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Summary

The purpose of this paper is two-fold: (i) to extend the simul-
taneous confidence intervals procedures (SCIP) of Healy [7] along the
lines of Chow and Robbins [3] and (ii) to develop certain robust non-
parametric SCIP based on the results of Sen [10] and Sen and Ghosh
[11]; the allied efficiency results are also presented.

1. Introduction

The proof of the non-existence of a fixed-sample size procedure for
obtaining a fixed-width confidence interval for the mean of a normal
population with unknown variance and minimum confidence coefficient
1—a (0<a<l) is due to Dantzig [4]. Stein [12] developed a two-stage
procedure which meets the requirements. Healy [7] extended the Stein
procedure to the k (=2) sample problem dealing with simultaneous con-

fidence intervals for (i) all the k¥ means, (ii) all possible <g> differences

of the means, and (iii) linear functions of the means. These procedures
suffer from the principal drawback of usually needing a larger sample
size than one might require due to their failure of updating the esti-
mate of ¢!. Later, Chow and Robbins [3] have modified the Stein pro-
cedure by a sequential one for which as the prescribed width of the
confidence interval is made to converge to zero, the confidence coeffici-
ent approaches 1—a (“asymptotic consistency ”), and the ratio of the
ASN to the corresponding sample size assuming ¢ to be known approaches
to unity (“asymptotic efficiency ”). Besides, normality of the underly-
ing distribution, assumed by Stein [12] (also by Healy [7]), is not needed;
it is enough that ¢*<oo for the unknown population. Our first objec-
tive is to extend the Healy procedures along the lines of [3].

Some extensions of the Chow-Robbins procedure based on a general
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class of robust nonparametric rank statistics (and without requiring the
existence and finiteness of ¢?) have been considered, very recently, by
the precent authors ([11]); we also refer to [56] dealing with the sign
and the signed rank statistics. QOur second objective is to make use of
these results along with the fixed-sample size SCIP results of Sen [10]
to provide robust competitors to the procedures referred to earlier.
Finally, the allied asymptotic relative efficiency (A.R.E.) results are con-
sidered in the concluding section, and these provide good reasons to
advocate the use of the robust procedures in many non-standard situa-
tions.

2. SCIP based on sample means and variances

Consider the mutually independent random variables {X;, =1, 2,
-wk; 7=1,2,---}, where the X,,, =1, are iidrv (independent and
identically distributed random variables) having a cdf (cumulative dis-
tribution function) F(x) with mean 6, (unknown), ¢:=1,---,k. We as-
sume that these cdf’s are homoscedastic i.e.,

(2.1) Sm (x—6,)'dF(x)=¢* (unknown), for all +=1,---,k,

where 0<d*< .

ProBLEM I. Given a positive d, based on a sample of size n (from

each distribution), we want to find intervals I, ¢=1,..-, k, such that
(i) the width of each I is <2d and (ii) P{#, € I, 13 1, Lk}zl—a
(0<a<l). Since F,,---, F, and ¢ are unknown, no fixed-sample size

procedure sounds feasible.
The following sequential procedure, framed along the lines of Chow
and Robbins [3], is considered. For every n=2, define

21 3 (X - XOF

22 X®=n'3X,, i=1,---,k; &=
j=1

Thus, s’ is the so called “pooled within sample mean square” at the
nth stage of experiment. Define the stopping time N=N(d) to be the
first positive integer m (=m,, an initial sample size, =2) for which
m=d st M., where M, , is the upper 100a% point of the distribution
of the maximum modulus of % random normal deviates. Our proposed
SCI for 4,,---, 6, are then

(2.3) N(d) — {0t N(d)—dS&SX (d)+d} y 7:=1, 2,’ Tty k .

The following theorem depicts the properties of the proposed SCIP for
small d.
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THEOREM 2.1. Under (2.1), N(d) is a non-increasing function of
d, N(d) is finite almost surely (a.s.), 1}1101 N(d)=o a.s., and Lim EN(@)
o —0

=00

(2.4) ngl N@)/v(d)=1 a.s. ;

(2.5) ldiirolP{ﬂiéLsi&), i=1,--, k}=1—a;
(2.6) lim {EN(d)}/v(d)=1,

where

2.7 vd)=d*M;, .

Proor. It follows from definition that N(d) is a non-increasing
function of d (>0). Also,

(2.8)  P{N(d)=oo} =lim P{N(d)>n} <lim P{n<s:M?.d"*} =0,

since s;—d* (<o) a.s., as m—oo. Again, from definition, lim N(d)=
d—0

oo, and using the Monotone Convergence Theorem, one gets now
lim EN(d)=co. Since lims}/é*=1 a.s., and,
d—0 n—o0

(2‘9) Mlc2 ms%I(d)c"_2 é N(d)dZo.—z < M’: ,8?\7(,;)_10'-2 + d20_2 9,

the proof of (2.4) follows along the lines of Lemma 1 of Chow and
Robbins [3], and hence, the details are omitted. To prove (2.5), let
n(d)=[d*¢*M:.]+1, where [s] denotes the largest integer contained s.

Then, ldim n(d)=o0, and by the classical central limit theorem, Y,,=
—0

n(XP—0,)]e, i=1,---, k are independent and asymptotically distributed
according to the standard normal distribution. Hence, by the definition
of M, . and n(d) one gets

(2.10)  lim P{XH—d=<0,<X$+d, for all i=1,.--,k}=1—a.

Now, by (2.4), N(d)/n(d)—1 a.e. as d—0. Hence, to prove (2.5), it is
sufficient to establish the “uniform continuity in probability ” of the
sequences {X®}, i=1,2,---, k with respect to n 2. The above follows
from the results of Anscombe [1]. Finally, (2.6) follows along the lines
of Chow and Robbins [3], and, hence, the proof is omitted.

PrROBLEM II. We want to determine (g) intervals I, 15159

k, such that the width of each one is <2d, and P{6#,—0, ¢ L., for all
1<1<¥'<k}=1—a. Here also no fixed sample size procedure is avail-
able, and the goal is achieved here sequentially when d is small.



126 MALAY GHOSH AND PRANAB KUMAR SEN

Let R, . be the upper 100a%; point of the distribution of the range

of k standard normal deviates. Define X, i=1,---,k and s as in
(2.2), and let
(2.11) Zuy=XP-X, 1Zi<i'=k.

Define then a stopping variable N=N(d) to be first positive integer m
(=n,) for which m>=d%s*R... Then the proposed SCI for #,—8,, 1<
1<¥' =k are

(2-12) IN(d)ii' = {01;—01" : ZN(d)ii’_déai_ﬁi’ézlv'(d)ii""d} ’ 1§'i<'i’§k .
Define now

(2.13) Zz*= max |Z,,—(6:—06;)|=Range (XP—6)) .
1=isk

12i<i's
Use the inequality [consequent on (2.13)]
(2.14) | Z}*— Z}*|<2max | XP—X| ,

1sisk

and the uniform continuity in probability of {Z}*} with respect to n~\?
follows quite readily from results of Anscombe [1]. Hence, a theorem
quite analogous to Theorem 2.1 (with M, . being replaced by R, . in the
definition of v(d)) can be proved quite easily. Thus (2.4) and (2.6) re-
main the same, while analogous to (2.5), we have,

(2.15) lim P{,—6, € Lo, for all 1Si<i’<k}=1—a.
d—
In fact, if I=C, -, L), 8=(6,,---, 0), Xo=(X®,---, XDY, 1,=(1,---,

1) is a k-component vector with all elements 1’s, then one gets from
(2.15),

(2.16) lim P{l’f}v(d)—ld é Illlél'o
. d—0 2 1
gz'fm,,,dr%dz:; |L,], for all z_le}=1—a.

This extension covers the entire class of contrasts among 4,,---, 8,.

ProBLEM III. Here we are interested in the entire class of linear
combinations of @ i.e., in @ ={¢=10'0 : [+0}. We standardize I by l'l=1,
and our problem is to determine » such that

(2.17) P{IX,—d=sU0<IX,+d, for all [; l'l=1}21—«.

Here also a fixed-sample size procedure is not feasible, and we propose
the following sequential procedure. Let x, be the upper 100a% point
of the chi-square distribution with %k degrees of freedom. Then our
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stopping variate N(d)=first positive integer m (=n,) for which m>=
d~%2 .s%, where s, is defined by (2.2). The proposed SCI is then I' Xy,
—d=U6<UXyw+d, for all I: I'l=1. Note that

218)  sup n[l/(X,—O)/e*=nl(X,—6)(X,—0)l/o’

. v
E(X,f’)—ﬂi)2~xi , as n—oo .

="

@

Further, {X,—6, n=1}, forms a reversed martingale sequence, and,

hence, (X,—8)(X,—6) forms a reversed submartingale sequence. Thus,

{(Xstom—0) (Xniiim— 0),+ + +y (Xnetomy— 0 (Xusny—6)} forms a forward sub-

martingale sequence on which the Hajek-Rényi-Chow (cf. [2]) inequality
leads to

(2.19) P{ sup

|n'—n|<8n

n X Y _ (YO __
L SRO—0)—(RO—0)7]| >

=(2kon’)[{(n+[on])(n—[on])e} < d'[e<7,

by proper choice of &' (>0). Hence, a theorem similar to Theorem 2.1
can be formulated with M., replaced by xi. (in the definition of u(d))
and (2.5) being replaced by

(2.20) lim P{l' Xyiy~d<UO<U Xy +d, for all I: Ui=1}=1-a.

If the following section we shall consider some robust competitors
to the procedures considered here. Those procedures, being based on
suitable rank statistics are less vulnerable to gross errors or outliers
and are comparatively efficient for distributions with “heavy tails”.

3. SCIP based on rank order statistics

In the development of the three procedures for the three problems
considered in the earlier section, the almost sure convergence of s to
¢* and the central limit theorem on 47 (X,—@), along with its uniform
continuity in probability, play the fundamental role. In the parallel
procedures (to be considered below) its role is played by the nonparam-
etric confidence bands and their strong convergence properties, as have
been studied in detail in Sen and Ghosh [11].

Let ¢(u)=1 or 0 according as = or <0, and let,

1) BP=3e(Xyl-IX,), 1Sisw, j=l.k;

(3.2) T, =T, (XP)=0" 3 e(X, ) ((n+1)"RSP) ,
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where X’=(Xy;,--+, X,y), =1,---, k, and {J(u): 0<u<1} is generated
by a score function J(u) (0<u<1) in either of the following two ways:
(a) Juw)=J(n+1)7%), —-1)/n<u=i/n, 1Si=n;

(b) J.(w)=EJU,), t—1)n<u=i/n, 1<i<n,

where Uy <---<U,, are the ordered random variables from a rectan-
gular (0, 1) distribution. Also, we assume that J(u)=7"Y((1+u)/2), 0<
#<1, where ¥(x) is an absolutely continuous cdf symmetric about 0
(i.e., ¥(x)+¥(—x)=1, for all x), and the tail of ¥(x) has an increasing
failure rate (i.e., —log [1—¥(x)] is convex for all x=x,=0 where x, is
some real value). Note that by definition, J(u) is T in » and J(0)=0;
we refer to [11] for other properties of J(u). We may remark that
when ¥ is the standard normal cdf (or the uniform cdf over (—1, 1)),
the corresponding T, is the classical one-sample normal scores statistics
(or the Wilcoxon signed rank statistic). Whereas we do not need the
assumption that ¢* exists and is finite, the following conditions on F(x),
j=1,--.,k, are imposed for Problems I and III:

3.3) Fyx)=F(x—9,), j=1,---,k, F is symmetric about 0,
3.4) fi=sup f(x)<oo and f’(x) is bounded (a.a.x.)
(8.5) lim {f(x)J'[2F (x)—1]} is finite .

For Problem II, the conditions are slightly different and less stringent.
We introduce the following notations:

(3.6) J,=n"" ié J(i/(n+1)) , Ar=n"! g J2(/(n+1)) ;
1 1
3.7) p= So Jwydu and A= So Jwydu (>0) .
ProBLEM I. When =0, T,,,---, T,. are iidrv having a distribution

symmetric about J,/2, independent of the underlying cdf F. Thus, for
every a: 0<a<l1 and n (=2), there exists a known a, (a,—a as n— )
and an h,,, such that

8.8) P{max|T,,—J,/2|<h,.|6=0}=1—a,—1—a as n—oo.
175k
Note that under 8=0, 2n'¥(T,;—J,/2)/A, converges in law to a stand-
ard normal distribution, while 4,— A as n—oc. Hence,
3.9) n2h, ,— AM, .[2 as n—oo,

Denote by 1,=(1,---,1) an n-component vector with all elements 1.
Then T, (X,"’—al,) is | in a: —co<a<co. Hence, defining for every
j (=1,"',k)’
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(8.10) §0.=sup {a: To(XP—al,)>Jo/2+k,.}
(3.11) 6 =inf {a: T.,(XP—al,)<J,[2—h,.} ;

(8.12) IV ={6,: 69.<6,<69) , 8 =(0P.—69),
we get from (3.8), (3.10) and (3.11) that
(8.13) Py, eI?, j=1,---, k}=1—a,—»1—a, asm—oco.

1,---,k;

It is natural to seek a sequential procedure which consists in defining
a stopping variable N*(d) to be the first positive integer m (=n,=2)

for which §¥°<2d simultaneously for all j=1,---,k, and then taking
the desired SCI’s as

(8.14) IR =1{0;: 6Pps<0,<0Pws} »  G=1,--, k.
Defining now

(3.15) B(F)= S” (d/dx)J[2F (x)—11dF (z) ,

and proceeding as in Lemma 5.2 of Sen and Ghosh [11], it follows that
(3.16)  limn?6>=AM, ./B(F) a.s., for all j=1,---,k.

The uniform continuity in probability of the {n‘”ﬁ&,”} (for each j7) fol-
lows on the same line as in Lemma 5.3 of [11], while the asymptotic
(as m— o) normality of [n“’(é‘t{),,—ﬂj)—(1/2)AM,,,,,,/B(F), j=1,---, k] fol-
lows along the lines of Lemma 5.4 of [11]. Hence, proceeding as in
Section 5 of [11], we arrive at the following theorem.

THEOREM 3.1. Under (3.3)-(3.5), N*(d) is a mom-increasing func-
tion of d, N*(d) is finite a.s., l’gn0 N*¥d)=oc0 a.s., and l;nol EN*(d)=o00;

(3.17) lim N¥d)p*(@d)=1 a.s. ,

(3.18) lim P{0 € Iyor, §=1,-++, k}=1—a;
(3.19) lim (EN*(d)}/v*d)=1,

where

(3.20) vi(d) = {A’M..} | {4d’BX(F)} .

ProBLEM II. Here, we require (3.4), while in (3.3), the symmetry
of F is not needed. In place of (3.5), we need

(3.21) lim |J[F@)If@)]| s finite,
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where J(u): 0<u<1, is defined by J(u)=¥"'(u), and the cdf ¥(x), de-
fined on (—oo, ), need not be symmetric about 0.

We pool the 2n observations (X,,, X;;, t=1,---,n) into a combined
sample of size 2n (where j#j5'), and let

(3.22) R4 = 33 [o(Xyy— Ko +o(Xoy—Xey)]

be the ranks of the X, among the (X, X;;), 1=1,---,m, 1<5<j'<k.
Define then

(3.23) Tp=n" 3 L (RE(@n+1),  1Sj<i'<k,

where the scores Jy,(i/(2n+1)) are defined as in after (3.2). We shall
find it convenient to write T,;; as

(3.24) T(X:”, X7y,  1=j<j'sk,

so that TW(X"+al,, X,¥°) is 1 in a: —o<a<o, for all j#;5. We
define J, and g as in (3.6) and (8.7), and further, we let

(3.25) (Apyr=A41-J2, (A¥)}=A"—p;
(3.26) B*(F):S‘” (d)de)J(F(x))dF (x) .
Then, it follows from Sen [10] (particularly his Theorem 2.1) that
(3.27) W,= max [20?|T( X, X)—Jum| |AX]
1=5j<j'sk

has, under =0, a distribution independent of the underlying F'(x), and
3.28)  P{W.<W..|0=0)=1—ay~1l—a, =W,.—R,.,

as n—oo. Thus, as in Sen [10], we define 4;,=6,—6,, 1=j<j'<k, and
(3.29) i =inf {a: T(XP+al,, XI°)>Jop— ALW, . /(20')} ,

(3.30)  d¢p=supla: T(X+al,, X9 <Jput ALW,../(20?)} ;

(3.81) IO ={4,,: A9 <4,,2490) ;
(3.32) S9N =(4Y— 49y,  for all 1<j<j'<k.

Then, for every n (=2),
(3.33) P{o,—6, e IV, 15j<j'Zk}=1—a,~1—a.

Hence, it is natural to consider the following sequential procedure which
consists in defining a stopping variable N*(d) to be the first positive
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integer m (=m,=2) for which §¢/°<2d, simultaneously for all 1<j<
7'<k, and then taking the desired SCI’s as

A

(3.34) I3 =14, A9 =<4, <4500} 1=j<y'sk .

The almost sure convergence and the uniform continuity in probability

of the {'n”zé,s“"}, 1=<7< 3’ £k, follow from the results of Ghosh and Sen
[6] where the general case of a single regression rank-statistic (contain-
ing the two-sample statistic as a particular case) is studied, and the
asymptotic normality of [n‘/Z(AA{,{%’)—A,,,)—A*R,,,,,/ZB*(F), 1<7<5'<k]
follows as a direct generalization of Theorem 1 of Sen [9]. Hence, we
have a theorem very similar to Theorem 3.1, where we need replace
M., by R.., B(F) by BXF) and A by A* in the definition of v*(d),
and (3.18) by,

(3.35) Erf)l P{0,—0; € I{3, for all 1=j<j'<k}=1—a.
We define now (cf. [8] and [10])
i9P=inf {a: T(XP+al,, X)) >},

(3.36) . _
GP=sup {a: T(XP+al,, XI)<Iu) 3

@87 dgr=Ldgr+der),  dp=k 3 der,  1=i<s'sk,
=1
where 49P=4,,=0, j=1,--+,k. Then, the compatible estimators of the
4,, are the
(3.38) ZOP=4P—4L, 1Lj<j'<k.
We let 4, =(4®,---, 4%), and
(3.39) H,,= max |ZY"—4,,| subject to 4;, € IV, 1<Sj<j'<k .
1Sj<j'sk .

Then, proceeding as in Sen [10], particularly, his (2.40)-(2.43), we have
analogous to (3.35)

A k
(3.40) lim P {t'AN.m——;—Hm,, A
<l’0<l’jN"(d)+'%HN'(d),a$ |L;|, for all 1] 1} =l-a,

where it can be easily shown that under our conditions
(3.41) n'*H, ,— A*R, ./B*(F') a.s., as n—oo .,

PrOBLEM III. Here, we utilize (8.16) to estimate the unknown B(F').
The following pooled sample estimator is proposed :
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A kA
(3.42) B.—kAM, . / {nm S a,sn} .
Jj=1

Also, we let

D>

R=sup {a: T, (XP—al,)>J,/2},
6R=inf {a: T, (XP—al,)<J,/2} ,
B4)  OP=(0R+OD2,  G=1,--k; 6,=0,--, 00 .

(3.43)

Then, noting that {J‘n‘(é,f”—ﬁ,), j=1,...,k} are iidrv and are asymp-
totically normally distributed (ef. [8]) with zero mean and variance A?/

4BY(F'), where B(F') can be estimated (a.s.) by B, in (3.42), and
(3.45) sup n[l(0,~0)[(4B;/ A7)

=(nBi| 4) 3, (09—,

= [BYB(F)) nB(F)/A) 3 (0~ 00~ ,

we proceed as in Problem III of Section 2 and consider the following
sequential procedure. The stopping variable N*(d) is defined to be the
first positive integer m (=n,=2) for which m;xi,aA2/(4ﬁ3nd2), and then
the desired SCI is

(3.46) U0ysy—d<VO<V0yp+d, for all I: Il=1.

Again, the uniform continuity in probability of the {n"z(é‘f’-ﬂj), Jj=1,
.-+, k} follows from the results of Sen and Ghosh [11], and hence, by
(3.42), we get a theorem parallel to Theorem 3.1, where in the defini-
tion of v*(d), xi . replaces M, and (3.18) is replaced by

(3.47) lim P{lyety—d<VO<U6yuo+d, for all I: Ul=1}=1—a.
—0

4. Asymptotic efficiency results

Suppose we have two SCIP (say, A and B) with the same prescribed
bound and the same asymptotic coverage probability, and let N, (d) and
Nz(d) be the corresponding stopping variables. Then, the A.R.E. of
the procedure A with respect to the procedure B is defined by

4.1) €4,3=lim [{EN(d)} [{ENL(@)}] .
Let M stand for the SCIP based on the sample means and variances

(considered in Section 2), and let R stand for the parallel procedures
based on rank statistics (considered in Section 3). Then we have from
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Theorems 2.1 and 3.1 that for the Problems I and III

4.2) ery=40BY(F)[A*?,
while for the Problem II
4.3) er,u=0[B¥(F)|A*] .

Since (4.2) agrees with the corresponding A.R.E. in the single sample
case, treated in detail in [11] [see their (6.2)], we refer to Section 6 of
[11] for details. (4.3) agrees with (4.2) when J(u) is skew-symmetric
[i.e., J(u)+J(1—u)=constant, 0 <u<1] and hence, for both the Wilcoxon
scores and the normal scores statistics, the values are the same as under
(4.2). Hence, here also, we refer to Section 6 of [11] for details.
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