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Summary

The asymptotic joint distribution of an increasing number of sample
quantiles as the sample size increases, when the underlying sample is
censored, is shown to be asymptotically uniformly (or type (B),) nor-
mally distributed under fairly general conditions. The discussions for
uncensored cases have been given by [4].

1. Introduction

Let X, <X,,<---<X,, be order statistics of a random sample of
size n from a univariate, real and continuous distribution with pdf.
fox) and cdf. F,(x). Further, let l,,=n,/(n+1), s,=F;'(l,) and f.=
fa(8a), 1=1,---, k, where n,<n,<---<mn, k=k(n) and n,=n(n) are
allowable to depend on m». Then, it has been shown in [4] that under
certain general regularity conditions for f.(x), the joint distribution of
the k sample quantiles, X, =(X,, -, X,)', is asymptotically equivalent
(B); to a k-dimensional normal distribution with mean vector s,u,=(s.,
-++, 8%) and dispersion matrix S, =l (1—L)/[(fufa)ll/(n+2), 1=Si<
j<k, provided that I.:Z/1 glslkrl . n;—mn;_)—0 as n— oo,

There sometimes occur the situations, for example, in life testing,
where we have to treat censored data and make statistical inferences
by using them. In this respect it is worth while considering the as-
ymptotic joint normality of sample quantiles for censored samples. In
this article, it is shown that under some mild conditions, the asymptotic
joint (B), normality of sample quantiles, discussed in [4], can be extended
to the cases of Type I and Type II censored samples.

In Section 2, we state necessary notations and assumptions. In
Sections 3 and 4 the Type I censored cases are treated. In Section 3,
the cases of uniform distributions are discussed, which play a funda-
mental role in discussions of subsequent sections. Section 4 concerns
general cases of unequal basic distributions. Finally, Type II censored
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cases are treated in Section 5.

2. Preliminaries

Let, for each positive integer =, a, and b, be the left censorship
point and the right one, respectively; they are preassigned extended
real numbers such that F,(a,)<F,(b,), for each n. In the first place
we shall consider the typical Type I doubly censoring in which case the
variates X,;’s such that X,;<a, and b,<X,, are censored for each .

Suppose that X, s,1<X, s.:<+'+<X,s,r are doubly censored or-
dered variates, where, for each n, S=S(n) is the number of observa-
tions in the left censored portion and T'=T(n) is the number of the vari-
ates observed in the uncensored portion. As in [3], it should be noted
that both S and T are random variables, whose joint probabilities for
possible integers s=s(n) and t=t(n) (0<s<n—t, 0<t<n) are given by

— n! 3 t n—s—t
(2'1) pn(s’ t)—m(an) (71:) (1 ﬂn) ’
where we put a,=F(a,), 8,=F(b,) and »,=p8,—a,>0.

Let, for each n, ((S,T): X,%7) be a mixed (k+2)-dimensional ran-
dom vector (cf. [6]) such that Xih=(X,., -+, X,.) given (S, T)=(s, t)
is the joint random variable of %k sample quantiles (<) Xop <-4+ <
Xon, (<b,), where the ranks n,, i=1,---, %k, are so chosen that s<n,<
Ny <+ <m<s+t. Thus, X% is regarded as a k-dimensional continuous
conditional random vector under the condition (S, T)=(s,t). Let, fur-
ther, for each =n, ((S,T):Y.%7) be a mixed (k+2)-dimensional random
vector such that Y3l =(Y,,---,Y,) given (S, T)=(s, t) is a certain k-
dimensional normal random vector. Note that the number & generally
depends not only on n but also on t, since, in effect, k& must be less
than ¢, for each ». In the following discussions, however, to avoid
complexity, we shall restrict the cases where & may depend only on n,
but not on ¢, and it is assumed to satisfy the following

AsSSUMPTION I-0. For every n, k(n)<n(y,—e,), where ¢, is a non-
negative constant such that ¢,<7, and nel— co.

Under this assumption it is easily seen by [5] that Pr{7'>k}—1 holds
as n—oco, We now define

DEFINITION 2.1. Under Assumption I-0, the joint variable of k=
k(n) sample quantiles from the Type I (doubly) censored sample X7,
or precisely ((S, T): X,5]) is said to be asymptotically (B), normal, and
is denoted by
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if it holds that

(2.3)  sup 31 {pds, t)-(PEB(E)— PV (E))} | -0,
Ky € Iy (S, l) € Ky

€ B (n— o),

where Iy, ={(%, j): ¢, j are non-negative integers} and B, denotes the
usual Borel field of subsets of k-dimensional Euclidean space R.,.

Here, we state a sufficient condition for (2.3), which gives us a
criterion of the asymptotic (B), normality of X357 :

LEMMA 2.1. The condition
(2.4) >0 Apa(s, 1) I( Xty : Yie))} =0, (n—o0),

(s, t) € Kn
implies (2.2), where I(X3t): Y.ik) stands for Kullback-Leiblers’ mean in-
Jormation for conditional variables X357 and Y. 5§ given (S, T)=(s,t)
and Kné{(s, t): 0=s=n—t, 0<k<t=n}.

The proof of this lemma can be done by a similar way of Lemma
1.3 in [3], and will be omitted.

The following assumptions will be referred to in the later section
dealing with Type I censored samples from general unequal basic distri-
butions.

AssumPTION I-1. For every n, Di(f,)={x: f.(x)>0 and a,<x<b,}
is an open interval on the real line.

AssuMPTION I-2. For every m, f,(x) is differentiable once over the
interval Dy f,),

and for some distributions, we put

AssuMPTION 1-3. For some fixed positive numbers M, and M,

inf fy(x)=zM, and sup | fl(x)|=M,,
xz € Di(fn) x € Di(fn)

uniformly in n.

In the second place, we shall consider the setup of the asymptotic
joint (B); normality of an increasing number of sample quantiles in
Type II censored cases. Let us consider the situation such that the
first p and the last g variables are censored from the whole ordered
sample X,;<---<X,,. Then we have a Type II doubly censored sam-

ple X, <X, p12:< <X, 0 of size n'Zn—p—q, where p and ¢ may
depend on n.
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Suppose that XZ{=(X,., -+, X.,) is k sample quantiles from the
Type II censored sample where p<m,<n,<---<n,<n—q+1 and k may
depend on n. Further, let Y.24=(Y,, -+, Y.) be a certain k-dimen-
sional normal random vector. Under the above setup we define the
following

DEFINITION 2.2. The joint variable of k=k(n) sample quantiles
from a Type II (doubly) censored sample, X2%, is said to be asym-
ptotically (B); normal, if it holds that

(2.5) sup |PXihH(E)—PYio(E)[—0, (n—co).
E € By

Analogously to Lemma 2.1, we may state
LEMMA 2.2. The condition I(X.25: YV.25)—0, (n—c0) implies (2.5).

The assumptions below will be needed for treating Type II censor-
ing cases for unequal basic distributions in Section 5.

AssumpTioN II-1. For every m, Dy(f,)={x: f.(x)>0} is an open
interval on the real line.

AssumpTiON II-2. For every m, f.(x) is differentiable once over the
interval Dy(f.),

and for some distributions we put

AssuMPTION II-3. For some fixed positive numbers M, and M,,
inf f(x)zM, and sup |fl(@)|=M,,

z € Dyy(fn) x € Dyy(fn)

uniformly in =n.

3. The case of uniform distribution

Let U,<U,;<--+-<U,, be order statistics of a random sample of
size n from the uniform distribution over (0,1). Suppose that, for
each n, we have a censored sample («,<) U, 541 <U, s4:<" - <U, s+r
(<B.) by Type I doubly censoring at a, and B,, which are assumed to
be satisfied with Assumption I-0 in the preceding section.

Now let the joint variable of k=Fk(n) ordered variates («,<) U,., <
+++ < U, (<B,) among the above censored sample, say U, =(Upn,- -+,
U..,)» Then, for each n the conditional pdf. of UGS given (S, T)=
(s, t) is

1 k+1 st
(3.1) M@ s, ) =—p—— [I @—w )™,
7@

=1



UNIFORM ASYMPTOTIC JOINT NORMALITY 265

for a,=, <2, <+ <2, <%yy1=PBn, Where di=n,—n;,_,—1, t=1,---, k+1,
with the conventions n,=s, n,,,;=s+t+1 and xu,=(x;, -, *.)'.
Here, for each n, making the transformation

(3.2) @w—an 1) =2 ,
where z4,=(z;,-"+,2,) and 14=(1,---,1)!, then the pdf. of the trans-

k
formed variables of Uk, say Uiy=Upnys+ =+, Upn)'s 18
t! k+1 st
(3.3) h¥(zasls, )=——"—T[ (zi—2i_)*,

k+1

I

for 0=2<2,<---<2,<2z.,,=1, which is the joint pdf. of & order sta-
tistics from the uniform distribution over (0,1). Then, it is easy to see

(3.4) EmUn)=m—9)[t+1)=l:,  1<isk,
and

(3.5) CoVit [Up,, U J=UL—E(E+2),  1=i<j<k.
Hence,

(3.6) EnlUn)=nliito=pt, 1<i<k,
and

B.1)  CoVin [Unn, Unn )= (i — ) (B — pi)I(E+2) . 1=9i<j=<k.

Therefore, the mean vector and the dispersion matrix of U} under
the condition (S, T)=(s, t) are given respectively by

(3.8) Pridiy= (2t s+ + ptike)’

and

(3.9) o= (=) Bu— ) /(E+2) , 1=<i=<j=<k.

Let ((S,T): Z$7) be a mixed (k+2)-dimensional random vector such
that its continuous conditional random vector Z3{,=(Z,.,: -, Z..)' given

(S, T)=(s, t) is a k-dimensional normal random vector whose mean vec-
tor and dispersion matrix given (S, T')=(s, t) are defined by (3.8) and
(3.9), respectively. Then, for each » the conditional pdf. of Z$7 given
(S, T)=(s, t) is, for —oco<w,; <00, i=1,---,k,

(B.10)  qulww s, O)=(2m)™"| Mys |7
xexp | L (@ — i) (M) o pics) | -

Using the transformation (8.2) again, the pdf. of the transformed k-
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dimensional normal random vector, say Z%i=(Z,, -+, Zx), is given by
(8.11)  g¥(za |8, t)=(2a) 2| L, | ™

xexp [ 1 o) (L) el |

where

(3.12) o=, Ly e - o) L)

and

(3.13) o= Mo =LA =) IE+2) , ===k,

which, of course, coinside with the mean vector and the covariance
matrix of Uy, .
Now, we shall prove the following

THEOREM 3.1. Under Assumption 1-0, if the condition

(3.14) OB [p,,(s, t)/ min d;g}—»o, (n— o)

1sisk+1

18 satisfied, then it holds that
(3.15) s ~Zntiy (B)a (n—o00).

PROOF. Since, for every n, I(Uyiy: Zib)=I(Uwiy: Z3ky), it suffices to
show that

(3.16) (8 OEE]K {p.(s, OI(Uiiy: Zieky)} = I(Un%c)T Z535)—0, (n—o0).
Using Stirling’s formula, we have

(B.17)  I(Uiiy: Zuwy)=ECnxllog [REH(UGS | s, D@ (US |, £

= e (g + 5 oe (1)
k

—é‘.log(l d::,>+ +<1——) A (t)

_.2 A (di)+-) C(t) +5; «
=dy

where ¢(t)=0(1), max {c,(t); 1=1,---,k+1}=0(1) as t— oo and

a‘r+1
Al =2} D)

for any integer m=2, with
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a,-;S 2(1—2)(2—2)---(r—1—2)dz, (r=2).

Since the K-L information is always non-negative, we may delete non-
positive terms from the right-hand side of (3.17), which gives us

(3.18) I(Us: Zub)< X :l'l +L+An(t)+< : k;tl )c ,
where d¥=min {ds: i=1,---, k+1}, and ¢ is a positive constant.

Taking the expectation of both sides of (8.17) with respect to S
and T, we have

(8.19) I(UN5: n<k>)<(0+1/2)(k+1) Z‘. {pa(s, t)/d3'}
+(e+k/2) X {p,.(t)/t}+ > {p.()AQ)}
te K, te K,
where K, is the same in (2.4), K/={t: 0<k<t=mn} and p,(t) is the

marginal probability function of T.
Under Assumption I-0, we define the following set

E,.={t: W(n,—e)<t=n(p.+¢)} and E;.=K/—E,.,

where ¢, is a non-negative constant satisfying the assumption for each
n. Then, by [5], it holds that

(3-20) Py(E; <27

for any given n.

Since, for every m, the series A,(t) is absolutely convergent for
t=2 and further the sequence {A,(t), t=2, 3,---} is monotone decreas-
ing, then

> (A} —0, (o),
teE,,.

and because of the boundedness of A,(t) (0<A,(t)<1/12, for t=2),
; % {p.(0)A.()} <(1/6)e‘2"53‘—>0 , (n— o).
S

Thus, the condition (3.14) implies (3.16), which completes the proof of
the theorem.

Instead of Zf;] in Theorem 3.1 we introduce another mixed random
vector ((S, T): Z£;i7) such that its continuous conditional random vector

Z 5t =(Znyy+ + Zy) given (S, T)=(s, t) is a k-dimensional normal random
vector whose mean vector and dispersion matrix are, respectively,

(3'21) f_‘:‘,(tk)=(f_lrsl§ ’ m;; tt [_t:;tk),
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and
(3.22) Mih=l(gi—a) Bu—p)lt, 1=i<j=<k,

where zi=2»,{(n,—s)/t} +a,, i=1,---, k. It is easily verified that Z%,~
Z3ky (B)g, as m— oo, provided the condition (3.14) (see Lemma 2.4 of
[4]). Hence, from the above theorem, we may state the following

THEOREM 3.2. Under Assumption 1-0, if the condition (3.14) s
satisfied, then it holds that

(3.23) Uil ~Zniss (B)as  (m—00).
By means of these theorems, we immediately have the following

COROLLARY 3.1. (a) If k is fixed independently of m, then the
condition

(3.24) >3 {p,,(s, t)/ min d,::}-»O . (o),
(s, )eK, 1Sisk+1
implies (3.15) and (3.23).
(b) Let UST is the mth order statistic, where, under the condition
(S, T)=(s, t), m=m(n;s, t) and s<m<s+t. Then, in the sense of (2.3)
UsT is asymptotically (B); normally distributed according to

(m—s)(s+t+1—m)
N(”" T1 T T (E+2)(E+1y )
and/or
N(%_m—s_l_am - (m—-s)(:3+t—m) )

provided that the condition
(3.25) (s%_,—e‘x [p.(s, t)/min {(m—s), (s+t+1—m)}]—0, (n—o0) .

From a practical point of view it is interesting to consider the situ-
ations in which a set of k=k(n) spacings is given first, and then the
corresponding sample quantiles are chosen.

Suppose that, for each n, a positive integer k=k(n) is given, and
the ranks of k sample quantiles are defined by

(3.26) ne=ntt=s+ms , 1=1,---, k,

where m’s satisfy the relations 1=<m? - <m <t and the condition
corresponding to (3.14), namely,

@27 km) 3 {p,,(s, t)/ min (m&—m% ) —0, (n—oo).
8,t)€ n

15isk+1
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As for mi.’s, we shall consider only the following typical cases:

Case A. m"ld[tx,,‘]—i—l, 1=1,---, k, for a given set of spacings
0=2<i< - - < <2k . 1=1, where [ ] denotes the Gauss’ symbol.
Specifically, when 2%, i=1,---, k, are independent of s, let us define

Case B. mi=[ta, J+1, i=1,-.-,k, for a given set of spacings
0=2 <2<+ -+ <V < g =1.

Further, when 2., i=1,---, k, are independent of ¢, let us define

Case C. m;‘ié[tzm]+1, 1=1,---,k, for a given set of spacings
0=2n0<1n1<'"<an<znk+1=1.

Moreover, if k and 2,,=2;,, i=1,---, k, are fixed independently of =,
let us put

Case D. mi=[ta]+1, i=1, ---,k, for a given set of spacings
0=2<4< "+ <A<Ay1=1.

Let, for each n, (S, T): Z5:7) be a mixed (k+2)-dimensional random

vector such that its continuous conditional random vector Z3i,=(Z,,

, Z..) given (S, T)=(s, t) is a k-dimensional normal random vector
dlstrlbuted according to N(&i,, (1/t)-&%L,), where

(3.28) Enlo=(&n1» Enas vy E0)

and

(3.29) Filo=li—a)B—NIl, 1=isj<k,

with &i=74%+a,, 1=1,---, k. Define Z}i as the same normal random

vector in Theorem 3.1 Wlth n’s given according to Case A. Then, it
is seen that Zgi,~Zxt (B):, (n— ), provided the condition (3.27).
(See Lemma 2.4 of [4]). Thus, we may state the following theorem,
in which the condition (3.27) is restated in terms of spacings:

THEOREM 3.3. Under Assumption 1-0, if the condition

(330 km) 3 [p,,(s, t)/{t min (2%— i_,)”—»o, (n— o),

sk+1
18 satisfied, them it holds that
(3.31) S ~Z5 (B,  (n—o0).
Under Case B, the following corollary is immediate.

COROLLARY 3.2, Under Assumption 1-0, if the condition
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¢32) k) 3 [p0f{t min G-2o][50, @oe),

is satisfied, then it holds that
(3.33) USi~Z%, (B):, (n—>o),

where ZL. is a mived (k+1)-dimensional random vector such that its

continuous conditional random vector Zt,, given T =t being distributed
according to N(&iw,, (1/t)-Eiw,), where &, and Siw, are given by strik-
ing out all s from (8.28) and (3.29), respectively.

Furthermore, let Z~,,(,¢)=(Z~,.1, e, Z~',,k)’ be a k-dimensional normal ran-
dom vector being distributed according to N(&.u, 1/(n9,)-Ena), Where
&.x and 5, are given by deleting all s and ¢ from (3.28) and (3.29),
respectively. Then, under Case C, the following is an immediate con-
sequence of the above results.

THEOREM 3.4. Under Assumbtitm 1-0, if the condition

(3.34 k() (e min ()] 20, (n—ve0),
18 satisfied, then it holds that

(3.35) | Uil ~Znw» (B)a»  (n—c0).

For Case D, we may state the following

COROLLARY 3.3. If k s fixed independently of m, then in the semse
of (2.3) ULT is asymptotically (B), mormally distributed according to
N(w, 1/(nn)Ew), where &, and 5y, are given by deleting the suffices m,
s and t from (3.28) and (8.29), respectively.

4. The case of general distributions

In this section, we shall be concerned with the asymptotic joint
(B); normality of k(n) sample quantiles from Type I censored samples
in the case of umnequal basic distributions. Let, for each positive in-
teger n, X, <X,< --<X,, be order statistics of a random sample of
size m from a continuous distribution over the real line, whose pdf. and
cdf. are given by f.(x) and F,(x), respectively.

Censoring at preassigned extended real numbers a, and b, such that
a,<b,, for each n, we have doubly censored ordered variates (a,<) X, s
<X, 542< <X, 5.7 (Lb,), where S=S(n) and T=T(n) stand for the
number of variates in the left censored portion and those in the uncensor-
ed portion, respectively. Under (S, T)=(s, t) for each n, X, ,;1<X, ;4:<
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-+.<X,,,. are regarded as order statistics based on a random sample
of size t drawn from a doubly truncated distribution whose pdf. and
cdf. are given by

fﬂ(x)/ﬂ" ’ if a"§$<bn,

(4.1) 0u(%) = ,
0, otherwise ,

and
0, if z<a,,

(4.2) Gux)=1 (Fu@)—a))[n., if a,=w<b,,
1, otherwise,

respectively, where a, and 7, are the same as in (2.1).

Put G.(®.)=U,, i=s+1,---,s+t. Then we have ordered variates
U,,.<-+<U,,, from the uniform distribution over (0, 1), for each =.
This fact suggests us to extend the results in preceding section to gen-
eral cases by making use of Tkeda’s asymptotic equivalence theory (see
references [1], [2]). Under Assumption I-1 in Section 2, it is assured
that, for every m, G;'(u) is a measurable and one-to-one transformation
from the interval (0, 1) onto the interval D(g,,)i- {z: g.(x)>0}.

Now, let, for each n, ((S,T): X,5if) be a mixed (k+2)-dimensional
random vector such that its continuous conditional random vector X,
=(Xny»+ 1 Xun,) given (S, T)=(s, t) is the joint random variable of &
sample quantiles of orders s<m;<m;< ---<m,<s+t, where k=Fk(n) and
n,=n%(n). We define

(4.3) Gl Zo and flo)=f%, i=1,---,k,

where % € (0, 1) is the same as in (3.4).

Assume that, for each =, ((S,T): Y, %)) is a mixed (k+2)-dimen-
sional random vector such that Y.\, =(Y,, -+, Y.)' given (S, T)=(s, t)
is a k-dimensional normal random vector whose mean vector and disper-
sion matrix are given by

(4.4) oiln=(0f, &, -, o)
and
4.5) o=l —a) Bu— DI LHLDNE+2), 1=1<j5<k,

respectively. Further, for each 7, let us define another mixed (k+2)-
dimensional random vector ((S,T):V.,5)) such that its continuous con-
ditional random vector given (S, T)=(s, t) is V,f(',i)é(V,,l,- -+, V) with
Vui=G(Y,), 1=1,---, k. Then V3i is distributed over the closure of
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a k-dimensional open cube Q,,:;[k'[ I, with I,=(0, 1) for all j, and is dis-
. =1

continuous on the boundary of this set unless D(g,)=(— oo, o) for each
n. It is obvious that, over the domain @Q,, the conditional variable V3,
given (S, T)=(s, t) is absolutely continuous with respect to the Lebesgue
measure over R,, and that has the density

4.6)  DHEw|s £)=(20) 2| Qi |- m{n g,.(G-I(zf)}

X exp [‘T(G;I(zm)—waz,)'(mza))-l(G;*(z(,))—w;z‘k))] ,

(2w € Qi)
where G;'(2a,)=(G7' (20, -+, G; (=)
Since, for every =,

3% = {dil (-T2t +2)y <l
and

3= (A (L~ U+ 2)} A <11
then the set
4.7) Qo= {2a: O<ILE -0t <2< - - <2 <L +5% <1}

is well defined for every n. Under the condition (3.14), it is easily veri-
fied by Chebycheff inequality that

48) 3, s 0PTR@) -1, (reo).
Therefore, by Theorem 3.1, we have

(4.9) RO HPZHQui) -1, (n—oo).

Hence, if the condition
(4.10) . EK {Du(s, IX(Z2ks: Vi)

£ = {p,.(s, t) SQ,&)QZ‘ log (q:!‘/p,’.‘)dzm}—>0, (n— o)

(s, 0)eK,
is satisfied, in addition to (3.14), then it holds that
(4.11) ks ~ Vs (Ba (n—>o0),

and consequently, X5 ~Y,%] (B):, as n—co by a little modification
of Lemma 2.2 and Lemma 2.3 in [4].
Now, let us derive conditions under which the condition (4.10) is
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satisfied. Under Assumption I-2 in Section 2, by (3.10) and (4.6), it is
seen that

(4.12)  log {gi(zw]s, t)/pi (2w s, 1)}
=33 ) (e ) — (1/2) (i) (L) ™ (o — )
+(1/8) (wrider) (L)) ™ Wi »
for every m, where

eu(2) =g G7'(2)/9(G='(2)) (0<2<1),

(4.13)

ou(z; D=0.(G'())/9G:'()) ,  (0<2, 1<),
and
(4.14) Wity = (Wi, Wz, -+, wik)

wi =g (f)p(2k; ) (2 —~LEF, =1+ k,

and z** and z¥ are some functions of 2z, which lie between z;, and I}
and will be denoted by zX*, z¥ € ((z;, li%)), for each <.

Under the situation mentioned above, we obtain the following the-
orem, whose proof is carried out analogously to that of Theorem 4.1
of [4].

THEOREM 4.1. Under Assumptions 1-0, I-1 and 1-2, assume that for
some positive comstant M and some positive integer N, the condition

(4.15) 32, Bls o D) <M,

with

(4.16) @,(s,t)= sup max  sup max {|e ()], $u(2F; L)},
2w € Qi 1SiSk 2 € (2 13)

18 satisfied umiformly in n=N. Then, the condition

(4.17) k(ny X {p,.(s, t)/ min d;:g[-»o, (n—>o0)
(s,DekK, 15isk+1

implies that

(4.18) by ~Yoiiy (B)ey,  (m—>00).

The condition (4.15) is very complicated and is difficult to check the
validity of it. However, if Assumption I-3 is satisfied, |¢.(2)| and ¢.(2;1)
are uniformly bounded for all z, I and n, and hence the condition (4.15)
is automatically satisfied. Therefore, the following corollary is an im-
mediate consequence of the above theorem,
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COROLLARY 4.1. Under Assumptions 1-0, I-1, I-2 and I-3, the con-
dition (4.17) implies (4.18).

In the next place, we shall consider the situation where spacings
are chosen in advance and the corresponding sample quantiles subse-
quently. In this case we can proceed with our discussion as in the
latter half of the preceding section, so that we shall state only the
results briefly.

Here, let us begin with Case A in the preceding section. Let, for

each n, ((S, T): Y,%7) be a mixed (k+2)-dimensional random vector whose

continuous conditional random vector Y4, =(Y,- -+, Y,:) given (S, T)=
(s,%t) is a k-dimensional normal random vector distributed as N(Li,,
(1/t)-2%&,), where

(4.19) A (N AP A

and

(4.20) o= C—a) Bu—CNFRFDN,  1<i<js<k,
with the followiﬁg notations

(4.21) %w=G'(&%) and fY=£(C%), i=1,---,k.

Then, we have the following theorem very similar to Theorem 4.1.

THEOREM 4.2. Under Assumptions 1-0, I-1 and I-2, assume that for
some positive constant M and some positive integer N, the condition

(4.22) 2 {ps, ) (s, )} =M,

(a,t)eKn
with

(4.23) ¥(s,t)= sup max sup  max {|e.(2¥)], du(2F; L)},
2> € Q%% 1Sisk 2F e (2, 22))

18 satisfied uniformly in n=N, where

(4.24) an'(i)= {za: 0<X:f1—5ffl <z<--- <zk<l;tk+g;tk<1} ,

with &% and 5%, defined analogously to &5, and & in (4.7) by replacing
Ii2’s by 24’s. Then, the condition

@25) Koy 3 [p,.(s, t)/{t. min (x:,z—z:.a_l)}]—»o, (n— oo)

1SiSk+1

implies that
(4.26) ST ~YST (B),, (n—oo).
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For Case B, we immediately obtain an analogous result to the above.

Next, let Y,o=(¥u,--, Y.) be a k-dimensional normal random
vector distributed according to N(C.u,, 1/(n9,)-2.), where (., and 2.,
are formally defined by deleting all s and ¢ from (4.19) and (4.20), re-
spectively. Then, for Case C, we may state the following

THEOREM 4.3. Under Assumptions 1-0, I-1 and 1-2, suppose that, for
some positive constant M and some positive integer N, the condition

(.20 5 {pas, O¥Ns, O} SM,

(s, t)e
with

(4.28) ¥X(s,t)= sup max sup  max {|e.(2F) ], ¢u(2F; 24)}
2 € Qn(k) 1él§k Z}tk € ((Z‘, zni))

18 satisfied uniformly in n=N, where
(4.29) Qn(k)"__ {zaw: 0<3n1—5n1<z1< cee <zk<1mc+5nk<1} ’
is defined analogously to (4.24). Then, the condition

1Sisk+

@30 kor 3 w0/t min G-} |20, (—oo)
s,0)eK, 1
implies that
(4.31) X5 ~Yow (B)e, (m—oo0).
By this theorem we immediately have the following

COROLLARY 4.2. Under Assumptions 1-0, I-1, 1-2 and 1-3, the condi-
tion (4.25) implies (4.26), and that (4.30) implies (4.31).

Remark. In particular, if, for all n, f,(x)=f(x) together with a,=
a and b,=b, we have the Type I censored sample from an equal basic
distribution. In such a case, we can straightforwardly obtain the corre-
sponding results of this and the preceding sections.

5. The case of Type |l censored samples

In this final section we shall consider the asymptotic joint (B),
normality of increasing number of sample quantiles from Type II cen-
sored one, which has been defined at the latter half in Section 2. It
is easily seen that the analysis used in the uncensored cases [4] is directly
applicable to Type II censored ones, so that we will only summarize
main results here, which are expected to be useful to statistical infer-
ences based on Type II censored sample.
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First, the case of uniform distribution over (0,1) will be stated.
Let U,<Ux<:--<U,, be order statistics of a random sample of size
n from a uniform distribution over (0,1), and let U, pis<U, p< -+ - <
U...- be a Type II doubly censored sample of size n' (=n—p—q), where
p and g stand for the numbers of censored observations on left and on
right, respectively, and both may depend on n. Designate k=Fk(n)

sample quantiles of the above censored sample by Udd=(Upnys+++, Una))
with the rank orders (n,=) p<n;<:--<m<n—q+1 (=n4,,).
Now, let Z24=(Z., -+, Z,) be a k-dimensional normal random
vector distributed as N(l,,(k), Lz3), where
(5'1) 3&3)—(15‘1’, ngr ) %)’,
with %=n,/(n'+1), 1=1,---, k; and
(5.2) ' Lig=I1A-UDI/(n'+2), 1=si=j<k.
Further, let Z24=(Z., -, Z.)' be a k-dimensional normal random
vector distributed as N(Izg, L&g), where
(5.3) —nj(, =(ln1 ’ lnz 9" qu),
and
(5'4) n(k)_‘” ”/n ’ 1§ é]ék’

with I2=n,/n’', i=1,..-, k.
Put df{=n,—n,_,—1, 1=1,---, k, then we immediately obtain the
following theorem by virtue of Theorem 3.1 in [4].

THEOREM 5.1. (a) If the condition

(5.5) k(n)/ min d%—0, (n—oo),

1sisk+1
18 satisfied, then
(5.6) Urd~Z23~Z28 (B) (n— o).
(b) If k is fized independently of m, then the condition

(5.7 min df{—oco, (n—),
1<isk+1
implies (5.6).
(¢) Let U,, be the mth order statistics such that p<m=<mn—gq, then
U, 18 asymptotically (B); normally distributed according to

N( m—p__ (m—p)(n-—p—q—m+1)>
n—p—q+1 (n—p—q+2)(n—p—q+1)

and/or
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N(_m=p (m—p)(n—p—g—m)
<n—p—q (n—p—aqf )

provided that m—p—co and n—p—g—m— o, as N—> .

Next, we shall treat the cases of general distributions. Let, as
in Section 2, X24=(Xom,, ) Xu,) be k sample quantiles satisfying with
the relations (n,=) p<m, < -+ - <M <n—g+1 (=n;,,) from a certain Type
II censored sample, and let Y24 be a k-dimensional nmormal random
vector distributed as N(s&, Si%), where

(5.8) 8%(2)—(87119 snzy c %y gg)’
and
(5.9) St =AY fEDNm +2),  1=isjsk,

with ¥=mn,/(n'+1), s2=F;(12%) and fZ=f(s50), i=1,---, k.
We also define the set

(5.10) Qp(k)— {zw: O<BI—om<z < e <zk<l%+5gg<1} ,

where 2%, i=1, k, are analogously given to 8%, i=1,k in (4.7). Fur-
ther, put

Pul2)= I (F @) (FT(2)) 5 (0<2<1),
@u(z; D=FFTWFR),  (0<z1<1).

The following theorem is concerned with the case where ¢,(2) and
¢.(2; 1) are uniformly bounded over Qi :

(5.11)

THEOREM 5.2. (a) Under Assumptions 1I-1 and 1I-2, assume that,
for some positive constant M and some positive integer N, the condition

(5.12) sup max sup  max {|@.(zF)|, guzF; BDY=M,
2> € QUF, 1Sisk zF e (2, D)

is satisfied uniformly in n=N. Then, the condition

(5.13) k(ny/ min d%—0, (n—o0),
1sisk+1

implies that

(5.14) Xr3~YEL (B)y, (n—o0).

(b) Under Assumptions II-1, 1I-2 and II-3, the condition (5.13) im-
plies (5.14).

Immediately, in the case of equal basic distributions similar theo-
rems to the above can be obtained. Further, it is also possible to ob-
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tain parallel results for cases where the spacings I?”’s are chosen first
and the corresponding sample quantiles subsequently, which should be
referred to Section 4 in [4].
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