fon(@)+ Fo(—x)—1] ,
(4.1) ’
0, =sup [1— F(n)(w) —F'(n)( —x)];

z20

4.2 6,=max (3, 6;)=sup | Fon(2) + Fon(—2)—1] .

Now, by the same proof as in the Glivenko-Cantelli Theorem, lim sup
{sup | F*(z)— Fo»(®)|} =0 a.s. (almost surely). Hence, by (1.5), (1.(1‘;),
(4.11) and (4.2), as n— oo,

4.3) Diy—¢r, D;—o, and D,—d, all tend to 0 a.s.

Thus, for every >0,

4.4) }.LIEP {Di>05+¢}=0, }LIBP {Df<6i—e}=0,

and similar results hold for D; and D,. In the same fashion as in
Theorem 3.2, we shall now provide certain exponential rates of conver-
gence to (4.4).

For every » (=1) and z (=0), we let

4.5) a;(m)=5:_[F’(n)(w)+ﬁ(n)(_x)—1] (z0),
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4.6) g(X)=clx—X)+c(—2—X;—)—Fyz)—F(—2), i=1,---,n;
4.7 ¢, x)={exp [—t(ai(x)+2)]} E {exp [tg.(X)]}, i=1,---,m,

@8 gt m=[To0e )]
(9 pile D)=gults, D)=inf gielt, o) ;

(4.10) pi(e)=sup pi(e, ) .

We may remark that g.(X,), i+=1,.-.--,n, are all bounded random
variables for all =0, E g,(X,)=0, and ¢¥.(¢, )<oo for all £=0, t>0.
Hence, if we assume that

(4.11) inf n™! t‘j var [g.(X)]=B(x)>0 for every =0,
n =1

it readily follows that
4.12) sup pi(e)<1 for every ¢>0.

We shall also assume that the average df F,, is non-degenerate and
uniformly (in n) continuous, so that for every >0, there exists a 7,
(>0), such that

(4.13) IF_'(m(y)'—Fcn>(x)|<m for all [y—2|<7n, and n.

(4.11) and (4.13) are satisfied, for example, when X,,.---, X, are from
¢ (=1) different homogeneous distributions F},--., F,, such as in the
paired comparisons models, considered by Puri and Sen [7], and others.
Sen [8] has also considered some other models for which (4.11) and
(4.13) hold. We may add that (4.11) insures the applicability of the
central limit theorem for {g.(X)), i=1,--.,n}, =0, as will be needed

in the sequel. For homogeneous df’s, F,=F, and we do not need
(4.11) and (4.13). But, in the heterogeneous case, without (4.13), we

allow the possibility of having the entire variation of F,, in an arbi-
tralily small interval, so that we may have P {D; >4} +¢} either equal
to 0 or converging to 0 faster than an exponential rate.

THEOREM 4.1. Under (4.11) and (4.18), for every ¢>0,
(4.14) lim sup {n~tlog P {D; >6}+e} —log pi(e)|=0
Proor. By (1.2), (1.5) and (4.1), for every >0,
(4.15) P;.=P{D;>d;+e¢}
{ "Z‘:gx(X;)>a (x)+e¢, for some xZO}
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Now, on using the basic transformation in Section 3 of Feller [4], Lem-
ma 2 of Bahadur and Ranga Rao [3] readily extends to the case of non-
identically distributed random variables, so that for every =0,

(4.16) P 0! 31 0.(X0) > ai(@) +f =loi(e, L)

where under (4.11), for every x=0,

(4.17) n~'log I(x)=0(1) .

By (4.15) and (4.16),

(4.18) Pr.zloi(e, ©)"L(x) ,  for every =0,

and hence, on taking the supremum (over x) and using (4.17), we have

(4.19) lim inf [n~! log P,;f.—log p;}()]=0 .

Thus, it suffices to show that
(4.20) lim sup [n~! log P;f.—log pi ()]0 .
Now, by (4.13), for every 7: 0<y<e, we can choose a set of (m-+1)

points (where m=m(y)), @, 1, -, %n, where 0=2,<2, <+ <Cp_1 <L
=400, such that for all =,

(4.21) En)(xi)+F(n)(_wi)_F(n)(wi-l)_F,(n)(—'xi—l)<77 ’ i=1,---,m.

Hence, it is easy to show that
(4.22) lsup [n" il g,(Xi)——a,’:(x)] — (gljaéx [n"‘ % g ,(Xt)—ai{(x,)] ‘ <7z.
z i= m i=1 7

Consequently, using (4.15) for each z, and replacing ¢ by ¢—z, we ob-
tain that

(4.23) mllog Pi.=m 'log P { max [n“ ,Z:‘; 0: j(Xi)—a,T(a;,)] >e— 7]}

0sjsm

=n'log { é; P 1[%" E gz,(Xi)] > a:t(wj)+e—77} }

<n~!log { j‘; [of(e—7, w;)]"fu(x/)}
<log pi(e—n)+n"'log m+o(l) .

Now, it is easy to show that p}(c) is left continuous in ¢ (uniformly in
n, under (4.11) and (4.13)). Hence, we complete the proof of (4.20)
from (4.23) by letting 7 to be arbitrarily small. Q.E.D.

In (4.7) through (4.10), on replacing g.(X;) by —g.(X)), 1=1,---, m,
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=0, we define p;(¢) is an analogous way. Also, let

(4.24) pu(e)=max [pi(e), pz(e)] -

Then, proceeding as in Theorem 4.1, we have the following.
THEOREM 4.2. Under (4.11) and (4.13), for every >0,

(4.25) lim sup |n~"log P {D; >0, +¢} —log p; ()| =0,

(4.26) limsup |n~'log P {D,>d,+¢} —log p.()|=0 .

Analogous to. Theorem 3.1, we may consider the asymptotic distri-
bution of n'’D} (or n'*D; or n':D,). This, however, requires n'?3, to

be bounded as n— oo, and moreover, that F, weakly converges to a
df F, as n— oo, and

(4.27) lim 1 F,(x)+ Fo(—x)—1]=h(x) =h*(F(x)) , for all 2=0,

where F' is symmetric about 0. In this case, if we define the process
V.X(t) as in (2.5), then under (4.27), it follows that E V;*(t) converges
to h*(1—t) as n— oo, while the covariance structure remains the same
as in the null hypothesis case, treated in Section 2. Consequently, the
distribution of n'2D; asymptotically reduces to that of the maximum
positive displacement of a Gaussian function Y(t) te€[0, 1/2], where
EY(@#)=h*(1—t) and Cov [Y(s), Y(t)]=2(min [s, t]). Thus, for specific na-
ture of the drift r*(1—t) (such as linear in t etc.,), existing results on
Brownian motion processes can be utilized for the study of the asymp-
totic distribution of »':D}, and similarly for »Y2D; or w»Y*D,. In this
respect, the situation is similar to that of the one-sample Kolmogorov
or the two-sample Kolmogorov-Smirnov goodness of fit test which in-
volves the same problem but with a Brownian bridge instead of a
Brownian motion. The authors feel that much more work in this gen-
eral area needs to be accomplished before a systematic presentation of
the allied asymptotic distribution theory can be made.

5. Exact Bahadur-efficiencies for D, and the sign statistics

Following Abrahamson [1], but without restricting ourselves to the
case of identical distributions, we briefly sketch the Bahadur-efficiency
of two sequences of statistics, when, in particular, we are interested
in the hypothesis of symmetry, as considered in Section 1. Let &, be
the class of all continuous df’s on the real line, not symmetric about 0.
Thus, if we let
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(6.1) §(F)=sup | F(z)+F(—x)—1],

then 8(F)=0, VF ¢ F,, while 6(F)>0, for any Fe ;.

Consider now two sequences {7} and {T:®} of non-negative real
valued statistics, satisfying the following four conditions:

(1) there exists a non-degenerate and continuous df ¥(x), such
that for all F, e &F? and real r (0<r<o0),
(5.2) lim Pp (TP <r}=¥(r) ,

(2) there exists a non-negative function l; on [0, co] such that (i)
1(2)>0 for all z€(0, o), and (ii) whenever {u,} is a sequence of real
numbers for which n~'u2—z € (0, o), we have

(5.3) —lim (2/n) log P { T° 2 u.} =1(2) ,

uniformly in F, € &,
(8) for every F, not necessarily belonging to &7,

(5.4) [ n TP —by(F,,)|—0 a.s., as n—oo, 1=1,2,

and finally, (4) the average df F., converges to a continuous df F, such
that as n— oo,

(5.5) b(F.)—b(F) (>0 whenever F¢ F,), i=1,2.

The last assumption, needed only for the heterogeneous case, appears
to be necessary for justifying the existence of a limit implicit in the
definition of the asymptotic efficiency, and will be clear in the defini-
tion (5.6).

We now define the exact asymptotic efficiency of T with respect
to T® as equal to

(5.6) ef1=lim (LB F ) LB Foe))]
=[LOAF)NLOAF)]=eAF), say,
and with the metric 8(¥), defined by (5.1), the limit

5.7 €(F)=lim ¢)(F)  (assumed to exist)
3(F)—0
is defined the exact asymptotic limiting efficiency, both defined after
Bahadur [2], as further interpreted in Abrahamson [1].
Let now T®=n*D,. Under H, in (1.5), the distribution of T
is independent of F,, and by (3.3), we have

(5.8) ?Ifl(r)=1—4g‘,l(—l)"“q)(—(Zk—l)r) , 0<r<oco, VF, eI, .
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Further, using Theorem 3.2, (3.5) and some standard computations we
obtain that for {u,} for which u/n—z¢€ (0, 1),

(5.9) —}BE (2/n)log P {T°=wu,} =§‘{ 2[k(2k—1) , VF,c9,.
Finally, by the Glivenko-Cantelli theorem, lim sup |F*(x)—F,.(x)|=0,
a.s., and hence, by (1.6), (5.1) and noting th;EmTE"=n"2D,.,

(5.10) [n 2 2T®H—3(F))|—0 a.s., as n—oo,

and as 6(F') is a bounded and continuous functional of F,

(5.11) Fo,— F (weakly)=6(F,,,)—d(F), as n—oo.

So, for D, all the four conditions are satisfied.
Let us now consider the sign statistic S,, defined by

(5.12) Si=n"2r,—n); =3 (X)),

i=1
where c(u) is defined after (1.1). If we then let T®=|S,|, we have
(5.13) U(r)=0(r)—0(—7) , 0=r<oco, VF, e F?.

Also, using Lemma 1 of Abrahamson [1] and some standard computa-
tions, we have, parallel to (5.9),

(5.14) —lim (2/n)log P {T®=u,) =§ #lk@k—1), VF.cF?.

Finally, by the Borel strong law of large numbers, as n— oo,
(5.15) n TP =07 2r,— 1)~ Fy) =2F,(0)—1, a.s. ,
where obviously,

(5.16) Foy— F (weakly)=> 6y(F.,)— 0(F) as n—oo .

Hence, the conditions are also satisfied for the sign statistic. Thus,
the asymptotic efficiencies of D, with respect to S,, as defined by (5.6)
and (5.7), are equal to

61D )= 5 EE -] [ 5 k-],
(5.18)  &(F)= lim {8(F)s(F))*.

Now, note that by (5.1) and (5.15), 6(F)=0(F), VF e F,UF,. Hence,
from (5.17) and (5.18) we arrive at the following:

(5.19) eO(F)ze®(F)=1, for all F.
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Thus, the proposed test is at least as efficient (asymptotically) as the
sign-test for all F. In particular, if F(x) (€ ZF,) is symmetric and uni-
modal, and we are interested only in shift alternatives, then &(F)=
6(F), so that in (5.19) the equality signs hold; the conclusion is not
necessarily true when F(x) is not strictly unimodal [viz., the uniform
df]. On the other hand, for certain specific type of asymmetry (of F),

6(F) may be exactly or nearly equal to zero, but 8(F) can still be posi-
tive, making (5.17) or (5.18) either oo or indefinitely large.

For other tests for symmetry, the Bahadur efficiency of D, may
be computed in a similar way; for brevity the details are omitted.
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