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Summary

As the final result of a series of our investigations [5]-[8], [10], [11]
we present in this article a probability distribution—a non-central F-
distribution—which is asymptotically equivalent in the sense of type
(M), to the power function of the F-statistic for testing a partial null-
hypothesis in the analysis of variance of a randomized PBIB design with
m associate classes under the Neyman model which is a linear model
taking both technical and unit errors into account. Thus this seems to
be the final answer for which we have been after from the very be-
ginning of our investigation.

1. Introduction

We are concerned with the power function of the F-statistic oc-
curring in the analysis of variance of a PBIB design with m associate
classes, where there are v treatments with an association of m asso-
ciate classes being defined among them, b blocks of size k each, r re-
plications of each treatment, and the number of incidence of any pair
of treatments is 2, if they are uth associates. The randomization pro-
cedure is applied in allocating k treatments to the k units in each block,
independently from block to block. As for terminologies and notations
which will be used in this article, reference should be made to the
papers [9]-[11].

Let us take the special labeling of the whole n=vr=bk experi-
mental units in such a way that the ith unit in the pth block bears
the number f=(p—1)k+i. We will fix this labeling throughout the
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present paper.

Let @ and ¥ be the incidence matrices of the treatments and blocks
respectively and put B=¥¥’ and N=0¢'¥, where N is the incidence
matrix of the design under consideration. Furthermore, let z=(z,,- - -,
) and B=(B;,---, B,) be the treatment-effects and block-effects being
subjected to the restrictions

v b

7,=0 and X B8,=0
a=1 =1
respectively, and let #=(x,,---, )’ be the unit-error vector being sub-

jected to the restrictions

En’%"’:O, p=1""yb

k
i=1
where n,=={ if f=(p—1)k++. In the matrix notation, one can write
as ¥'w=0.

The Neyman model assuming no interaction between treatments and
experimental units is given by

1.1) x=714+0r+ ¥B+x+e,
where x=(x,, -, x,) is the observation vector, 7 is the general mean,
1=(@1,---,1) and e=(e,---,e,) stands for the technical-error vector,

which is assumed to be distributed as N(0, ¢’I,) with unknown variances
¢’. This Neyman model includes the Fisher model and the normal re-
gression model as its special cases. In fact,

The Fisher model: x=y1+®&z+ ¥8+r,
Normal Regression model: x=7l1+®z+ ¥B+e.
The null-hypothesis to be tested is

1.2) Hy,,Alr=0, u=1,---,h,

where h is any given integer such that 1<h<m, and Ai=G,/v, A},
-«-, A%, are m+1 mutually orthogonal idempotent matrices of the asso-
ciation algebra. This null-hypothesis is called a ‘partial’ null-hypothesis
and it reduces to the ‘total’ null-hypothesis H,: =0 if h=m.

To test the null-hypothesis H,,,, one uses the F.statistic given by

—b—v+1 S

1.3 F= n w

(1.3) a Sk

where a=a+ - - - +a,, a, being the rank of the matrix A, u=1,---,m

and
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h
S%(n)=x'<§l Vif)x y
(1.4)
Sz=x'( "—%B—g V,£>x

i.e., S, and S? are the sums of squares due to treatments adjusted
by blocks and due to errors respectively. Here we have put

(1.5) V::(In—%B)qp(c,,A;)gpr(In_%B) C u=1,.m
and
(1.6) =X . u=1,-em
rk—p,
where p,, =0, 1,---, m are the characteristic roots of NN’, with re-
spective multiplicities a,=1, a,, u=1,---, m. It is known that
Sa=v-1, 3 A=I,
u=1 u=0
and

NN'=rkA}+p A4+ - - +p. AL .
If h=m, the above F-statistic reduces to the usual

1.7 Fon—b—v+1 Si
(1.7) v—1 S?

In the previous paper [11], the asymptotic null-distribution of the
F-statistic given by (1.3) was discussed rigorously from the point of
view of the theory of the asymptotic equivalence which had been de-
veloped by one of the authors [1], [4]. It was shown that the null-
distribution of the F-statistic after the randomization is asymptotically
equivalent in the sense of type (M), to the usual central F-distribution,
which is to be obtained under the normal regression model without the
unit-errors. One may say that one can get rid of the unit-errors (nui-
sance parameters) asymptotically by means of the randomization pro-
cedure.

Based upon the same stand point as in the null case, we show that
a non-central F-distribution which is to be obtained under the normal
regression model is asymptotically equivalent in the sense of type (M),
to the non-null distribution of the F-statistic given by (1.3) under the
Neyman model.

In the following section, the non-null distribution of the F-sta-
tistic before the randomization is derived, and that involves the condi-
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tioning random variables (¢, 7, 7) as parameters. Then, in Section 3,
the asymptotic behavior of the permutation distribution of (¢, 7, 7) due
to the randomization procedure is discussed, where it is shown that

(¢/(4+T), 7/(T/(4+ T)), 3/(T/(4+ T))) converges in probability to i1,1,1)
in a certain limiting process under consideration. Sections 4 and 5 are
devoted to the derivation of the asymptotic power function of the F-
statistic based upon a theorem of the theory of the asymptotic equi-
valence [1], [4]. In Section 4 we show that the conditions of the
theorem are satisfied in our present case. Then, in Section 5, a non-
central F-distribution where non-centrality parameter involves d=zn'r

and T is derived in the first place and this is shown to be asymptotically
equivalent in the sense of type (M), to the power function of the F-
statistic (1.8). In the second place, then, we can show that a non-
central F-distribution whose non-centrality parameter being dependent

only on T and that is to be obtained under the normal regression model
is asymptotically equivalent in the sense of type (M), to the non-

central F-distribution involving 4 and T above mentioned.

2. The non-null distribution of the F-statistic before the randomization

Since S?,, becomes
r 3 . 3
Si<n)=(@r+n)’(1§1 VJ>(¢7+1:)+2(¢7+1:)’<§1 V:)e+ e'<u2=‘,1 V,f)e

under the Neyman model (1.1), and the matrix i} Vi is of rank a, the
u=1

non-null distribution of the variate
(2-1) ﬁzsf(n)/"z

before the randomization is the non-central chi-square distribution of
degrees of freedom a, with the non-centrality parameter 4,/¢?, where

2.2) 51=(@¢-+n)'<§1 V,})(q)r+1r) .

Hence its probability element is given by

(2.8) exp (__é%) F% (51/5;,: ) (1?(/&2/)23/—2;::-)1 exp <—%>d<-i2—¥> .

Similarly, the non-null distribution of the variate

(2.4) ©v=_8?d*

before the randomization is seen to be the non-central chi-square dis-
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tribution of degrees of freedom n—b—wv+1, and with the non-centrality
parameter §,/¢, where

(2.5) 52=(qbz-+n)'(1,.—7lc_B—uz":,1 V,f)(q)r+1r) .

Hence its probability element is given by

@6 e (=) SO0 L e (E)e()

Since the two variates 3} and y: are stochastically independent be-
fore the randomization, the non-null distribution of the F' given by
(1.3) is seen to be a non-central F-distribution with degrees of freedom
(@, n—b—wv+1). The probability element of the F-statistic before the
randomization is given by

(2.7 exp (—%) #{2;0 g\) (51/3;72)" (62/301)"

I'((n—b—a)/2+p+v) ( o F>5/2+p—1
" T@R2+p)l(n—b—v+1)24v) \n—b—v+1

<1+ a F) —(n=b=-3)/2+p+>» )d< (_x F>
n—b—v+1 n—b—v+1

=exp (5 )2 (oY 5 B gpa—g-7y

iz Ul eew=opllyl

I'((n—b—a)/24+p+v) ( a F)E/Z-l-p—l
I’(a/2+.u)1”((n —b—v+1)24+v) \ n—b—v+1

<1+ - F) —((n—=b— u)/2+[l+v)d< a F)
n— b v+1 n—b—v+1 ’

where we have put

a=v—1l—a,
@8 s=b-b  with  o=@c+x)(3 VE)@rtn),

§=0,10;, 5=51/(51+5z) y ?)=§1/(51+52) .

It should be remarked that in the case of h=m, the probability ele-
ment of the F-statistic (1.7) before the randomization is given by

(2.9) exp( )§, (5/12’0’)‘ p§= l p'; o (L—7)
I'((n—b)/24p+v) ( v—1 F)(u—l)/2+p—l
F((v 124+ p)(n—b—v+1)/24v) \ n—b—v+1
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-1 —((n=b)/2+u+v) v—1
= W
( +n-—b—’u+1 n—b—v+1

where
(2.10) 7=0,/(3;+3) .

The probability element of the power function of the F-statistic
(1.3) after the randomization should be obtained by taking the mathe-
matical expectation of (2.7) with respect to the permutation distribution
of (& %, 7) due to the randomization.

3. Asymptotic behavior of the permutation distribution of (¢, 7, ) due
to the randomization procedure

Let us denote the permutation associated with the randomization
within the pth block by

7= <a,,t1) :(.2.): : a,,(l;c)> '

and let us put
3.1) Us=| S, ,

where So, is a kXk permutation matrix corresponding to the permuta-
tion ¢,, p=1,---,b.

The incidence matrix of the treatments becomes a random variable
through the randomization and that takes one of (k!)® values {U,®}
with equal probability 1/(k!)’, where @ is any one fixed incidence matrix
of treatments.

Now, since

= (00) (33 V2)(@0)+200) (3 Vi)w -+ (3 Vi),
and
(qh-)'( z"; V.f> (@7)= r'@’(I,,——%B)(D(é}I cqu> @'(I,.——kl—B><1)r
=(rL,— L NN\ (3 ca?)(r,— L NNz
(rE= NV) (33 cutt) (L~ NIV)

(3 2 e § Lt

u=1 cu u=1 C,



THE ASYMPTOTIC NON-NULL DISTRIBUTION OF THE F-STATISTIC

= r'(ﬁ‘, lA.i)'t'

u=1 cu

~(Bare) (B 54 (5 4)

(q)r)'<ué=1 Vj>z=r'¢’<In—%B>@<g c,,A.!) @’(I,,—-%B)z

—/(rl, —NN')( | c,,A.i)(D'z
=[5 A1) (3 eat)ow

u

= r'(uf‘:l A£>¢’z: :
one gets
3.2) 5i=T+ 2(% Aﬁr>’¢'1r+1t'<§=]1 V,f)u ,
where
s rgefigiega

In a similar manner, one also gets

where

Here it should be noted that

T=T+T,
where
(3.6) T=c'(§‘_, ~—1—A,§>r :
u=1 cu

From (3.2) and (3.4), it follows that .
3.7) 51=51+§1=T+2r'¢'z+u'(§_1 V,f)u-.
Since

51+52=(@r+1c)’(I,,—%B>((Dr+1t)

245
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=r'(1‘In—7i—NN')r+2¢"q)’1r

=r’<§} 1 A,f)t'+2r'¢’1r ,

u=1 Cy

it is also seen that
(3.8) 52=1r'1r-—1t'<% Vu’>1l'=4—-1¢"<§ Vu’)n' .

From (2.8), (2.10), (3.2), (3.4), (3.7) and (38.8), it follows that
E=4+4+T+2¢'0'x ,

n= T+2‘z"¢'1l:-|-1z"<ui=l V.f) ﬂ}/& ’
3.9)
i [rvav(§ Ao e .

m

- 1='+2z-'( 3 A;>¢'u+n'( = V:)n}/e.

u=h+1 u=h+1

3

These quantities become random variables through the permutation
distribution of the incidence matrix @ of the treatments due to the

randomization. However, it should be noted that T, T, T and 4 are
constant parameters.
For the sake of the notational simplicity, let us put

3.10) X=r'0r, X:a(ﬁ A,i)@,{z, )=(=r’( 5 A;)q);z,

u=1 u=h+1

and

u=h+1

(8.11) Y=1|."<§_‘,1 V,f) T, l_’=1r'<2'i}1 V,f) T, I=’=1r'< i V,f) T,
where we have put
— ) (71 ) z ;) (71
0,=U,0, (E V.,)d—(I,, 1B @,(uglc,,Au q),,(I,, kB) .
Then the variates in (3.9) can be written as
§=44T42X,
p=(T+2X+7Y)/(4+ T+2X),

7=(T+2X+Y)/(4+ T+2X),
7=(T+2X+Y)/(4+T+2X) .

(3.12)



THE ASYMPTOTIC NON-NULL DISTRIBUTION OF THE F-STATISTIC 247

Now, as in the previous paper [11], we consider the limiting process
such that

(3.13) b— oo whereas v, k, n;, 9 (¢, 7,k=0,1,---, m) are kept fixed,

and denote this limiting process simply by b—oco. Under this limiting
process, r and at least one 1, must tend to infinity with the same order
of magnitude as b. Suppose that one can find non-negative numbers
o, such that

(3.14) (rk—p.)/b— o, as b—oo, u=0,1,---,m ,

where wy=7r/b=k[v. Furthermore, we assume that the following uni-
formity conditions of unit errors are satisfied:

Ms

(3.15) Zz% 4,—4, and %ﬁlup—[w“—»o as b— oo

1

3
Il

where 4, 2 =»* and 4, and ¢ are some positive constants.

Under such situation, we have shown in the previous paper [11]

that the permutation distribution of the variates (k—1)Y/4,, (k—1)Y/4,)
converges in law to that of the mutually independent chi-square vari-
ates (%, x2) under the limiting process (3.14), provided the conditions
(3.14) and (3.15) are satisfied. B
We will consider the asymptotic behavior of the variates X, X
and X.
From (3.1), one can see that

Sal 1[(1)
1
2
(3.16) Ox=0Um=0| SHF" |,
S éb'n.m
where #®=(z{®,..., #P)'. Let us put
. .
ngEiz___:l Ca(p—l)k+tn-(g;(i) ’ a=1,---,v
and
e,
8.17) Hg:[ :l , p=1,.---,b.
. ng
Furthermore let
A W
(3.18) ?=|: : =2_‘.1 Alr T=| : |= %,1 Alr |
?v u= ?v U=
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Then, by (3.10), (3.16), (3.17) and (3.18), it follows that

ll§ .

ij

(3.19) X=s70°, X=>7I°,
=1 =1

1

L]
[

It is noted that the variates I, p=1,---,b given by (3.17) form a
stochastically independent set of v-dimensional random vectors under
the permutation distribution due to the randomization. Furthermore,
one can notice that

7t=0, TAlr=0, u=1,.---,m,

and consequently T’ NN'z=0.
Since

—1
——d,,
k(k—1) "
(t#7),
where E denotes the mathematical expectation with respect to the per-
mutation distribution due to the randomization, it is seen that

E (71'(1’) (l)) 0 E (71.'(1’)2 (()) —_— 5 Ap ’ E (”(P) W7 ap(.i))

E(Hg)zo, p=1""’b9

(3.20)
BULHY) =gl dy,  p=1io0sb,

where

k=1, —Nphy, © o @ —TyMy,
(3.21) A, =] My (B—1)Ngp = -+ — Ny,

T s 1
Notice that
(3.22) pi_‘,l A,=rkI,— NN’ .

From (3.19) and (3.20), it follows that
(3.23) E(X)=E(X)=E(X)=0.
The variance-covariance matrix of (X, X) is seen by (3.20) to be

7.' A T TAT

(3.24) DX, X)= i
'"AT TAT

k(k 1) p=1
_ ﬂ T r A,,z' TAT
'"Ax TATI

T"+ k(l—1) g}(
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where T and T are defined by (3.3) and (8.5) respectively. If we put

T=7 3 (@u/k)AL

B

(3.25) Ty=%

(/)AL

I

T S (wfk)AL
u=h+1

0

then, under the conditions (3.14) and (3.15) one obtains
4, aT., 0

_LIT Q“ _4 0 =
W—Dlo Tl k—ilo T1° b7

From (3.21), by using the Holder inequality, it follows that

1 b TNy g — 1/9
i? 3 (4,— D AF

p=1

<(Lsg,-3)" (L 5 17450
=(3 314-1r) (5 g1 aet)

for any given p, »>1 such that 1/p+1/p=1. But, since

1# A7 = I(k-— 1) 3 0 33 M.
é(";'—1)<é ’n“l’la’l)zékz(k_l)ffk ’ pzl""sb ’
a=1

where 7,=max |7,|, one has
1Sasv
128 2,1\ _
<? > |r’A,,rl”> <ke—1)z, .
p:

Since 74 depends only on the parameters of the association under con-
sideration, it is bounded independently of b. Thus, if one chooses g so
close to unity that 1<ux<1+34, it follows that

—})—ﬁl (4,— A7 47—0  as b—oo,
=

provided the conditions (8.15) are satisfied. In a similar manner, one
can show that the remaining elements of the second matrix of the
right-hand side of (3.24) tend to zero as b—oo. Hence

7, 0

0 T,

1 o 5y A4
. + DX, 0
(3.26) > D(X, X)— 2

’ as b— oo

under the conditions (8.14) and (3.15). In particular

(3.27) %Var (X)— k‘fl T, asbooo.
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Now we are going to show that

3 7 7 ;
3.28 ) — ) — —(1,1,1 b.,
(8.28) (A+T T/(4+T) T/4+ T)> ( ) o
and hence
3 7 i
3.29 , —(1, .
(8.29) <A+T T/(A+T)> (1) in prob

To prove (3.28) and hence (8.29), it will be sufficient to show that
p=(T+2X+7Y)/>T)(4+T,) in prob.,
(3.30) 7=(T+2X+7Y)/e—>T)/(4+Ty) in prob.,
7=(T+2X+Y)/¢>T/(4+T)  in prob.,

as b—oo. Indeed, since £é=4+T+2X and we have already shown that
X/b—0 in prob., it is clear that £/b— 4,+ T in prob. as b—oo. Since

T A Ty2x A+ T+2X "’

and we have seen in the previous paper [11] that (n—b)Y is asympto-
tically equivalent in the sense of type (M), to xi_;. Hence Y/b—0.
Thus one can see that

1 Ao — TO

-_ = in prob..
4+ T, 2o+ T P

n—)

4. Validity of certain conditions in a theorem from the theory of
asymptotic equivalence

In this section, we will show that certain conditions in a theorem
—Theorem 6.3 of [4]—on the asymptotic equivalence of two probability
distributions are satisfied in our present situation. The proof which is
given in this section will be useful in the next section too.

From (2.7), the conditional p.d.f. of the F-statistic (1.3), given ¢,
7 and 7, is expressed as

41) p(F|&7,7)

= _E S (5/202)1 l! PR )
_exp< 24 > f_?—") Al pv+r=1 ”!V!T! K (1 7 77)
a I((n—b—a)/2+p+»)

" n—b—v+1 @2+l (n—b—v+1)/2+)

& a/2+p—-1 a —(n—=b-a)/2+p+v)
AL
(nwb—v+1 + n—b—v+1
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and hence, the conditional c.d.f. of the F given &, % and 7 is given by

F
42 PP, 7, D)=\ pFI¢,7 7dF .
Let us put
@9  @FIs 7 D=R(FIa+ DS T _3).
4 + T WEY

Then the Theorem 6.3 of [4] states that the distribution of the F whose
c.d.f. being given by the expected value of (4.2) with respect to (&, 7, 7),
i.e., the distribution of the F after the randomization, is asymptotically
equivalent in the sense of type (M), to the distribution whose c.d.f.
being given by

T T
44 P(FA r_T ) b— oo,
@4 o\ Fla+ A+T' 4+T as °

if, in addition to the condition (3.28), the following condition is also
satisfied.

For any given ¢>0, there exist a positive number 6=4d(¢) and a
positive integer b,=by(¢) such that

(C) (&7 n—(1,1,1)|<d implies sup |Qu(F |, 7, 7)) —Qu(F|1,1,1)[<e
for all b=b,.
We are now going to show the above condition (C) is satisfied in

the present case.
For simplicity, let us put

i

(4.5) Uy, (7 7) = T —g 7T A=7—7),
and

b _ I'((n—b—a)/2+p+v) a a/2+u—1
(4.6) HF,D(F)—Soﬁst I'@24+p)(n—b—v+1)/2+) (n—b—v+1 x) /

\ = ((n=b=7F)/2+p+v) ( @ >

a
<1+ n—b—v+1 x) n—b—v+1
Then, it holds that
@n PFIETD=exp (S5 5L 5w, G ELE).

=0 l' p+vtr=1

It is not difficult to see that H?,(F') is a monotone increasing func-
tion of b for any fixed values of g, v and F, and

(4.8) H'(F)>H(F) as b—ooo,
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where

wo) )= s () e (2 )a( )

Notice that the convergence (4.8) is of type (B);. Furthermore, for
the Gamma distribution (4.9), it holds that H*(F') is monotone decreas-
ing with increasing g for any fixed F, and

(4.10) Hr(F)—>0 as p—oo.
Replacing H,(F') in the right-hand side of (4.7) by H*(F'), one gets

@411)  P(F|e, 7)= exp< ),E (5/l2,"2 ) 3, . DHSF)

where

_ | - _
(4.12) u,,(7)= l, -7 (1=7).
pivi »

Now, in the first step, we show that

(4.13) Fsup_ | P(F'|&, 3, 9)— P(F'|&,7)| >0 as b—oo,
60T

In the first place, we note that

for any given values of b, F), {, 7 and 7, and these functions are all
continuous with respect to F, &, 7 and 3. We calculate the difference

(4.15) 1-P,(F|& 7, 7)= exp( )?—‘ (e/lz,“z)l

> U (0 D) (A—HAF))

ptvtr=1

Since the function 1—H?,(F') is monotone-decreasing with increasing b
for any fixed F, p and v, it can be seen that

(4.16) H"°(F)21 —H}(F)=0

for all b=b,. Since

°° —by—v+1 al2+p _
4.17 S FadH»(F)="Ta=b" . me=b
(4.17) (F') = T o=bok
is bounded uniformly for all 4 and », the Markov inequality assures us

that for any given ¢>0, there exists a positive number F,=F(e) such
that
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1-H}(F)<e
and hence by (4.16)
(4.18) 0<1-H!(F)<e

‘uniformly for all F=F,, b=b,, p and v.
From (4.14), (4.15) and (4.18), it follows that, for all b=b,,

(4.19) sup | Py(F'|¢&, 7, )~ Pu(F'|§, 7)[<e.

&,%,% F2F,

In the next place one has to examine the case where F'=F,. (4.8)

and (4.10) assure us that there exists a positive integer p, such that
H»(Fy)<e, and

(4.20) | H. (F)—HX(F) | H,;y(Fo)<e

uniformly for all F<F,, p=p, b and v.
For p<p,, we have by (4.8)

(4.21) |H, (F)—H(F)|<e

uniformly for all v and F<F,, provided that b=b/, where b;=bi(c) is
some positive integer.
From (4.20) and (4.21), it now follows that

(4.22) .S | Py(F'|¢, 7, 7)— P(F|&, 7)|<e
for all b=b;.

Combining (4.19) and (4.22) one gets (4.13), as was to be proved
in the first step.

In the second step, we shall show that for any given ¢>0, there
exists a positive number &=4¢(e) such that £¢=¢, and £*=¢, imply

(4.23) sup | Po(F'|&, 7)— P(F'|6* 7)|<e .
From (4.14), (4.15) and (4.19), it follows that
(4.24) sup [1—Po(F[§ n)|<e
&%, F>F,
and hence ‘
(4.25) sup |P.(F|& 9)—P.(F|&* p)|<e
7, F>F,

for any & and &*.
Suppose F'<F,. First, we have

(4.26) —%Pm(F 1§ D=L (F|¢&7))—L(F|¢7),
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where
—~_ 1 —¢& £/26%) 1 /24
L+(F|5, 7)—'50'3 exp (Wﬂemz:sl {( /l!) - ( /l! ) }
© 3w EI )+ He(F))|
(4.27)

nae e o ()] 5. B2 R

- 3w GHE)]

which are both positive for all values of F, ¢ and 7. Note that L,
and —L_ are both non-increasing functions of & for any given values
of F' and %, and hence, for any given F and 7, (8/0¢)P.(F'|¢,7) is a
non-increasing function of §&. Furthermore (6/05)P.(F'|&, 7)=20 at £=0,
with equality holding if and only if F=0.

By (4.26) and (4.27), it is seen that

0 — _ 1 -1
. L oo ’ é ’ S— - - 1 .
o P(F1& DSILAFIE DI S5z ex0 (~O( 1)
where we have put {=¢/2¢°. Then, since ‘

exp(—C)%'vc/x/T as {— oo

by the Stirling formula, one gets
sup |- P.(F|e,7)|—>0 as é—oo.
F3 | 08

Thus, it can be argued that (3/08)P.(F'|¢, 7)=0 for all values of F, ¢
and 7, and hence P.(F'|¢& 7) is a non-decreasing function of £. Since
P (F'|&, 7) is bounded uniformly for all F', ¢ and 7, there exists a limit

function, P.(F'|7) say, such that
16131} P.(F|& 9)=PF|7) .

By the continuity of P.(F'|¢&, 7) as a function of (F, %) for every fixed
&, and the monotonicity of the sequence {P.(F'|¢, 7)}(6— o), the limit

function P.(F'|7) is continuous with respect to (F,7), and hence, uni-
formly continuous for all F and 7 such that 0<F<F; and 0<7<1.
Again, from the monotonicity of the sequence, the continuity of the

function P.(F'|& 7) and P.(F|7), and the compactness of the domain
of (F,7) under consideration, it follows that the convergence

P(F|&)—>PAF|7) as oo
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ié uniform in (F, 7), i.e.,
(4.28) 7’SF1;I;OIP‘»(FI& 7)—P(F|p)|—0 as §—oo.
Hence there exists a positive number &=¢(c) such that
(4.29) Sup | Po(F'|€, 7)— P(F'|§%, )| <e

for any given values of & and &* such that & £*=¢4,. From (4.25) and
(4.29), one can conclude (4.28), as was to be proved in the second step.
Let us put, for the sake of simplicity,

(4.30) e,=d+T, d,=T/(4+T) and d,=T/4+T),
then it is clear that

(4.31)  cfb—dt+ Ty,  do—oTof(d+T) and d,—Ty(d+To)
as b—oo .,

Furthermore, let us define
(4.32) QL(F|&, 7)=Pu(F|c:£, du) -

Now, in the third step, we will show that, for any given ¢>0,
there exist a positive number d=d() and a positive integer by=b(ec)
such that

implies
(4.33) sup |Qu(F'[¢, 7)—Qu(F[1, 1) <2

for all b=b,.
To show (4.33), we consider the case F'>Fj in the first place, where
F, is the same as in (4.18). From (4.24) we see that

sup [1-Qu(F|¢,7)|—0 and  sup |1—Qu(F[1,1)|—0
F>F,

&7, F>F,
as b— oo,
and therefore
(4.34) Sup |QLF|&, 7)—QLF'|1,1)| >0  as b—oo.
7, F>F

Suppose that FF<F, in the second place. Since P.(F'|¢, 7) is uni-
formly continuous in (F,§&,7) over the domain 0=F<F;, 0=(=4,
0<7<1, & being the same as in (4.23), there can be found a positive
number §,=3dy(¢) such that
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1€ 7)— (&%, 7%) <8,
implies
(4.35) sup | P<(F'|&, 7)— PoF| %, 7%)]|<e .
Let by be the minimum integer such that 2£,<¢,, and let us put
d=min (1/2, é,/c,,) ,

then it is easy to see that [(§, 7)—(1,1)|<d implies |(c,&, d,7)—(cs, d,)]
<, for all b<by, and if b>b,, then ¢,¢>& and ¢,>¢& so long as 1 (&,
7)—(1,1)|<4. Hence from (4.35) and (4.29), it follows that for (&,7)
such that [(&, 7)—(1,1)|<é

sup [Qu(F18, 7)—Qu(F |1, D|<e if b=by,

Sup [QUF |6 D—QuUFIL DI<e  if b>by,
and from the uniform continuity one can see that
sup |Qu(F'|1, 7)—Qu(F|1, 1)[<e .

Thus one can show that (4.33) is true.
We are now in a position to be able to show that the condition
(C) is satisfied in our present case.

sup [Qu(F'|¢, 7, 7)—Qu(F'|1, 1, 1)
<sup |QuF |4, 7, D—QLUFIE, 7)+sup |Q(FI1, 1, 1)
—QuFI1, )| +sup |QLF|¢, 7)—QuF 1, 1)| .
For a given ¢>0, one can choose b,=by(c) such that
sup [Q(F'[€, 7, 7)—Qu(F ¢, ﬁ)!éFs’E% [Qu(F [, 7, 7)—QLF|€, 9)|<e/3
for all b=b,, and hence
sup [Qy(F'|1, 1, 1)—Qu(F[1, 1)|<¢/3,

and choose d=d(c) such that

Sup |Qu(F'¢, 7)—Qu(F[1, 1)[<¢/3

so long as [(¢,7,7)—(1,1,1)|<d for all b. Hence there exists a posi-
tive number 6=4(¢) such that

I(E’ 7_7’ 5)_(1’ 1’ 1)|<6(€)



THE ASYMPTOTIC NON-NULL DISTRIBUTION OF THE F-STATISTIC 257

implies
sup Qu(F &, 7, ) —Qu(F|1,1,1)|<e

for all b=b,, which is the condition (C).

5. Asymptotic power function of the F' after the randomization

As was mentioned in the beginning part of Section 4, the dis-
tribution of the F whose c.d.f. should be obtained by taking mathe-
matical expectation of (4.2) with respect to the permutation distribution
of (&, 7, 7) due to the randomization, is asymptotically equivalent in the
sense of type (M), as b—oo to a distribution whose c.d.f. is given by
(4.4), or equivalently a distribution with the following probability ele-
ment :

o0 em(~A20) 3 PR 5 bl )

,(1_ T ) [(n—b—a)/2+p+v)
4+ T/ T(@2+p)(n—b—v+1)/2+v)

< a F)E/2+y—l<1+ @ F> —((n=b=3)/2+p+v)
PRy Par—

s F)

This can be rewritten as

where
(6.3) R (F)= a L((n—b—v+1)/2+p+v)

—b—v+1 I'(a/2+p)[(n—b—v+1)/24v)
& F ‘&/2+,u—l<1+ & F)—((n—b—ﬁ)/z-rp-ha)
' <n—b—’u+1 > n—b—v+1 )
Let us put

(5.4)  GyF; 4, T)=exp( 4 ;}T> ioi (T/j"z ) ("/2"2 Y 1 (F),

where H?(F) being the same as (4.6). Furthermore, using the func-
tion H(F) given by (4.9), we define

(T/20% (d/20% He(F) .

65 G4 T)=exo (- 4TV 5 5 P

2¢% / k=0.

||M8
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It should be noticed that the first step of the proof of the condi-
tion (C) given in Section 4 implies that
(5.6) sup |G(F; 4, T)—Gye(F; 4, T)| -0 as b—oo

for any given values of 4 and 7. Hence in the special case 4=0, one
gets

(6.7 sup |Gy(F'; 0, T)—G3(F; 0, T)|—0 as b—oo,
Since H,°(F') is independent of v, we have by (5.5)
(5.8) Gi(F; 4, T)=exp (— L) 55 L2 oy
20/ =0 ,u!
=Gy(F;0,T).
Hence from (5.6) and (5.7), it follows that
(5.9) sup | Gy(F'; 4, T)—Gy(F;0,T)|—»0 as b—oo.

This means that the distribution whose c.d.f. being given by G,(F'; 0, T)
is asymptotically equivalent in the sense of type (M), to the power
function of the F after the randomization.

Thus one concludes this section by stating the following.

THEOREM. The power function of the F-statistic given by (1.3) after
the randomization is asymptotically equivalent im the sense of type
(M), to the mon-central F-distribution whose probability element is given

by

_ T\ & (T)24%) I'(n—b—a)/2+p)
(5.10) exp( 22)% ul T@2+pl(n—b—o+1)2)

g
a a/2+p—1 a =(n=b-3)/2+m
<n—b—'v+1 + n—b—v+1

(I:bfv—HF>

under the limiting process (3.13), provided that the condition (3.14) and
(3.15) are satisfied.

In the special case h=m, this becomes

_T\ & (T/26% I'(n—b)/24-p)
(5.11) exp( 20'2> A DR+ al(n—b—vTD)2)
,v_l (v=1)/2+pu-1 ,v__l —(n=0)/2+p)
' (n—b——v-l—l F) <1+ n—b—v-i—l)
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v—1
d( n—b—v+1 F) :

It should be remarked here, that the distribution having the prob-

ability element

(5.12) exp <_ T ) i (T/24%)" 1 (a, F>Ti/2+ﬂ-1

2 i p T@2+p\2
oo (-3 F)u(5r)

i.e., the non-central chi-square distribution is also asymptotically equiv-
alent in the sense of type (M), as b— oo to the power function of the
F-statistic.
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