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Summary

In a previous paper [5], the author has proposed a class of asymp-
totically optimal (in the sense of Wald [11]) nonparametric tests for test-
ing the hypothesis of no regression in a multiple linear regression model.
In the present paper, we are interested in testing that the intercept in
the multiple (linear) regression model is zero along with the absence of
regression. A class of permutationally distribution-free tests has been
proposed and their asymptotic optimality has been established. These
results generalize analogus findings of Puri and Sen [9] for ungrouped
data. As an important application, an alternative test to the problem
of paired comparison has been considered.

1. Introduction

Consider a (double) sequence of independent and identically distri-
buted random variables (iidrv) X,=(X,,---, X..), v=1, where X,; has a
continuous distribution function (df) F (x) given by

(1.1) F(x)=F(s'[x—B*c.]), 1i=Zy, vx1,

where B*=(By, i, -+, B,) is the parameter of interest, ¢ (>0) is the

nuisance parameter and c¢,;=(Cy:, Cpi>** s Cpi), Where ¢,,;=1, 1<i=<y, v

=1, are vectors of known constants. Let ci,:ﬁ Ciiy Chi=CunilCr,, £=0,
i=1

1,---,p, v=1. Note that ¢f,=v% 1<i<y, v=1. Assume,

1.2) max max |ci;|=o(1) .
1sksp 1sisv
Let
(1.3) Ao=((Detets))  and A=),
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where A4, and A4, are square matrices of order (p+1) assumed to be
positive definite (p.d.). Also, it is assumed that 4,— 4, as v—co. Fur-
ther, let

(1.4) F(x)+F(—x)=1, for all real z,

(1.5) f(x)=F'(x) exist and A%F):Sl (f'|f)fdz<oo .
Define

1.6)  gw)=—f'F(W)/f(F(w), 0<u<l;

1.7 Yw=—fTFHA+w)/2l/fIF(1+%)/2)], 0<u<l.
Then,

(1.8) S: Fu)du= S: Fuydu=A(F) < oo .

We want to test
(1.9) H,: p*=0,

against the alternatives 8*#0. To have an idea where the model (1.1)
and the hypothesis (1.9) are realistic, one may refer to Puri and Sen [9].

In our case, the X,; (i=1,--.,v) are not observable. We have a
finite set of class intervals.

(1.10) .Ij H aj_1/2§x<aj+1/2 (j= —‘l, ""l+1, t0 —1, O, 1,' %y l—l, l)

[Whel'e ——oo=a,l_1/2< e <a_1/2<a1/2< e <a,+1/2=00 denote a ﬁnite set
of ordered points on the real line with a_;=a;; a,=0]. The observable

stochastic vector is X*=(X},---, X;})/, where
(1.11) X3=31Z, (i=1,---,v)
-1
and
1 if X,el,
(1.12) Z,u = {
0 otherwise ,

for all 7=1,2,---,v, v=1 (j=-1,---, —1,0,1,---,1).

A class of asymptotically optimal parametric tests is considered in
Section 2, while a class of permutationally distribution-free tests is pro-
posed in Section 3. In this Section, the asymptotic properties of such
tests and the allied asymptotic relative efficiency (ARE) results are also
studied. The application to the problem of paired comparisons is studied
in Section 4.
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It is also obvious that the one-sample location problem for grouped

data follows as a particular case of our model, since, then, we need
only set gi=p8="::+=8,=0.

2. Asymptotically optimal parametric test

Define
(2.1) F,=F(a;_sl0), j=-1,---,—-1,0,1,---,141,
(2.2) Py=F,u—F,,  j=—l-,—1,0,1,-,1,
(2.3) F¥=F,—F_;,=2F;—1 (§=1,2,---,141),

SO that, Pj*= ]:):_I—FJ*-_:ZPJ (j=09 1" * .’l)'

SFJ+1 d(u)du/P; ,  if P;#0 j=—1,--+,—-1,0,1,--+,1.
@.4) 4,={ |
0, otherwise ,
Fin . .
S H(u)du/Pj*, if P¥+0 7j=1,2,...,1.
@5) 4r=1 7
0, otherwise ,

When P;+#0, we can write,

(2.6)  4,=Lf(a;-1p0)— f(@s110/V/P;, ==L+, —1,0,1,---, 1.
It follows immediately that,

2.7 P_,=P,, 4_,=4, (3=0,1,---,1).

So, 4,=0. Also, if P,;+0,

2.8) s¥= [2 S‘”F;“m Sw)du /2 S

Q+F%, 2
J+1
du:l
(+F*%)/2
J

(1+F})/2
= SF’“ $(w)du / SF’“ du=4, (j=1,2,---,1).
Fy Fy
Let,
2.9) AYF, {L})= > £P,=23 4'P,=2 3 £P,=2 3 4*'P,,
j=—1 j=1 jedy Jedy
where J,={j¢(1,2,---,1)| P,>0}. Hence,

(2.10) 0<AYF, {[})S A(F)< o .

Assume,
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(2.11) max P, <1.

1=0,1,-
Consider the sequence of alternatives,

(2.12) H, :B=B=7/C.., (k=0,1,---,D).

Let,

(2.13) n=c'r, (k=0,1,---,p) and let *=(70,-, 75,

(2.14) h,i=a-lk§‘, ekt (i=1,2,---,v).
=0
Then the likelihood function of X* under H, is given by
v 13
@15)  LXAr=]] {3, ZuPXuc )]

=11 { 2 Z(Fl@;l0)~h.—Fl(ejo)~h.)

=11 | 8, ZoP A +hd +hog b)), 0<0,<1,

where
@16)  gm)=P7 | (F1@ul0)—081-fl(elo) 041} dy

for jeJ . UJ_, where J_={je(—1, —2,---, —1)| P;>0}. Hence, g,(h.;)
=0o(1), uniformly in jeJ.UJ_, ©=1,2,---,v. Let

(2.17) T..0=1(3/0y:) log L(X*|7)]y=0
v 14
=3¢k X Z»ijA!
i=1 i==1
v l
=i§ C,’,"JE{ (Zy—Z_p)d; » k=0,1,---,p.

Let
1 if | X.;|el, ie. X,,e LUL,;
(2.18) UM={
0  otherwise (i=1,---,v; §=1,2,---,10).
Then,
(2-19) Zui]_Zvi(—j)=U;ij sgn X, , 7=1,2,---,1, 1=1,2,-++,v

where
1 if X,,>0

(2.20) sen X,={ 0 if X,=0, i=1,2,---,v.
—1  if X,<0
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Thus,

(2.21) Tku0=1§vl cic"@<§l U,i,-A,> sgnX,;, k=0,1,---,p.
Let

(2.22) To=(Ton,- -, Ty) -

Next we state three lemmas the proofs of which are exactly the same
as Lemmas 2.1-2.3 of [5].

LEMMA 2.1. Under H,, and (1.1)-(1.5), T,, is asymptotically N,,,(0,
AAYF, {LL})).

LEMMA 2.2. Under H,, and (1.1)-(1.5), L.(X.) is asymptotically
N(—1/25;ANF"), :ANF')), where, d,=y*'A,r*.

LEMMA 2.3. Under the sequence of alternatives {H,}, (1.1)-(1.5),
T, is asymptotically N, (47 *)ANF, {I;}), AL AYF, {I;})).

If {P,} and {Q,} denote two sequences of probability measures cor-
responding to the sequences of null and alternative hypotheses respec-
tively, Lemma 2.2 ensures the contiguity of @, with respect to (wrt)
P,. Define now,

(2.23) So=A F, {I,}) T4 45T, .

We describe a parametric test procedure based on the critical function
d(X¥) for testing H, in (1.9) as follows:

1, if 5,,>S,0.
(2’24) ¢1(Xv*): 5»: ’ if Sv(]:SyOt
0 ) if Syl]<Sllol ’

where S,. and §,. are chosen in such a way that E[¢(X*)|P.]=e 0<
e<1, ¢ being the desired level of significance of the test. Under H,,
S,, is distributed as y) (central chi-square with p degrees of freedom),
while under H, it is distributed as () (non-central chi-square with p
degrees of freedom and non-centrality parameter 7), where »=(y'4,7)
ANF, (L))

3. A class of nonparametric tests

We introduce the following notations:

(3'1) $Zvij=vj! (j=—l,"',—1,0,1,"‘,l).
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So,
(3.2) z Uy=v,+v_, (=1,2,---,1).
Let

(3'3) Fv,—l=09 Fu,j+1: é l"m/l"y j=_l,"’,—1, O, 1,"',l,
m=—1

(34) F:j+1=F,,,j+1'—F,,_j=p‘l é Vi j-__—0,1’2,l ,

(35) A:";: SF:J“ gb(u)du/g""ffﬂ du = S(1+F3,j+1)/2 ¢(u)du/SCI+F:’j+l)/z du |

Flq L4 Q+F} /2 Q+F3 D
if Yy +u—j #:O’
4%=0, otherwise (=1, 2,---,1) .
(3.6) Us=3 et B U.A5)sen X, k=0,1-,p,
i=1 j=1

and UX=(Ug,---, UF).

We may note that in the case X, € I,, we have no information re-
garding the value of sgn X,;. This, however, does not effect the test
procedure (based on the statistics U, k=0, 1,---, p), since, if X,; €1,
U,;=0 for all j=1,2,---,1 and, as such, contribution of such terms to
the calculation of U} (k=0,1,.--, p) is zero.

Since, we are dealing with grouped data, even under H,, the joint
distribution of the UX’s will depend on the 4F’s. But, using a permu-
tation argument, we can get here a permutationally (conditionally)
distribution-free test. Under H, in (1.9), |X,|, i=1,2,---,v are iidrv

and so are X:{-‘ozé o, I;=LU0I,, j=1,---,1, +=1,--+,v). Defining
j=1
i A
now, Wﬂ=j2 U 4% (i=1,---,v), we see that W,=(W,,---,W,)) has a
=1

joint distribution which remains invariant under any permutation of its
vy arguments under H,. Further, under H,, sgn X, can assume two
values 4+1 and —1 each with prob. 1/2 independently of the W.,’s;
sgn X,;,---,sgn X,, are independently distributed. Use the notations
Xt=(X%, -, X%) and sgn X,=(sgn X,,,-- -, sgn X..)'.

If we now consider a finite group G, of transformations {g,} which
maps the sample space onto itself, where a typical transformation g, is
such that

3.7 g W=((=)"W,---, (=1)"W..)), m=(0,1),

1=1,2,---,v and (4, -, ,) is any permutation of the integers (1,---,v),
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then, there is a set of 2! transformations in G,. Under H,, the con-
ditional distribution over the set of 2! realizations (generated by G,)
is uniform, each having common conditional probability (24!)~'. We
denote this conditional probability measure by %,. We may note that

under &/, F¥’s and hence ﬁ:’;’s remain fixed. It is now easy to verify
that

(3.8) EUs|£)=0  (k=0,1,---,p);

BURUAI ) = (3} ctucha) AFX (1)), (6, K'=0,1,+,7) ,
where
(3.9) (FF ALY =3 456+ ) -
Consider the quadratic form,
(8.10) M¥=(UX' A7 UNAHEX, L)) .
The following nonparametric test is proposed :
1, it M¥*>M,,
(3.11) P X5, sgn X,)=1 0., if M*=M,.,
0, it M*<M,.

where M,, and 4§,,. are chosen in such a way that E[¢(X}$, sgn X,)| P/]
=¢, the level of significance. This implies that E[¢(XX%, sgn X,)|P]=¢
i.e. (X%, sgn X)) is a similar size ¢ test.

We may remark that it is necessary to introduce the “signed-ranked”
statistics instead of the “ rank-sum type” statistics because here we are
interested in testing for g, along with 8,,---, 5,. Had permutation-test
statistics as in [5] been introduced without consideration of signs, the
one for B, would have reduced to a constant under the permutational
probability measure .. A similar situation was faced by Adichie [1]
and by Puri and Sen [9] in case of ungrouped data and they introduced
“signed-rank ” statistics instead of “rank ”-statistics for similar testing
problems.

To study the asymptotic permutation distribution of the test sta-
tistic, we first extend a result of Hajek involving the asymptotic dis-
tribution of the “simple linear rank statistic” to that of the “simple
linear signed-rank statistic.” To formulate the theorem, we proceed as
follows :

Consider double sequences {b,;, 1<i=<v, v=1} and {a,;, 1=y, v=1}
of real numbers satisfying
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(3.13) lim max b, / (2 3,) ~0,
y—oo 1515y i
kll
max Si(a, . a.)
(3.14) lim [k,/v=0]=1lim 15i1<"'<:kv§v a=1 ~0.
y—co oo 21 (aw _ a:p)z

Let X,;,---, X, be v i.i.d.r.v. having a continuous d.f. F(x) satisfying
F(x)4+F(—x)=1 for all real z; also let (R,,,---, R,,) be a random vector
which takes »! possible permutations of (1, 2,--.,v) with equal prob-
abilities and distributed independently of (X,,---, X.,). Let

(3.15) 8,=3 bt 5gn X, ,
=1

where sgn X,,’s are defined in (2.20).

THEOREM 3.1. Under (8.13)-(3.14) and the assumptions following it
S, defined in (8.15) is asymptotically NI(O, y! 2 b2 ﬁ a3i> a.e.
i=1 i=1

PrOOF. It can be assumed without any loss of generality that a,
<a,<---<a, and put a,(d)=a, for 1—1)v<i=tfy, 1=i=v. Let T,=

ﬁ b,.a.(U,) sgn X,;, where U,, U;,- - is a sequence of independent random
i=1

variables distributed independently of the X,.’s, each U, uniformly dis-
tributed over (0, 1], and the rank of U, in the partial sequense U,,---,
U, is denoted by R/ (1=i=v, v=1). Hence, the vector (Rl,---, R.)
satisfies the same conditions as (R,,,- - -, R,,) in the theorem, and we get,

(3.16)  E(T.—S)=(3] b Ela.U) — (BT

1sisy

=(3t)2vZ (v max a,—a. ) S @),
using Lemma 2.1 of [6]. Also, E(S,)=0 and
Var (S)=v" S bi Dok .
Hence,

(8.17) E(T,—S.)/Var (S)s2V2 [maxlau—ﬁv /(3 “3f>m]

1sisy

<2v2 [max la,—a,| / (%‘. (api—dy)2>l/2:|

1Sisy

—0 as y—oo from (3.14) putting k,=1. To prove the theorem, it is
sufficient to show that (i) (T,—E(T,))/¥ Var (T,) is asymptotically N,(0,
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1) a.e. and (ii) (S,— E(S,))/¥ Var (S,) —(T,— E(T.,))/¥ Var (T,) —0 in prob-

ability. The proof of (ii) which is based on (3.17) is given in Hajek [6].
To prove (i), we use Theorems 4.1 and 4.2 of Hijek [6]. We need

observe only that the Lindeberg condition

1 v

b oy 23 P konznl =0 e,

where T,,=(b,,—b.)a,(U;) sgn X,; (1=1,2,---,), and
1 if [T.|=z0

Iur,ilza): .
0 otherwise,
1<1<v, is equivalent to the condition

lim— Y~ SVE[T% Iy,

v Var (T)) i=1 Lzn] =0 a.e.,

where T);= ; (b.—b)aU), T! =i1 T/, and
=1 i=

1 if [Ti|=zo
I(IT;,-Jz»: .

0 otherwise .
The last assertion follows from the fact |sgn X,;|=1 with probability 1
for all +=1,2,---,v and sgn X,,,---,sgn X,,, U,,---, U, are mutually in-
dependent.

The above theorem will be utilized in deriving the asymptotic per-

mutation distribution of U*. In order to prove the result, the follow-
ing lemma is also needed.

LEMMA 3.1. Under the assumptions (1.1)-(1.5), AXF*, {I,})— AYF,
{L;}) as v— oo either in P,- (or in Q,-) probability.

PROOF. A}FF, {Ij})zé ﬁ,"}z(v,+v_,)/v. Noting that (v;+v_;)v—2P;
in probability as v— oo, we get exactly as in Lemma 3.1 of Sen [10],
AR, (L)~ 3 47 12P) =3 412P) = A(F, (I}) in P- (or in Q) prob-
ability as v— oo,

THEOREM 3.2. Under P., (1.1)-(1.5), UX 1is asymptotically N, (0,
ALAF, (L)) in probability.

PrOOF. Consider any linear combination d'UY¥, d=(d,,---,d,)+0,
dy, dy,- -+, d, are fixed and finite.

v 1 A v
dUr=3] <§dkcltai><j§1 U,,UA:';> sgn Xvi‘—:g_l m,W,.sgn X, ,

=1
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where m,,-:i dicti, 1=1,2,---,v. Now, max|m,|=o0(1) and E mki=
k=0 1Sisy i=1

0(1), (because of the assumptions (1.2) and (1.3)). So the sequence {m,;}

satisfies the Noether condition. Further, v™! Z‘, Wi=AyF*, {I,})— AXF,

{L,;}) in probability. It can also be shown as in [5] that max v!
k

14, <. e Sig Sv

Zv_‘, W —0 in &P|-probability. So the sequence {W,} satisfies Ha{jek’s
a=1

condition @ in probability (see [6], p. 519). Now, we refer to Theorem
3.1 to get the result.

LEMMA 3.3.. Under (1.1)-(1.6) and (1.2) U*—T,—0 in P, (or in
Q.-) probability.

PROOF. Write
3.18) U —Tky(,:j% (ﬁﬁ—Af)g U sgn X,  k=0,1,---,p.

The rest of the proof is the same as in Lemma 3.3 of [5] and, hence,
is omitted.

From the above results, it is now obvious that M* and S,, have
asymptotically the same distribution under H, or {H,}. It is immediate
on the basis of Lemmas 2.1-2.3 that M} (or S,4) is asymptotically »2,,
under H, and yx;,,({) under {H,}, where,

(3.19) L= A7) AYF, {1}}) .

The extension of the above results to the case of a countable set
of class-intervals is similar as in [5], since the sequence {Q,} of prob-
ability measures is contiguous to the sequence {P,} of probability meas-
ures from Lemma 2.2. Again, in the situation where the assumed df
F differs from the true df G,since the asymptotically optimal parametric
test is similar as in [5] (involving only the additional statistic corre-
sponding to S,), the ARE of the proposed test as compared to the asymp-
totically optimal test is p*(F, G, {I;}), where o*(F', G, {I,;}) is defined quite
analogous to the corresponding one in [5] (see also [10]).

4. An important application

The test procedure developed in earlier sections can be used in the par-
ticular case of ¢ paired comparison’ problem. The problem is as follows:
Consider p treatments in a sequence of experiments, the vth se-
quence yielding paired observations (Y,im, Yiem)s m=1,2, -+, Ny, 1=

<k =<p. y=1§<k25 M. Assume that the n,. observations Y &* =
= 'Sp

Yn—Yoem (m=1,2,--+,n,) have a common continuous d.f. F,.(x).
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This is the situation, for example if in the analysis of an incomplete
block experiment, with each block of size two, one makes the assump-
tion of additivity as in the usual analysis of variance model. We want
to test the hypothesis

“4.1) Hy : F (%) + F(—2)=1 and F ) =F () ,

where 1<k<Kk' =p, 1<Ek'<Kk"=p, (k, k)#E", k"), and g are certain
constants not all zeroes.

Let n,,= 51:‘, M. 1O reduce the problem to our model, we first set
k=1

4.2 P Te _ Te | 1<k#k'<p,
(4.2) Vv ne Vn. sk#k=p

7=, "+, 1r,) being defined in (2.13). We pool all the observations
Y& (m=1, 2,--+, N, 1Sk<k'<p) and denote this pooled set of ob-
servations by X,,,---, X,,. Then this testing problem belongs to our
model with B,=0, ¢;,=+1 if X,; is from a block where the kth treat-
ment is paired with a treatment ¥’ (¥'=k+1,-.-,p), ¢..=—1 if X, is
from a block were the kth treatment is paired with a treatment k' (&’
=1,2,--+,k-1), ¢,;=0, if X,; is not involved in the block at all. We
consider the situation when the observations are classified in several
groups. Define test statistics 7T}, as in (2.21) or Uy as in (3.6), k=1,
2,---,p. Then the quadratic form M}* (or S,y) is asymptotically x:_,
under H, and 3% () under the sequence of alternatives with

(4.3) C=@'Ar)AF, (L)) ,

4 and AYF, {I,}) being defined in (1.5) and (2.9) respectively. We may
also mention here that since, under the model 8, is absent, even in the
process of finding permutationally distribution-free tests, statistics (as
in [5]), regardless of signs, may be used.

We may remark at this stage that the test proposed by Bradley
and Terry [3], considered as such has some limitations owing to the fact
that it allows a judge only to give two possible verdicts “better” or
“worse” in comparing one treatment with another. However, if we
want to allow greater flexibility in the judgment of a judge by making
the judgment level classified into several ordered categories, the above
test procedure will fail. For example, in comparing the performances
of two musicians at a music competition, the performance of Musician
1 compared to that of Musician 2 may be classified as “ Much Inferior,”
“Slightly Inferior,” “More or less Parallel,” “Slightly Better” and
“ Much Better.” In such cases, it will not be possible to use the test
of Bradley and Terry [3], while our test procedure can be used if these
ordered categories are represented as class-intervals on the real axis
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symmetric about the origin. We may also remark that in the partic-
ular case when we have only two class-intervals below zero and above

zero, that d.f. F' is symmetric about 0, and also n,,,k:( g >_lu for all
1<k<K' <p, our test is asymptotically power-equivalent to the one con-
sidered by Bradley and Terry [3]. This can be sketched in the follow-

ing way: In the latter case (ef Bradley [2]) the non-centrality param-
eter of the asymptotic chi-square distribution of the statistic turns out

to be 42—"02(191 ﬁ‘i (7v—7)* In the present case, 7,/,= ( g)—l, i = (£>m
— k=

2
v P v -1
(Tk"‘?’k): 1=k<Kk' =p, ;_1 civi:kgl N = 20D, i2=1 CioviCirvi = — Ny — —”< g > ’

iﬁcﬁiciﬁ,i=—(p—l)“, 1<k<k'=<p. Let p=—(p—1)"'. Then Ad=(1—p)I,
=1

+poJ,, where I, is a unit matrix of order p, J, is a pXp matrix all
elements of which are 1. Note that 4 is not of full rank. But we
can take a principal submatrix of it of order (p—1) which is of full
rank. Then

4 2 P
=4F, (L) Br——Le 5 n) = 2EELD S, 7y
k=1 p—1 k=w p—1 k=1
In the particular case when there are only two class intervals (— oo, 0)
and (0, o), 4y=—4,=2f(0), P,=P,=1/2. Hence, A}F, {[;})=4;P,+ 4P,

=2f2(0)- Hence, C:i%f—‘_z_(](-)lé (Tk_?)z.

It is also possible to introduce statistics analogous to those of Mehra
and Puri [8] for grouped data. The test statistic used by Mehra and
Puri can be introduced as follows: Let {J., 1<%<v, v=1} be a double
sequence of numbers satisfying either the assumptions (on the “score”
functions) by Chernoff and Savage [3a] or by Hajek [7]. Let R be

the rank of |Y.%*°| when the v= >13] m, values of |Y&*0|, m=1,
1Sk<k’sp

2, o, My ; 1Sk<k' <p, are arranged in ascending order of magnitude
in a combined ranking. Define

okk!
0= 51 J(RED|(+1)) sgn YES,
m=

where J,(u) is a step function define over (0, 1] taking constant values
J,; over the interval ((¢—1)/v, i/v], i.e. J(u)=J,,=J(3/(v+1)) for (s—1)/
v<u=1ifv. Then the test statistics are of the form

v )2 v
(4.4) Ko=3} {2 W | (7 S )

k=1 \k'#+k

It has also been shown that under H, defined in (1.9) and under
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the conditions given in [8], K,, is under H, asymptotically y3_, and under
the sequence of alternatives defined in (2.12) is asymptotically x;-1(0),
where

(4.5) o=p! é {Eh (Vo #w)} 2 S: JHu)du ,

where J,(u)—J(u) as v— oo (J(u) exists for 0<u<1 and is square in-
tegrable). p.»=limn,./v is assumed to exist and is >0 for each pair

y—o0

(k, k), AZk<K=<p). pw=per 1<k+k'<p). If we define statistics

analogous to K,, for grouped data, under, the null hypothesis, it is

asymptotically 2, while, under the sequence of alternatives con-

sidered in (2.12) is asymptotically y3(3) with 5= AE ALY < {Z‘. Vo
D

k=1 \k’'+k
2
. pkk,} . In the particular case when each pair of treatments is com-
2 X P 2
AO(F, {Ij}) 2 iz(rk'_rk)i — p
P k=1 (k'#k p—l

AYF, LY i (ri—7)%, so that the test considered by Mehra and Puri is
k=1

asymptotically power-equivalent to our test. But, in general, this is
not so; (the author has a counterexample to this effect (see [4], pp.
121-122)). Hence, unlike our test, the test considered by Mehra and
Puri does not possess any asymptotic optimality property.

pared the same number of times, 6=
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