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1. Introduction

Classical statistical analysis based on the complex Gaussian distribu-
tion has been investigated recently in Goodman [9], James [10], Khatri
[12], Giri [8], and Saxena [15] in the sampling theory framework. In
this paper attempts are made to discuss some Bayesian estimation pro-
cedure for the complex multivariate regression model and hence to derive
the complex analogues of the analyses given in Geisser [6], Geisser and
Confield [7], and Tiao and Zellner [16].

In Section 3, we discuss the prior and the posterior distributions of
the parameters § and 3 for the model (2.1). Properties of the posterior
distributions of these parameters are then derived in Sections 4-6. For
the notations of this paper we follow in essence Khatri [12] unless other-
wise stated.

2. Specification of the model

Consider the following complex multivariate regression model
2.1) Y,=6X+U,, j=1,2,---,m

where Y,;=Y,+1Y,,: pxk is the jth observation matrix, 6=6,+16,:
pXq the unknown parameter matrix in the pg-dimensional complex plane,
X=X +1X;: qXk a given matrix of design variables with rank ¢, and
U;=U;;+1iU;, : pXxk the complex matrix of random disturbances. In this
paper it will be assumed that the U,’s are independently distributed as
complex Gaussian with zero expectation (that is, EU;;=EU,;=0) and
covariance matrix V,=FE{ufu}'} =KQZX, where uf is the pkx1 column
vector of columns of U,, and further that ¥=23,4+4%, : pXp is a hermi-
tian positive definite matrix (hpd) and K : kxXk a known real symmetric
positive definite matrix (spd). Then, following Goodman [9], we have
for the likelihood function of (4, 3):
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2.2) L0, 2|Y)oc|Z| = exp{—é tr 3YY,—0X) KT, = 0X)'}
Now, if we put
=Y K'X'(XK'X')"  and
é‘,( _6X)K(Y,—6Xy, where Y.—%z::

then one can easily observe that 4 and S form a mmlmal set of suffi-
cient statistics for 4 and Y, and whence,

2.3) L@, 3|Y)oc|Z|* exp {—tr I[S+n(@—6) XK X'(6—6)]} .

In Section 3 we shall make use of (2.8) to derive the posterior distri-
butions of ¢ and 2.

3. Prior and posterior distribution of # and ¥

For the prior distribution of ¢ and %, we follow Jeffrey ([11], p. 182)
to assume that a priori ¢ and I are statistically independent and fur-
ther that

3.1) P(@)ccconst.

This prior purports to reflect to a large degree prior ignorance or
relative diffuseness of # and can be justified by the principle of stable
estimation or heuristic arguments or others. For the prior of 3 we
shall follow the invariance principle due to Jeffrey ([11], p. 180) by
taking

_p OlogL , —E d*log L 3
0000 51> 00:;,00 15
P(X) <
_p %lglL = _p FlogL
0015064 jc1> ’ 061500 5>

1<7, V<5, h<s, W<,

where 2=Ex+7;22=(0'i1(1))+7:(¢7M(2))-

Now, if we put I'=W=W,+iW,=(w;;w) + (W), then W, is spd
and W, skew symmetric so that w,,,,=0, k=1, 2,---, p, and it can readi-
ly be seen that,

olog L _ g tr 2( 2 )—tr< 2 )[S+n(o—é)XK-1X'(5f5)']
W 51y Wiz W;jc1

1=J
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{ =kno.w—Cua

=2kmij(l)_ i 1#7,

and
dlog L

Wy

=2kno1—Crso » h<s,

where Cyqy, Ci;qp and Ci,o are numbers independent of elements of X
(and hence of W=23).

Thus, the adoption of the Jeffrey’s invariance principle leads im-
mediately to take as prior of 3!:

dlog L _E dlog L 3
OW; ;10 Wy yrc> ' OW;51,0Whs >
P(3Yec
d*log L & log L
awm(Z)awi’j'(l) ’ OWns0Whsrc>
a(El y 22) iz > > :! >! I3 '
oc| 2Lt =[P, 1=j, V<], h<s, K<Y,
oWy, Wy)

the last equality of which follows from Khatri [11] and Deemer and
Olkin [4] and whence,

(3.2) P(Z)oc|3|?.

Thus, if we combine (8.1) and (3.2) with (2.3) we obtain the joint pos-
terior distribution of ¢ and ¥ as

3.3) P(6, £|Y)=C|Z|"**» exp {—tr S~ [S+m(0—6) XK X'(6—0)1}
where

C=rm{Iy(nk—q)} S| |nXKX'lp,  [@)=nr*" ] TQ—j+1) .
j=1

The normalizing constants C in (3.3) is obtained by first transform-
ing 3 into 3! and then making use of the complex Gaussian and complex
" Wishart densities given in Goodman [9].

From (3.3), it follows immediately that the posterior distribution
of 3 is

(8.4) PC|Y)={l}(nk—q)}!|S|" | Z|~*" P exp {—tr 27} .

This is the complex analogue of the inverted Wishart density (Tiao
and Zellner [16]) and will be denoted in this paper by 2,.,~W;.(»,
kn—aq; S).

Further, one can integrate out X easily from (3.3) by using the
density (3.4) to obtain the posterior distribution of # as
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(3.5) P@O|Y)=aTynk){[(nk—q)}*|S|" | nXK'X'|]»
. |S+n(0—6) XK X'(0—8) | ™.

This is the complex analogue of the matric ¢-distribution as defined in
Dickey [5] and will be denoted in this paper by

Opxg~GMt(p, q, kn; 6, S, nXK' X)) .

Properties of the above two densities are to be discussed in Sections 4
and 6 and then posterior distributions of some functions of the param-
eters and their H.P.D. (Highest posterior density) regions will be derived
in Sections 5 and 7.

4. The complex matric t-distribution

In this section we derive some properties of the complex matric ¢-
distribution, X,.,~GMt.(p, q, n; 6,2,V), as defined in the previous sec-
tion. We shall first show that the marginal and the conditional distri-
butions of X are also the complex matric t-distributions. Making use
of these results we then proceed to the derivation of the distribution
of linear functions of X.

THEOREM 4.1. Let X,.,~GMt.(p,q,n; 0,2, V) and

'3} Qg
7, 2y 9 9
X=X, Xo)o,  0=(0u, Ou)r, V=(‘_’“ V)
14 sz L]

where q+q,=q. Then X ~GMt.(p, ¢, n—qz; 0c1, 2, Vi) and X| X~

GMtc(p1 qsy M5 0cz+(Xcl—0cl)Vu—1‘,121 2+(Xcl_0c1)v'11_1(Xcl_0c1)’! VZZ-I)! w}wre
V=V —ViVii'Vy,.

Proor. We have |V|=|Vyl||Vyu,|. Further, if we put V'=

(4 4%). then Vi'=Au—AuAuidh, Aa=Va) and Ap=—VaiVaVii', and
12 22

whence, by completing the square,
(X—=0VHX—=0) =(Xe1—0)Vii (X1 —6.1)'
+ (Xc2 - 0c2 - (Xcl - 001)VI_I_IV12)V2;-11
¢ (XcZ - 002 - (Xcl - 0c1)V1—1‘1V12), .

Thus
P(X)=z"7{T(n)[[(n—q)} | Z|"*|V[?| 3+(X—0)V {(X—=6) |
=n" P (n—q)/[(n—q—aq)} | Z["" 0|V, [™?
¢ l 2"{‘ (Xcl - 051)"11_1(X01 - 001)’ I —(n—q,)n.—pqz {Fp(n)/Fp(n —Qz)}
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* I V22-1 |—p | 2+ (Xcl - 001)V1_1-1(Xcl - 001), !"—qz
* | E + (Xcl - 001)V1;1(Xcl - 0:!)' + (Xcz - acz— (Xcl - 0cl)Vl;1V12)V2;-lx
c (Xop— O — (X1 — 0.0V Vi)' |

This completes the proof of Theorem 4.1.
Now, one can readily show that

| Z+(X—-OVH(X=0)|=|Z||V+H(X—0YZH(X—-0)||V|.

Thus, if X~GMt.(p,q,n;0,2,V), then X'~GMtJ(g, p,n;0',V,%) and
conversely.

Utilizing this result, Theorem 4.1 leads immediately to the follow-
ing results.

q
THEOREM 4.2. Let X,.,~GMt(p, ¢, n;6,3,V) and X= <X>” o=

q Py Py sz Py
0,1\ 2y 2n\n
() , and 2=<_ > . Then X, ~GMt(ps,q, n—ps; 61, S, V) and
r2/ P2 2{2 Ezz P2

szerl"'GMtc(pzi (1, n; 0rz+S{zZHI(Xr1'—0r1), 222-1; V+ (Xrl—ﬁfl)lzl—il(xﬂ—afl))
'whe're 222.1=222_S{22ﬁ1212'

By making use of the above two theorems we now derive the dis-
tribution of linear functions of X.

THEOREM 4.3. Let X,.,~GMt(p,q,n;0,3,V). Let D:qxs and
R : rxp be matrices (complex in general) of ranks s and r respectively.

Then XD~GMt(p, s, n—q+s; 6D, 3, D'VD) and
RX~GMt,(r,q, n—p+r; RO, RER', V).

PrOOF. Consider the transformation 7T :Z=XV~  Following
Khatri [12], the Jacobian of the transformation is J=0X/0Z=0(X,, X5)/o(Z,,
Z)=|V|?, where X=X,+1X, and Z=27,4+1Z,, so that Z,,,~GMt.(p, q, n;
ov-2, 3, 1). 1If we put H=V"D, then rank H,=rank D=s and there
exists a matrix H,: gx(g—s) of rank ¢—s such that H=(H,, H,) is non-
singular. Thus, if we make the transformation W=ZH= (ZH,, ZH,),

we obtain the Jacobian as 8Z/oW=|H'H|™® and hence,
Woxq~GMt(p, g, n; 6V2H, 3, H'H) .
From Theorem 4.1, it follows that
W,=ZH,=XD~GMtp, s, n—q+s; 6D, 3, H'H,=D'VD) .
Now, X'~GMt(q, p,n;6',V, %) so that
X'R'~GMt(q, r, n—p+7r;0'R',V, RZR') .
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Thus, RX~GMt.r, q, n—p-+r; R4, RSR', V). Q.E.D.
If s=1, then XD is a complex linear combination of columns of X
and D'VD is real. We have for the density of (XD) :
P(D'X"y=n"?{[(n—q+1)/[(n—q+1—p)}(D'VDy+->"¢| 3|
- (D'VD+D'(X'—6")Z(X—0)D} "¢V,
Or the density of Y=(1/¥ D'VD)D'X’ is
P(Y)=z"?{(n+1—q)/['(n+1—q—p)}
S )T (=),

where pu=(1/¥ D'VD)D’'6’. This is the complex analogue of the multi-
variate t-distribution as given in Cornish [3]. We shall use the nota-
tion Y~Mt.(p, n—q+1; g, 2). '

Similarly, if =1, then RX is the complex linear combination of
rows of X and we have for the density of Z=(1/¥ R3R' )RX:

P(Z)=z"{I'(n—p+1)/['(n—p+1—q)}
. IVl—l(l_I_(Z_W)V—I(Z__—I,V)r)—(n—pﬂ) ,
where W=(1/¥ RZR' )RS .

Or Z=(1/¥ RXR' ) RX~Mt (q, n—p+1; W, V) where RER’' is real.
The following theorem gives a connection between the complex
matric t-distribution and the complex multivariate Beta II distribution.

THEOREM 4.4. Let X,.,~GMt.(p,q,n; 6,2, V). Then, putting W=
(X—)V-YX—8), the density of W 1is
P (W) ={L,(m)/[[(n—) (@} 2" | W[*? |2+ W|™, n>¢>p.

Proor. Utilizing the complex Wishart density established by Good-
man [9], it is easy to establish that

Voo @Y =IVE o = L@} W VP
Y:pxq Yi:pxq
Thus,
PuW) =Ly n—g) | VI > | | 5+ (X =0V (X=0) |-"dX

{ X—0V(X—0)=W
X :pXq
= LM n—l QB I [ W[ ?| S+ W™, «n>¢>p.
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This is the complex analogue of the nonstandardized multivariate Beta
IT distribution and will be denoted in this paper by W,.,~ B, (¢, n—¢; 2).

5. The posterior distributions of ¢ and of constants of ¢

In Section 3 we obtained the posterior distribution of ¢ as 6~GMt,
(0, ¢, kn; 0, S, mXK'X")"). Thus, from Theorem 4.4 it follows that
the linear combinations of columns or rows of # are distributed as com-
plex multivariate-t a posteriori. Specifically, if 6d is a column linear
combination of #, then a posteriors,

1 J—
= _ od)
r T oy QR A
1 i~
~Mt.\p, nk—q+1; —— _ ad), S
<p T kg Ty )

Similarly, if ¢'# is a row contrast of ¢, then a posteriors,

_ 1 . 1 -1\ —t
w= Wc0~Mtc(q, nk—p+1; 2 @, (nXKX') ) .

Utilizing these results we now proceed to obtain the H.P.D. re-
gions for 6, #d and ¢'# as defined in Box and Tiao [2], which then pro-
vide tests of Hypotheses for Hy : 0=6,, Hy: 6d=pu, and Hy : c'0=w)
respectively.

Following Box and Tiao [2], we have for the H.P.D. region R of
# with content 1—a:

R :U6)=|S||S+(0—6)(nXK~X")(6—6)|"=C. ,

where C, is determined such that Pr{U#)=C,|Y}=1—a.

But, from the calculation of moments of U(8), it follows that U(6)~
U,,0,x0-q» Where U, ¢ in_, is the product of p independent Beta I variables,
B(q, kn—q—3+1), j=1,2,.--, p, as defined in Anderson [1]. Thus, we
have C,=U, 5 4.inq» Where U, ;i is the lower a point of U, g inq-
Putting «a=0.05 (or some small nonnegative number), one would then
tend to reject the Hypothesis H,: =6, if U(8,)<Cis, for a posteriori
the probability that the data will fit the hypothesis is at most 0.05.
This argument parallels the classical hypothesis testing approach as given
in Lehmann [13]. In fact, it can readily be shown that the likelihood
ratio test for H, : =46, in the Pearson-Neyman sense with level of signi-
ficance a=0.05 is given by U(6,)<C,s, as given above.

For the derivation of the H.P.D. region for #d we notice that, by
putting p=1/¥ d(nXK'X')"'d)d'(0—6) = +ig, and S'=R,+iR,, we
have «
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P(p) = {I'(nk—q+1)/[z"I'(nk—q—p+1)]}

. g; —gj 1/z<1+( o, p 2)(% —§j><”l>>—m-q+n-

Thus, by utilizing a property of the multivariate ¢-distribution as given
in Cornish [3],

nk—p— Q‘l‘l( /)<R1 —R,

)~ eror
2 R, R1>< 2p, 2nk—q—p+1) 9 a posteriori

Therefore, by adopting the approach given in Box and Tiao [2], we ob-
tain the H.P.D. region of content 1—a for Ad as

[(0—6)dVS[(6—6)d1<pld' (n XK X" 'd1F ,00,20m—p-gs vl (W —D—q+1)

where F, 3 sni—q—p+1> 1S the upper a point of Fiy, sme_g_pin-
Similarly, we obtain the H.P.D. region of content 1—a for ¢'d as

ne'(0—0)(XKX")(0—6) e<q[e'SelF.,z, sat-p-gs0/(k—p—q+1)
where F, 3, snr—p-q+en 18 the upper a point of Fiy smr—pgin -

Thus, letting « be a small positive number (0.05 for instance), one
would then tend to reject Hy : 8d= gy, if (;fo—éd)’S“(on—éd)> pld(n XK.
X"V 'F, 3p sk —q-psn/(Wk—D—q+1) and reject Hy, : ¢0=uw, if n(wo—z-’é)-
(XK-'X') (7!.)0_E'é)’>q[E,SC]Fa,Zq,2(nk—p—q+1)/(nk—p_q+ 1).

6. The complex inverted Wishart distribution

Let X : pXp be a hermitian random matrix distributed as X,,,~
W:idp,n; V), where V:pXp is hpd. In this section we shall derive
the distributions of some interesting functions of X.

THEOREM 6.1. If X, ,~Wip, n;V), then Y=X"'~W.(p, n; V)
and conversely.

ProorF. This theorem is trivial by (3.4), since, following Khatri
[12], one can easily show that the Jacobian of the transformation T': Y=
X tis oY jo X=| X |*>.

THEOREM 6 2. Let X,,><,,~WI c(p, n; V) and let X and V be partitioned
I

X, X Vi V.
X—< 1 12) nd V—< 1 12) . Then X;~Wi.(p, n—p:; Vi),
as X4 X e a Vi Vilm 1 Le(P1 D2 Vi)
X22.1:Xzz—XléXﬂ‘Xﬂﬁ-'WI,e(pzy n; Vi) tndependently of Xy, where Vi, =

VZZ_‘_,l;VII_Ime and
Z=X7"Xu~GMt(py, poy n+p1; Vii'Vig, Viil, Vi) .
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PROOF. Put Y=X "=<Y“ Y“), where Y,=Y};, then, by complet-
Y21 Y22

ing the square,
tr VX '=tr V,, X'+ tr Vi X5 X — Vi Vi) Xk
(X' X, —Vi'Ve) +tr VeeuXazh -

For fixed X,,, if we make the transformation
- Xppu=Xo— Xi X7 X,
Z=X'X,
then we obtain the Jacobian of the transformation T as

Xy, X1) — 30X =|X11X'1{|"’=|Xu|”2 .
(X1, Z) 0Z

Thus, noting that |V|=|Vyu||Vaal, |X|=|Xul|Xu.| and I(n)=r""I,(n)
-, (n—p,), we have
P(Xyy, X, Z) = {”plpzrpz(n)rpl(n_pz)} HVul* Vel
. I Xll l—(n—p2+pl) | Xzz-l I—(n+p)
- exp {—tr Vi Xii' —tr Vo X
—tr Vil Z— Vi Vi) Xat(Z— Vi Vi) }
=Wy, Xu; D1, n—D0s; Vi)W, o(Xas1; D2y 15 V)
- PP | Vi [P2] Xopo |2
- exp {—tr Vi(Z— ViV Xa(Z—Vi'Vy))

which implies the first and the second statements of Theorem 6.1.

If we integrate out X,., from the joint density of X, and Z by
making use of the complex inverted Wishart density, we obtain the
distribution of Z as

Z’~GMtc(p2, D1, B+ VY;V,II, VeVt .
Thus
Z~GMt (py, Doy n+D1; Vii'Vi, Vi, Vi) Q.E.D.

If p,=1, then X, =2, and V=0, are real and P(x,)={I'(n—p+1)}!
g PHE L P exp [ —gyf2y}.  Thus 2(ey/%y)~Xin_psn, & Chi-square dis-
tribution with d.f.=2(n—p+1). If p,=1, then Xp. =%yp, and Vii=oun.,
are real and so, 20uy.1/%yg.1~213,.

The next theorem derives the distribution of «,;/vz.x,; =7, 1#J,
which will be called the complex correlation coefficient.

THEOREM 6.3. Let X,.,~Wi.(p, n;Z2) and let x;; be the (i, j)th ele-
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ment of X. Then T ="+ ="2iy [V 2255 = (Tiy00+1%:50) [ ¥ L4jj
has density

—p+92 o e
P(ry)= Fi;’/ip&tp—l-—l—lll)z) (L= ;0" P (L — 13 T, )P0~

* Lwpin(R.P. (piy74)))
where p;;=0:;[V 6,0;; with o, being the (i, j)th element of 3 and

I2(1|-p+2)(R-P. (ﬁiﬂ'ij))= Sjw [COSh ﬂ—'R.P. (5‘jrij)]—2(‘n—p+2)dﬂ .

In this paper we shall use the notation r,;~h.o;;, n—p-+2).

Proor. From Theorem 6.2,

(Ze 2) (2 n—pt2; (2 o)),

Ty Ty G5 Ojj
where z,;, x,,, ¢, and g;, are real quantities, that is,

P(x;, Ljjs wij) ={xl'(n—p+2)"(n—p+1)} -

(0405, (1— i ;0 )" 24 (@i, (L —13744)) ™" 7PH0
1 G, g G0 —
.exp{_w_ [_u 1953 |99 R P (5,r )]}
A=r,7y) Loy Loy T

If we make the transformation

=a T
Vx“x” 40'“0'.”

then 0<a<oo, —c0<p< o0, |1,|<1 and

(@i, 255, Xiy) | — ‘ (L, 2555 Tijewr ) Tijew)
e, B, 1) e, B, Tiy>y Toyw)

=(”ii"jl)2% .
Thus,
P(a, B, ri)=2{z'(n—p+2)[(n—p+1)} "L —pyp;))" P 703
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2a _
—]___Tj?'ij (COSh ‘8 - R.P. (p.-ﬂ'u))}

0<a<oo, —oco<B<oo and |ry|=1.

. (1—"'“?“)_(“—?'“) exp {—

Integrating out a and g and noting that I'(1/2)I"(2r)=2""'I'(r)['(r+1/2)
for any positive integer r, we obtain the desired conclusion. Q.E.D.

If p,;=0, then Lq,_,.»(R.P. (p,7:;))=B(1/2, n—p+2). Hence,

I’ (’n-——p+2) . » \n—
P(ry)= L—r )7
= TRy Tm—piD
Thus, 7,7,~Bi(l, n—p+1) so that, using the relationship between the
Beta and F variables, (n—p+1)r,%,;/(1—7,¥:;)~Fy2a-p+y. Before clos-
ing this section we shall derive the distribution of the characteristic
roots &, &%, -+, 8 (if p<p) of X, Xa'X,X;;' by virture of which one

has immediately the distribution of complex multiple correlation coeffi-
D Py

cient. Putting Y=X"'= (If“ Y12>pl, then it is easy to see that Y;'Y;,-
Yl’2 Y22 Py

Y5V, =Xu X7 ' XiX;!. From Theorem 6.1, Y~W, (p, n; V), and hence,
following James [10], we have for the distribution of the characteristic
roots 4%, &3, - -, 0; (real numbers):

Fﬂl(n)
Fpl(n - pz)rpl(pz)[,pl(pl)
. |R2 Ipz‘Pl | I__Rz In-p«,—m i‘n; (5:_53)2
<
¢ 2F'l(nrn;p2r PZ, R2) ’

P(B?v 5;,‘ % 5:11)=

71..111(111—1) | Il’l— P2 ln

where R=diag (6, &, -+, 8,), P=diag (o, ps," -+, pp) With g, gi,--+, 25,
being the characteristic root of Vii'V,Va'Vi, and 2F~'1(n, n; py; PE, RY) is
the hypergeometric functions (in terms of Zonal polynomials) as defined
in James ([10], p. 488). In this paper we shall use the notation (3}, d;,
oe, 0p)~h(ol, 03,00y Oh Dy, D2y M)

If p.=1, then Fi(n, n; p;, P}, R)=F(n, n; p—1, 8} so that

2) — F(n) — 2\ S2\P-2(1 — ;2\n-p c 2 2
PO =g Ty A8y F(n, ni p—1, i)

where F(n,n; p—1, 8%} is the ordinary hypergeometric series.

7. Posterior distributions of ¥ and some functions of elements of

In Section 3 we obtained the posterior distribution of ¥ as S~
Wi.o(p, kn—q; S). Utilizing this result together with those given in the
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previous section we obtain in this section the posterior distributions of
some interesting functions of 3. The H.P.D. regions for these functions
are then derived and utilized to make inferences about them.

7.1. Let a;; be the (3, j)th element of 5. Then ¢,;, 7=1,2,---, p,
are real, and, from Theorem 6.2, (28;;/0,;) ~Xskn—q-p+1,» Where s;; is the
(2, 7)th element of S.

Similarly, ¢y;.5.., and $;1.55.., are real and, from Theorem 6.2, (2sy.5..,/
011~28--p) ~ xg(kn—q) .

In the sampling theory framework, it can readily be shown that
S~W.(p, kn—q; X) so that (2s,,/0,;))~Lsn-0» J=1,2,--+, » and (28y.35..,/
O11.38.9) ~ Xackn—q—psp - This shows that the sampling theory results are in
the reverse order of the Bayesian results. We have for the respective
H.P.D. regions of content 1—a for ¢;, and gy.5..,:

Iaj,=< 2s;; , 2s;; > and

2 2
x1,2(k1|—q—p+1) xz,Z(lm—q—p+1>

_< 2811.33..p 2311-23--1:) ,

where 2, and X!, are constants satisfying
(a) Pr{s2,.}+Pr{i=x,}=a and
(b) ()™ exp (=X »/2)=(X3,n)"""" €XP (—13,m/2).

7.2. From Theorem 6.2 and Theorem 6.3 we have for the respec-
tive posterior distributions of the complex correlation coefficient p,,=
o,;/Vau0;;, G#F, 1, 5=1,2,---,p) and the complex partial correlation
coefficient p,,,.lz..,,l=ah,.;g..pj/«/ahh.lz..pla,,.lz..,,l , (h#t, b, t=p+1,---, D) pyl
Y~h(ry; kn—q—p+2) and puss.p | Y ~h(Trisz..p,; kN —q—10:+2), where
Ty =8i;/v8;8;; with s; being the (i, j)th element of S and 7.1, =
Sneotzp [ VSuntzeop, Seretzpy, With Spepp., being the (k, t)th element of Sy,=

_Qr Q-1 3 — Su S1z>
Su—84SiiS, with S ( o)

These posterior distributions are too complicated to be utilized to
make inferences about p,; and p,.;...,, but asymptotic results can readily
be obtained. We now proceed to derive the respective asymptotic H.P.D.
regions for p;; and pu.;..,, and for such a purpose we shall need the
following well-known lemma.

LEMMA. Let x,: pX1 converge to pu in probability and x,~N(u, %)
asymptotically. Let fi(x), 1=1,2,---,k, be k functionally independent
functions in the p-dimensional Euclidean space which possess continuous
first partial derivative of./ox,=g,, at the neighborhood of p and(g.,).=g
() #0 for at least one j and all ©. Then, by writing (f(x))=(fi(x),
s FX)), Fe)~N{F(p), @02 (0:(p))) asymaptotically.
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Let now <‘¥“ X12)~W,,<2, N; (1 p)), Where X12:X12(1)+7:X12(2) and
X Xp o 1
p=p+1ip;. Then, by adopting the same approach as in proving Theorem

6.3, it is easy to establish that

XIZ

=it
11 12

~h(p; N) .

Now, by making use of the characteristic function, one can readily
show that asymptotically, (1/vN)(Xy, Xu, Xiw, Xiw) is distributed as
normal with expectation (1, 1, p,, p;) and covariance matrix

1 pl+pel pr o
1| e+e 1 2 [
NI o pr (1+pi—p)/2 0102
P2 [ 010: (1—pi+p2)/2 )
Thus, we obtain, by utilizing the lemma, (r‘>~N <Pl>,—1—(1——
7y ./ 2N

— 2 —
pf—pi)(l o ‘0"02 2)}, asymptotically. Or, (r‘)-—-><p‘> in probability,
—ppr 1—p: Ta P2

by using the bivariate Tchebychev’s Inequality as given in Olkin and
Pratt [14].

From this result it follows that the respective asymptotic H.P.D.
regions of content 1—a for p;;=pi;0y+1piw and Puess.p,= Pres>+0ne1c
are given by:

-1
1—7%0, '—"'u(l)’rim)) (pij(l)_rij(l))
R ATRETIOY] 1—7%0

=[.A1-70— 1";5]-(2,)]/2(]6% —q—p+2)

(Pmn — Ty Pije>— "'ij(Z))(
Pij—Tij»

and

(Ore1>—Thra>y  Preaw —Thea)
2 -1
. (1—7';::-1(1) , —’rm-lcl)"'m-l(z)) (Pm-m)"“’rm-ul))
2
—TheawTaer®s 1—Theaw One- 1 — Ther

<[22 (=T —Thea) ]/ (2(kn —q—p.+2))

where 7,;,=70+17, ”'m-lz--plz”'m-x(l)+’i”'nz-1(2)r and X, is the upper «
point of 3.

In the sampling theory framework, if one adopts the approach as
given for proving Theorem 6.3, one can readily show that

— 8y .
ra=—2U_ L p s kn and
i 1/8,18“ (pij q)
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Sht-12..p

~h(Pht-12--p1; kn_q_pl) s

’rnmz..m Vshh-lz--plstt-lz-»pl
where r,, is the sample complex correlation coefficient between the sth
and the jth variables and 7...., the sample complex partial correlation
coefficient between the Ath and the tth variables given the first p, vari-
ables. _

Notice that r;; is independent of p and 7., independent of p,,
in contrast to the respective posterior distributions of p;; and pu.ss..p,-

7.3. Let ¥ and S be partitioned as

Py Dy §1 é”z

2 2 Py n
Z’z ( _11 12) and S.: ( _ll 12> .

>X 1’2 D) 23/ Py S{z Szz Py

Then from Theorem 6.2, we have for the posterior distribution of the
complex regression matrix Z=23;'3,,:

Z|Y~GMt(p, p:, kn—q+pi; Si'Sie, Sity Sa) -

Thus, utilizing Theorem 4.1, we obtain the posterior distribution of
the complex regression coefficient B,=ay,/ay as

_ I'(kn—q—p+3) T
P(Be|Y)= T (kn—q—p+2) (811/[82:(1 —715T15)])

S _ g
.<1+m(ﬁ12 bys) (Biz—bys)

) —(kn—q—p+3)
’

where s,, is the (4, j)th element of S,

S 8 8
blg =112 and T= 2= b12 =2 .
Sut V' 81182 Sut

Or, equivalently,

(kn—q—p+2)|(Bu—by) [f——1

— I 1 2,2(kn—q—p+2)
] 3
E22( L 121 12)

Making use of the result given in Section 5, we obtain the respec-
tive H.P.D. regions of content 1—a for Z and B,; as

| I, + Si(Z—8Su'S1)Sa(Z—8i'Sw) | =2 U. Dy Py kn—q+ D7
and '

_ 1 yie< {Sulkn—q—p+2)
I(ﬂm bxz)l = { 8p(1—7yT)

-1
} Fa,2,2(kn—q—p+2) ’

where U, ,,, 5, kn-q+p,-5, 18 the lower a point of U, ;, in—gsp,-p, 304 Fo g 26n-gpsn>
the upper a point of Fsun_q_pin-
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Consider now the partitions

™1 e p—my—my ™1 M3 p—my—my

Zﬁ 2;’; Z;’; m Sﬁ Si‘; S;‘; ™
2=(S;;' % 2;;,)m, and S= (S:s' R S;';)m,

2—;'5, 2—%' 2%/ p-my-my gi’:f;’ §;§' S;‘:fx p—my—my

From Theorem 6.2, if we put

(2_11-3 2!2«3) — (2?; 21";) _ <Z$>2£—1(f§r f;g/)

Sy Zuo \ZH I \Z%
then
211-3 212-3) lY W <m . <Sll~3 SlZ-S))
= ~ ,c +m ’ kn—q: = ’
<2;2.3 S AN s Swa
where

Sua Sua)_ (SE ﬁ)_ Sﬁ) *-1 Q! Q!
<g1,2‘3 Szg.g>_<sl>';, 2"; < 2>|; 33 (Slas S23 .

Thus, we have for the posterior distributions of the complex partial
regression matrix Z,=23;.%,; and the complex partial regression coeffi-
cient ﬁlz.sz 0'12.3/0'11.3:

Zy|Y~GMt (m,, my, kn—q+my; Si%Sis, Sii'sy Sao.1s)
and

_ _I'(kn—q—m,—my+3) < Sus )
P(Bs|Y)= T
(Brs|Y) L (fn—q—m,—m;+2) \ 8y.4(1 —71.5712.3)

’

-1 Sit.3 N e v
( " Sn.5(1 —712.4712.5) (Bizs—buza) (Bra.s—bizg)

> —(lm—q—m]—m2+3)

where, S.is=S.5—S.551'S123, i3 is the (¢, 7)th element of <‘§’i"3 Sl”),

S
. 123 22-3
big.s=S813.5/811.3 and 713.5="812.3/v811.582.3 with m,=1.

The H.P.D. regions of content 1—a for Z; and pB,,; are given re-
spectively by :

| T4+ 811.(Z.5—Sii'sS12.8)S215(Z.s— Si'sS12.8) | 7 Z U, mymy, kn-gimy—my »

and

| Brzs—bizs|* = { Sus(kn—q—m,—my+2)

-1
F 2,kn

— a,2, —q-ml-m3+2 .

Sp.3(1 — 712,57 12.3) }

We now note that the above results differ from those derived by
the sampling theory approach. In fact, by adopting the same procedures
as in proving Theorem 6.2 we obtain the distributions of the sample
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complex regression matrix S;'S,=W,, and the sample complex partial
regression matrix S;Sps=Wi.s as

Wi=Si'Se~GMt.(p1, D2 kn—q+py; 2520, 25, S0
and

Wie.s=S1S1.s~GMt(m,, my, kn—q—p+m,+m,+m,;
St s, 2htsy Sna) -
Thus we have for the distributions of the sample complex regression

coefficient b,,=sp/s;; and the sample complex partial regression coefficient
D123 =812.3/S11.5 ¢

_ I'(kn—q+1) i
P(by) = xl(kn—q) < 022(1—013012) )

gy - (b.o— B..)
. (1 -I-m(bu B1z) (b1z— Bz)

) —(kn—g+1)

and
Plbys) = I'(kn—q—p+my+m,+1) ( 0113 )
. al(kn—q—p+mi+ms) \ 0us(1—pp.3012.5)

. <1+ Ty (b12.3— Biz.s) (brz.s— Pras)
022~3(1 —sz-splz-s)

) —(kn—g=pt+m;+mge+1)
’

’m1=1 .

The differences between the results from the Bayesian approach
and from the sampling theory approach arise from the fact that the
former uses the complex inverted Wishart density while the latter the
complex Wishart density.

7.4. In closing this section we note that the posterior distribution

of the characteristic roots gf, o3, -+, o5, (m=ms) of S ISASLI s
(Pf, Pg,' * p;l)lY"’h(dgy g: Y d;,; D1y Day ’nk—Q) ’

where d}, d},- - -, d; are the characteristic roots of S1:S:S4S5!.  For the
particular case p,=1, the posterior distribution of the square of the
multiple correlation coefficient p* between the first variable and the rest
(which is also defined as the multiple coherence by Goodman [9]) is:

21 V) — F(kn—Q) __d2Ykn—af ;2YP=2(1 __ A2)kn—g—D
PEHY)= =) -y —e)

- F(kn—q, nk—q; p—1, &%) ,
where d? is the square of the sample multiple correlation coefficient be-

tween the first variable and the rest.
Similarly, we have for the posterior distributions of the character-
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istic roots pls, pis, ) Pnys (M=M,) of 3,25 3,255 and the square of
the partial multiple correlation coefficient p% between the first and the
2, 8,--+, m;+m,) variables given the rest (the partial multiple coherence
in Goodman’s terminology):

(pf-S’ Pg.ay Sty anl-a)lY“'h(df-sy ;-31 Sty dinl-3; my, M, kn—Q) y

where di;, dis,- - -, dh, s are the characteristic roots (m,=<m.,) of S,,.,Sz4-
S,.5S5%, and
P(P?ai Y)= I'(kn—q) (1_d?3)ku—q(p?3)ml+m2—2

I'(m+m,—1)I(kn—q—m;—m,+1)

. (l—p?a)kn_q—ml—sz(kn-q, k’l’b—q, m1+7n2—1, d?ap?s) )
where d? is the square of the sample partial multiple correlation coeffi-
cient between the first and the (2, 3,---, m,) variables given the rest.

In the sampling theory framework, since S~W(p, kn—q; %), we
have:

(dg, g" ) dgzl)"'h(pfv ng' ) ‘0:’1; D1y Doy k'n—q)
and

2y F(kn—q) _ p2Yen—q( J2\P—2(1 — J2)kn—q—P
P(d})= =Dl Gm—q—p<T) (1—p) = d)y (1 —d")

- F(km—q, kn—q; p—1, d%%) .

These are in exactly the same form as the respective posterior distri-
butions of (o}, o3, -, 0p) and @, interchanging (di, di,---, d;) with (o,
i+, o) and d* with o*. These results do not hold between (di., di.,
oo, dn.s) and (ols, pis,c v+, Phys) and between di; and p’;, however. In
fact we have

(df«sy d;-Sr tt Y d?nl-a)Nh(Pf-sv p§-31 *t quld; my, My, kn—q—-p+ml+m2)

and

9 F(lcn—q—p+m1+mz) 2 \kn—g—p+m,+myf J3 Ym +my—2
P(d)= 1—0? a-prmytmy(f2 ymytmy
(d%) F(m1+m2—1)F(kn—q—p+1)( o) (d)

« (1—=d%) 1 ?F(kn—q—p+m;+my, kn—q—p+m;+m,,
m1+m2—1, d23p23) .

For deriving the H.P.D. regions of o* and p’ of any given content, we
notice that if p* has density

2\ __ I'(N) AN A 2\0-2(1 __ 2\N-P
P@)= e —pra—p s L8 =)

. F(N, N; p—1, &)
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and if d?*+0, then, p' is asymptotically normal with
E(@)=d'"+[(p—D/(N-1)]1—d)—2(N—p)d*1—d*)/(N*-1)+O(N )
and

Var (o") =4d*(1—d)(N—p/[(N*—1)(N+3)]+O(N ) ,
(for derivation, see Kendall and Stuart, Vol. II, p. 341).

These facts may be used to approximate the respective H.P.D. regions

for p* and p’ of any given content.
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