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Summary

Generalizing the results of Sen [8], a class of nonparametric tests
for the hypothesis of no regression in the multiple linear regression
model is obtained here. The asymptotic power properties of the pro-
posed class of tests are studied, and the asymptotic optimality of the
tests is established under the conditions of Wald [10]. Applications of
the results are also considered.

1. Introduction

Consider a (double) sequence of random vectors X,=(X,,---, X..),
v>1, consisting of v independent random variables (r.v.’s), where X,,
has a continuous distribution function (d.f.) F.(x) given by

1.1) F,(x)=F(c"[x—p—Bc.)) , 1=1,2,-+,v, v21,

B'=(B, -+, B,) is the parameter (vector) of interest, 5, and ¢ (>0) are

real (nuisance) parameters and ¢,;=(Cy,i,* * ¢, Cpi)y ©=1,2, -+, v, are vectors

of known constants. Let C,}uzi ¢, and ¢f;=¢.../C., k=1,2,---,p; v=1.
i=1

Assume

(1.2) Steti=0; max|ck|=o01), k=1,---,p, v=1.
i=1

1sisv
Note that >l ci2=1, 1<k<p. Let
(1.3) A=((Jercta)) and  A=(Gu) .

We assume that 4, and A4 are positive definite (p.d.) and 4,—4 as v— co.
Further, we assume that
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1.49) fx)=F'(x), f'(x) exist and
#F)=\"_[F@If @ @< .
Consider the sequences of measure spaces (X,, A, m), a typical

point of the space X, being denoted by x,=(x;,---, ), v=1. Our prob-
lem is to test the null hypothesis

(1.5) H,: =0 (i.e. no regression) against 8+0.

H,=H,, depends on v only through the number of observations, while
the sequence of alternatives (as will be considered) will depend on the
parameters ¢,,; (=1, 2,---,v; k=1,-.-, p) in addition. More specifically,
we consider the sequence of alternatives

(1.6) H,: .BkEﬁku=Tk/Cku ’ k=1,---,p,

where z=(z(,---,7,) is a vector with fixed real elements. Let {P)}
and {Q,} be two sequences of probability measures (associated with the
sequences of null and alternative hypotheses respectively) defined on the
sequences of measurable spaces {X,, A}, where dP,=pdy,, dQ,=qdp,,
v=>1.

Introduce the likelihood ratio L, =L, (X,) as follows:

q.(x.)/p(x.) , if p(x,)>0
.7 Ly(x)={1, if p(x)=q.(x,)=0
o , if p(x,)=0<q.(x,) .

We are concerned with the situation when X, is not observable.
We have a finite (or countable) set of class-intervals

(1'8) Ij:a’j<x§a'j+1! j=_°°"°'v—110’1’°",°°v

[where, —co< .- <a_;<ay<a;<---Zoo is any (finite or countable) set
of ordered points on the (extended) real line [—oo, o0]]. The observ-

able stochastic vector is X*=(X3*,---, X*), where
(1.9) X,f:j_i LZ,, i=1,2,--,v,
and

1, if X,el,
(1.10) Zuij = {

0, otherwise ,

for all ¢=1,2,---,» v=1, j=—o00,---, —1,0,1,---, co.
We may remark that all real-life data are, essentially, grouped
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data; e.g. heights are measured corrected to inches, weights are meas-
ured corrected to be lbs. Besides, very often we come across situations
when data are collected in several groups or ordered categories, thus,
rendering any analysis suitable for ungrouped data, impossible. We
illustrate this with the following example :

Suppose, we want to compare the efficacies of several contraceptive
devices. A number of couples are studied for a certain length of time,
and the distributions of the conceptions are compared. By nature, the
exact time of conception cannot be studied. Rather, the cycle in which
the conception takes place, can be recorded, though the actual distri-
bution of the conceptions can be taken to be absolutely continuous.
Hence, the data can be recorded only in terms of intervals of approxi-
mate 4-weekly cycle-lengths.

First, we consider the case when we have a finite set of class in-

tervals I,, 1., -, L, (@a_,,=—00, @, =c0) so that X}= 22 LZ,;
j=—s
(t=1,2,---,v; v=1). By relabelling the suffixes, we call these 1class-

intervals I, I,,- -+, I, (@y=—00, @;,y=00; l=8,+s,).

In Sections 2 and 3 we have considered respectively a class of op-
timal parametric and nonparametric tests. These results have been
extended in Section 4 to the case of a countable set of class-intervals.
The asymptotic relative efficiency (ARE) results have been studied in
Section 5, while some applications have been considered in Section 6.
Some concluding remarks have been made in Section 7.

The assumption that rank A4,=p can be made without any loss of
generality. Otherwise, a reparametrization in (1.1) will lead to a lower
order A, which will be of full rank.

2. Asymptotically optimal parametric tests

Define
2.1) F,=F((a,—B)lo) , 3=0,1,---,1+1,
(2.2) P,=F;,,—F,, j=0,1,.--,1,
(2.3) dw)=—f'F W)/ fFw), 0<u<ll,
(2.4) 41={ SF:*l P(u)du / Sp:ﬂ du,  when P;#0
0, otherwise ,

We can rewrite 4, as

@5)  4,=Pf(@~)a)—f(@—BI)] .  §=0,1,---,1,
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when P;#0. Let

(2'6) J={J[j6[0’ 1;"'yl]v Pj>0} ’
@7 A(F, (LDH=3 4P,= 53 &P,

Fi1

28 O0<AF D=3 [S:Hqi(u)du]z/SFj du< A(F)<oo .
Assume

2.9) max P,;<1.

0sjisi

Let
(2.10) r=0G1, 5 1) =)o, -+, t,a0) =7[a , h.= é ChiTh

(=1, 2,---,v). Then, using Taylor expansion, and (2.1)-(2.4), we get,
for all jeJ, 1515y,

(2.11) P(X, € I|H)=P;[1+h,d;+h,0,9,h.)]
=L,y (say); 0<6,<1

and
@12 g0)=P | (@} —0,9)
—F({(a— o} ~0,0)dy
=o(1), uniformly in jeJ, 1<i=<v.

Then, the likelihood function of X* under H, is given by
v 1
@13)  LEAP=]T {3 ZF@n—h)—F@—h)} ,

a)=(a;—Bo)o, 0<j<l. Let
(2.14) T..=[(0/37:) log L(X.* | 7)],=
:écxﬁiiozﬂ,-d,, k=1,2,'--,p,
i=1 i=

(noting that Z,,;Z,.;,=0, 0=5+#75'<l, 1515y, v21).

The statistics T., (1<k<p) are co-ordinatewise extensions of Sen’s
[8] statistic. The intuitive appeal is to use an appropriate (normalized)
quadratic form involving the T.’s as a test statistic for the testing
problem in (1.5). Later, in this section, we shall prove asymptotic op-
timality properties of such tests. First, we formulate the parametric
test procedure :

The following lemmas are needed :
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LEMMA 2.1. Under H,, the model (1.1) and the assumptions (1.2)-
1.4), T.=(T, -, T,) ts asymptotically N, (0, AAXF, {I;})).

Proor. It is sufficient to show that for any e=(e,: -, ¢,)’+0 with
real elements, €T, is asymptotically N;(0, (¢'de)AXF, {I,})). Write €T,

v P i .
= 2 ’m,iW,i y Where m,,= Z ekc;ck,i y W,i = 2 AjZ,,ij y (1 é 1 é U). Under Ho ,
i=1 k=1 j=0

W, 1£t<v) are independent and identically distributed random vari-
ables (iidrv) with mean zero and variance AXF, {[;})<co. Further,

(2.15) max | m,|< <max max |c:=,,.|) ( b3 Iekl> =o(1)

1Sigy 1515y 1SkSp

(from (1.2)) and ) mZ=¢'d,e— €' de as v— oo (from (1.3)) i.e. max mi,
i=1 1sisy
imL:o(l). In other words, the double sequence {m,, 1<t<y, v=1}

satisfies the Noether condition (see e.g. [5]), since Y m,=0. Using now
i=1

the Central Limit Theorem (see e.g. [5], p. 153), we get the results.

The next lemma due to Hajek [4] ensures the contiguity of the
sequence of probability measures {@,} to the sequence of probability
measures {P,}.

LEMMA 2.2. Under H,, the model (1.1) and the assumptions (1.2)-
(1.4), Lo(X,) is asymptotically N(—1/23,AXF), 6,AF")), where o6,=¢'A,y.

Remark. Hajek obtained the result under (1.1)-(1.4) with p=1
(i.e. the case of simple regression). Hajek’s result can be trivially ex-
tended to our case, once we observe that h,=o(1), 1<1<v. We may,
also, note that contiguity is defined with respect to (wrt) measures on
the original measurable spaces (¥,, JA,).

The next result gives the asymptotic distribution of 7, under the
sequence of alternatives H,. A direct proof (without appealing to con-
tiguity) has been given in [2] (pp. 62-63) where the Liapounov condition
of the classical Central Limit Theorem (see e.g. Loéve [7], p. 215) has
been verified. A shorter proof is provided here based on LeCam’s third
lemma (see e.g. [5], p. 208).

LEMMA 2.3. Under the sequence of alternatives H,, the model (1.1)
and the assumptions (1.2)-(1.4) T, is asymptotically N, ((4Ay)AXF, {L,}),
AAF, {L})).

PROOF. Define e as in Lemma 2.1. It is sufficient to show that
€T, is under H, asymptotically Ny((eAy)AXF,{L}), (€Ade)AF, {L})).
Consider the asymptotic joint distribution of (L.(X,), € T,). First, de-
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fine, T&=3] ol —f"(X.i—B0)/o) | f(X.—B)o)), 1<k<p. Then, from [4],
it follows that

(2.16) log Lo(X,)—7' T.x+1/26,A%(F)—0 in P.-probability ,

where T ¥=(T%,---,T;5). It is now easy to see that under P,, (L.(X,),
€ T,) has asymptotically the same distribution as (¢ T.¥—1/26,A%F’), €'T,).
Under P,, the latter is asymptotically Ny(—1/26,AF'), 0, 6, A%(F"), (€'A.e)
AXF, {L}), (€4.9)AXF, {I;}). It follows now from LeCam’s third lemma
that under Q,, €T, is asymptotically Ny((¢A4.7)AXF, {L;})), (e'Ad.e)AYF,
{,})). The result follows.

Define the statistic

(2.17) S.=(T!4'T)AF, {I,}) .

We propose the following parametric test procedure for testing H,
against the sequence of alternatives {H,} based on the critical function

o(XF):
1 if §,>8,.
(2.18) (X ¥)=41 on. if S,=8..
0 if §,<8..,

where S,, and 4, are chosen in such a way that E[¢(X¥)|H]=e, 0<
e<1, ¢ being the desired level of significance of the test. We note
that the above test is a similar size ¢ test. Further, under the model
(1.1) and the assumptions (1.2)-(1.4), S, is distributed asymptotically
under the null hypothesis as y? (a central chi-square with p degrees of
freedom), and under the alternatives as y3() (a non-central chi-square
with p degrees of freedom and non-centrality parameter z), where

(2.19) 1=>'Ap)AXF, {L}) .

Noting also that 4,,,—0 and S,,—yx;. where x;. is the upper 100:%
point of a central chi-square distribution with p degrees of freedom,
we can easily obtain the following theorem:

THEOREM 2.4. Under (1.1)-(1.4), and, under the sequence of alter-
natives H,, the asymptotic power of test procedure described in (2.18) is
given by

(2.20) Priznzs.t,
where 7 18 defined in (2.19).

Let 4,=(L(X |7y =0/(L(X*|P))y=,, Where #,=(f,---,7,) is the



A CLASS OF ASYMPTOTICALLY OPTIMAL NONPARAMETRIC TESTS (I) 97

maximum likelihood estimator (m.l.e) or . Define the surface S.(y) by

(2.21) 7' (Ey(—307:0r,) log L(X* | 7)) r=e .
Also, for any y and p>0, let,
(2.22) oly, o) ={7:|7—r|<p},

where # lies on the same surface S,(y) as y; let (7, p) be the image
of w(y,p) by transformation y*=Byy, By being a non-singlar matrix
satisfying

(2.23) BBy =((E(—/05:9r.) log L(X*|7))) -

For any set o, let A(w) denote the area of » and define the weight
function 7(y) by

(2.24) 7(7)=lim [A{(7, o)} Ale(y, o)} -

Then, under the assumptions (I)~(V) given in Wald [10], we get the fol-
lowing theorem :

THEOREM 2.5 (Wald). Let S.y) and 7(y) be defined as in (2.21) and
(2.24). Then the test based on A, (the likelihood ratio test criterion for
H, in (1.5)

(a) has asymptotically the best average power wrt the surfaces S(r)
and weight function 7(y);

(b) has asymptotically best constant power on the surfaces S.(y);

(c) 1is an asymptitically most stringent test.

The next theorem establishes the “asymptotic equivalence” of the
statistic S, to the likelihood ratio test statistic —21log, 2,. For a fixed 8,
and ¢, we show that S,+2log,2,—0 in P,probability (and hence in Q.-
probability, by contiguity). Since the asymptotic distribution of S, does
not depend on B, and o, but only on #, the test based on S, is indeed
“asymptotically equivalent” to the likelihood ratio test.

THEOREM 2.6. Under (1.1)-(1.6), S,+2log, 4,—0 in P, (and hence
n Q,-) probability.

ProoF. —2log,2,=—2[(log, L(X*|7))r=0—(og, L(X*|7)r=#]. From
Taylor expansion of (log, L(X*|y)y=0 around y=#, and using the fact
that (9/oy,) log. L(X.*|y)=0 at y=7., we get, after some algebraic mani-
pulations that

. 9" log L(X,*Ir)) .
2.25 —2log, A,= 5(- : .,

where z¥ lies in the p-dimensional rectangle (0,3,). We can write
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v -1
log L(XX| 7‘) = gl log [ZuiOF(a’{ —h.) +}2=1 Z,; {F(a§+1 —h.;) “'F(a§ —h.:)} +Z,.,(1
— F(a{—h,i))] . Hence,

(2:26)  @or) log LAXF 17)=3 | 33 Zu A (@f—ho) — F(@fui—h )}
| B ZulF@u—h)-Fa—ha |,

where f(aj—h,.)=f(a},1—h,)=0, 1<i<v. Hence, it follows after some
simplifications that

@.27)  [@fordre) log L(X¥ | 7)ly=0
=St etuot] | 2} 2l @)~ 1) / 3 2.,P)

-5 A;Zm-,] . 1=k K<p,
j=o0

where f'(ai.,)=f"(aj)=0. Using the relation Ey=o[(—d/dr.r:) log L(XX|
7)1=Ey=0[(9/0r,) log L(X*|7)(0/0y.) log L(X.*|7)] (which holds under the
regularity assumptions of Wald), it follows that

(2.28) Ey=o[—(3*0rdr.) log L(X.*|7)]= <§{ c,f,,-c,ji,i>A2(F, {1,
1<k, E'<p.
Now,

(2.29) E,:o[[(aﬂ/anan,) log L(X*|7)+ (z ok, c;:a,,.>A2(F, (L} )]2

5 Z( £ @) — F(a))

=E 121 clﬁicl’c'ivt( =0

1
Z Zw;ij
=0
2
i
- Ai(Zvu—P;))} | P,

<2 S\ etiott| 5 PHS @) —f @)
4 2
+E({ % 4:2.,~P)| 1P|

2(max o) (max P;*)( 53 (£(afo)—f@)t?)

1sisy

A

l
+314PA-P)| .



A CLASS OF ASYMPTOTICALLY OPTIMAL NONPARAMETRIC TESTS (I) 99

|4;]<oo for all j=0,1,---,I. X {f'(a}.)—f'(a})}?*<oo, since the sum-
jed

mation involves only a finite number of terms. From (1.2) and (2.29),

v 2

it now follows that E,:.)[(az/anar,,,) log L(X,*|r)+<g c,j;ic,’ﬁyi>A2(F, {I,})]

=o(l), 1=k, ¥'<p. Thus, under H,, (8*/9y:0r.) log L(X,*Ir)-{—(é c;",,»c,i‘,,,->

AYF, {1,})—>0 as v—oo. Using properties of maximum likelihood esti-
mators, it can be shown here that, under H,, %, is asymptotically N0,
AT'ATYF, {I;})). Hence, #.=0,1), 1<k<p. Also, [(6*/dy.dy:)log L(X*|
y=r—1(*/0r:97:) log L(X*|7)ly=0—0 in P,probability, 1<k, k'<p.

If follows now from (2.25) that
(2.30)  —2log, 2 —(#A.3)AYF, {I})—>0  in P.-probabilty .
Again,
(2:31)  0=[0/or) log. L(X* | P)lr=r.
=[0/or:) log. LOX* | 1)ly=0-+ 32 7u.[(@/07.072) log. LIXX | P)ly=ree

where 7f* lies in the p-dimensional rectangle [0, #,]. .Thus,

_ [ log, L(XX|y) . . @ log, L(X}|7)
Tku_" —rv e .
07071 07:07» r=r*
Hence,
. o log, L(XX|7) >)
e -
r arkarkr T=T:‘*
But,

<<_~ & log;:a(;f,*|T)>>T=ﬁ*_AuA2(F, @h

also converges to zero in P,-probability. Using the above, and Slutsky’s
theorem, it follows after writing S,=(T'4;'T,)A%F, {I,}) that S,—(#.4.7.)
AXF, {[,})—0 in P,-probability. The theorem now follows easily from
(2.30).

The above theorem implies that S, and —2log, 2, have asymptotic-
ally the same distribution under H, and also, under the sequence {H.,}
of alternatives. Thus, under the given model and the assumptions, the
test procedure based on S, possesses the asymptotic optimal properties
of the likelihood ratio test as given in Theorem 2.5.

3. AsymptoticallY optimal nonparametric test

Define as in Sen [8],
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3.1) > Zy=v, for j=0,1,---,1; »=j§‘_. -
t=1 =0
(3:2) Foo=0, F,u=3vay, §=0,1,--,1.

(3.3) J,,=SF""“ Sw)du / SF”"“ du, for >0, =0 if »,=0
F Fy 4

v ]

(j=0,1,---,0). Let

(3‘4) Ukv= c;ckuizdvjzuij ’ k=19"'7 D, alz(ljln"': Upv) ’

~
>

(3.5) AYF,, {I’})=, bivifv) .

We propose the test statistic
(8.6) M=(UAS'U)ATHF,, {L}) .

The rational behind using this test statistic is as follows: We may
first note that (as in Sen [8]) the unconditional distribution of S, will
depend on the unknown 4, (=0, 1,---,l) even under H, in (1.5). This
is because we are dealing with grouped data. However, S, provides a
distribution-free test under the same permutation argument as of Sen
[8]. For details, one may refer to Sen, as we omit the arguments for
the sake of brevity. Let &, denote the permutational probability meas-
ure as defined in Sen [8]. It is easy to verify that

(3'7) E(Zviilg)v)zpj/” (7’=1’ 2;"'; v, j=0y 1""7l),
(3.8) E(Z,;Z.y|P)=0  (t=1,2,--+,v; 4,5'=0,1,---,1, j#7'),
(39) E(Zusuwy| P)=(osl0,—0,,)—1)) ,

(4,5'=0,1,---,1; i,9=1,2,.--,v, i#1'), where 3,; are Kronecker deltas.
Using these, we get,

(3'10) E(l]kvlgy)zg C;ckpi<glo ¢(u)du)=0, k—_—l, 2,. e, P,

(1) Cov(Un, Unl R)=J6—1)(3] cluck ) AXF, {T}) .
Thus,
(3.12) E(U|P)=0, Var(U,|P)=(/c—1)AAF,, (L})4, .

The following nonparametric test is proposed :
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1 it M>M,,
(3.13) o(X¥)={ 8, if M=M,,
0 if M,<M,,

M, . and 6, being so chosen as E[¢f(X*)| P,]=¢, the level of significance.
This implies E[¢p(X}¥)|P]=¢ i.e. ¢(X}*) is a similar size ¢ test.

We may remark that the task of finding the percentage points of
the actual permutation becomes tremendous even with moderately large
sample sizes. This leads us to the study of the large-sample distribu-
tion of the permutation test statistic.

First we state a useful result due to Sen [8].

LEMMA 3.1. Under (1.1)-(1.4), AXF,, {I,}) comverges in probability
to ANF,{L,}) under the mull hypothesis H, and also under the sequence
of alternatives {H,}.

Next, let, Wi= EA,,ZM (1£i<v). Under %,, ﬁ,, are invariant,
while Z,;;, are StOChaStlc Also, v; of the W, are equal to Ay, (7=0,1,

-, 1), and U, = Zc,m Wk (1<k<p). We prove the following theorem.

THEOREM 3.2. Under &P, and (1.1)-(1.4), U, is asymptotically N,(0,
AYF, {I})A4) in probability.

Proor. Consider €U, as in Lemma 2.1. We can write €U,=
z"‘, m, W3k, where, m, (1=i<y) are defined in Section 2, Lemma 2.1.
i=1

We can show max mi; / E mi;=o0(1) (see Lemma 2.1). We shall also
i=1

15isy

show that the (double) sequence {W}; 1<i¢<v, v=1} satisfies the con-
dition @ of Theorem 4.2 of Hajek [3] in probability. The condition is
as follows:

max 2 (Wx —Wx)
B.14) limk,fy=0=lim Z01 k=T =0  in probability .
e e S (WE— W)
a=1

where Wx=y! g W,.. If Q is satisfied, then the Noether condition
(see Section 2) is satisfied if we put k,=1. Now, Wi=y" 12»,4,,—0
vt Z Wii=AYF,, {I,})— AYF, {I;}) in probability as v— oo (by Lemma

3.1) Further, if WisWHi<--- WS denote order statistics corre-
sponding to W:fz’s (1=1=v) (not necessarily all distinct), we can write

max - E W:,“—[ >3 W(,,)] / v which is invariant under all »! pos-

1$i1<-"<iky§v a=1 v—k, +
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sible permutations of W32, since order statistics remain invariant under
permutation of arguments. Define now a step-function a,(u), 0<u<1
such that,

a (u)=Wis for (i—1)v<u=gify, 1<i<y.

Hence, v 31 W{rg:gi a(wdu. But, Sa(u)du—u“ > W= AXF,,
k

v—k,+1

{Ij})SAz(F)<oo So, A(F,, {L;}) is bounded uniformly in v and {I,}.

Hence, v 3] WiE3—0 as v— oo when k,/v—0 as v—oo. The theorem
v—k +1

now follows by appealing to Theorem 4.2 of Hijek [3] and observing
that E(e'U,|P)=0, Var(e¢U|P,)=(e4,e)A F,{I}), and 4, —A4 as

y—» 00,
LEmMMmA 3.3. T,—U, converges to 0 in P,-probability.

Proor. It is sufficient to show that T\,—U,—0 in P.-probability
for each k=1, 2,..., p, since, then, the result will follow from the Bon-
ferroni inequality. Since mean square convergence implies convergence
in probability, it is sufficient to show that E(T,,—U,.)*—0 under H,
for each k=1,2,-.-, p. Proceeding exactly as in Lemma 3.2 of Sen [8]
for each such squared mean, we get the result.

Thus, under H, (and because of contiguity, under H,) U, has asymp-
totically the same distribution as T.,.

THEOREM 3.4. Under (1.1)~(1.4), M, and S, have asymptotically the
same distribution under P, or Q,.

ProOF. Using Lemma 3.2 and Slutsky’s theorem, we find that
M,—S, converges in P, (or in @Q,-) probability to zero. Hence, the
theorem.

We may remark that the results of Sections 2 and 3 be proved
without using the ‘contiguity’ argument. This will be useful if the
above findings are to be extended to the multivariate case, where the
contiguity of the sequence of probability measures corresponding to the
alternative to the corresponding sequence for the null hypothesis does
not seem apparent.

4. Extensions to the case of a countable set of class intervals

As already mentioned, the results derived in Sections 2 and 3 are
easily obtainable without any appeal to  contiguity.” The present author
has succeeded in doing that (see [2]). However, if the above findings
are to be extended to the case of a countable set of class-intervals, we
need use the ‘contiguity’ argument. Suppose, we have a countable
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set of class-intervals I;=[a,, a;,,), j=---, —2,—-1,0,1,2,.-.. Define
Z,; as in Section 1 and F;, P,, 4, as in Section 2 (j=..-, -2, —1,0,
1,2,.-.; 1=4=<v; v=1). Consider the statistics
(4-1) Tkv0=zlc;<vi 2 AJ'UAvij .

i= j=—o

If we coalesce classes on either end, the problem can be reduced to the
case of a finite set of class-intervals, and test procedures developed
earlier can be considered. We shall show that by proper choice of ter-
minal class-intervals, the resulting test procedure will be asymptotically
power-equivalent to the one based on the statistics T}, (k=1,2,---, p).
We formulate these ideas mathematically as follows: Let

(4'2) A.7'0=Aj (j:-81+1!"'732—1) ’

dy=33 4P,/ 3 P,
_82

i=s,

A_,]0=j=2_ A"Pj/j=z_°° Pj .

(4.3) Zli=Z.;  (J=—s8+1,---,8—1),
Zi= 5 2y, Buc= 3 2l

Define the statistics

(8.4 To=$ich 3 dZly  (b=12-,0).

Using the statistics T..., a class of asymptotically optimal tests can be

obtained as in Section 2. We want to show that To— T}.,—0 in P,

(and hence, in Q,-) probability for all k=1,2,---,p. We can conclude

then that the test procedure based on the statistics T}, (k=1,2,---, p)

is also asymptotically optimal in the sense described in earlier sections.
Now, we can write after some simplifications,

v o —5
(5)  TuTu=3 |3 =40 Zut 5 _(4=1.00 %) .

i=sg
It follows after some algebra that
(4.6) E(Tww— T P)=0,
4.7 El(Tu—Tw)|P)
=s a3 U202+ 2 4-1.074)

J=39

P]

§2{E [ 5 (A,—A,,,o)Zm]z

F=34

’)
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+2(E[ 5 @, A-slo)Zu]

=—00

)

=2[ 3 - £0P,+ Ui £.,0P)]

J=34

<2 [z 4P+ %‘ AZP,] .

J=8g

Since, E 4;P,< A¥(F)<co (see (2.8)) uniformly in j, given any ¢>0,

j=—e

we can find s, and s, such that 2 4IP; < /4, 25 4}P,;<¢/4. Then,
J o

J=35 =—

El(T.o— Tw.)!| P]<e. Thus, Tiw— Tiwn—0 in P, (Q-) probability for
each k=1,2,---,p

5. ARE

If however, the true d.f. is G(x), while our assumed d.f. is F(z),
the procedure mentioned in the earlier sections is no longer asympto-
tically optimal. We first define the asymptotically optimal test proce-
dure in this situation, and then study the ARE of the proposed test
procedure with respect to the former. With this end in view, we in-
troduce first the following notations:

6. g@)=C@, ¢@ exist; AG)=|_[@/@TFoEdx(<),

(5'2) Gj:G[G_I(a’j_ﬁO)] ’ j=0, 1’ Ct Yy l+1 y
(53) PJ'*:GJ'+1_GJ' ’ .7:0: 17"'7l ’
(5.4) *uw)=—9'G'(w)/g(G'(w)), 0<u<ll,
g " e u)du/PF  if PFE>0,

(5.5) 4=

0, otherwise (7=0,1,---,0),
(5.6) AXNG,{[})=> 4r:P}r.

ji=0

Define the statistics
(5.7) Te=31ct X Zudf  (k=1,2,-,7).

Let Tx=(Tf, -, T, (v=1), and let
(5.8) SF=AGALDTX'4T*  (v21).

According to the criteria as described in Section 2, the asympto-
tically optimal test is now based on S¥* i.e. a test procedure similar to
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the one in (2.18) with S, replaced by S¥ is now asymptotically optimal
in the sense described in Section 2. Under H,, S¥ is distributed asymp-
totically as yxi(y}), where,

(5.9) 7= (7"A7)A*G, {I;}) .
To study the ARE of our proposed permutation test, first, define

Gjy1 .
SG sudu/PF  if PF>0
J

(5.10) A;"*={
0, otherwise (7=0,1,---,0D,

G.11)  B(F, (L)=3 45PF,

(6.12) C(F,G,{L})= j’z 4FAT¥Pfx,
(6.13) p(F, G, {L,})=CF, G, {LH/AG, {I,})BF, {I,})] ,
(G.14) Ti*= ; ok, jﬁ Zo4*  (k=1,2,---, 1),

Tx*=(T%*,---, TEY, (=1
(6.15) S¥*=BXF,{L,})T}*'A;'T** (v=1).

The permutation test statistic M, is no longer “asymptotically equiva-
lent” to S, but to S**. Also it follows from “ contiguity ” and LeCam’s
third lemma (see Section 2) that T** is under H asymptotically N, ((47))
C(F, G, {I,}), ABXF,{L;}). Hence, S}* is under H, asymptotically dis-
tributed as yxi(yi’), where,

(5.16) 7' =" Ar)CHF, G, {L;H)/BYF, {1,}) .

Using the definition of ARE as given by Hannan [6] as the ratio
of non-centrality parameters of two asymptotically chi-square statistics
with the same degrees of freedom, we get the ARE of the permutation
test procedure as described in (3.13) with the optimal parametric test
procedure as described in (2.18) with S replacing S, is given by

(6.17) er,o {1} = 00" 0= o*(F, G, {I}}) .

We may note that the expression for the ARE depends on the true
distribution, the assumed distribution, and also on the grouping struc-
ture. However, this is unavoidable, and the optimum way of grouping
in a particular context will depend heavily on the true parent distribu-
tion. Moreover, in many actual situations, the statistician has no con-
trol over the grouping, where the a;’s are fixed in advance.
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In case of ungrouped data where X,; are observable and (3.1)-(3.4)
hold, for testing H, against {H,}, one proceeds on the same line as of
Hajek [4]. In the situation where the true and the assumed distribution
are both the same, namely F, the test statistic S,,=(T¥'4;'T})AXF)
for ungrouped data is asymptotically xi(7.), where, »y=(r'4dy)AYF).
In this case, the relative loss of efficiency due to grouping is

(5.18) (po—n)[me=1—(AXF', {1} ))]A(F’)
- jﬁ [SZ [$(w)— 4, Fdu / g: ¢2(u)du] .

We can determine the class-intervals in such a way that given any
¢>0, max P;<e. This can be achieved independently of v. Thus loss

osjsi
of efficiency can be made arbitrarily small by proper choice of class-

intervals.
Again in the situations, where the true distribution function G and
the assumed distribution function F' differ, the relative loss of efficiency is

(5.19) 1—n/l(7' A7)’ A'G))=1—[o(F, G, {L,})/eFA(G, {I})/AG)T,

which also can be made arbitrarily small as in the preceeding case.
Also, the above expression may be greater than, equal to or less that
(5.18) with G replacing F' depending on p and o(F, G, {I;}).

It is worth noting that ¢(u)=0@'(u) (the inverse of a standard nor-
mal d.f.), 2u—1 and sgn (2u—1) according as f(x)=(27)"'2exp (—x%/2),
¢ */(14+e*) and 1/2exp(—|x|) respectively. This leads us to conclude
that the Normal Score Test, Wicoxon Test or the Sign Test is asymp-
totically optimal according as the parent distribution is normal, logistic
or double-exponential.

6. Applications

The model considered includes as a particular case the p (>2)-sam-
ple problem. Consider the situation when the X, (1<i¢<v) are from p
populations 17,---,II, and out of the v observations, n,, are from the

i, (k=1,2,---,p). Note that uzzp‘, Ng. Assume
k=1

(6.1) lim n,,fv=m, v<o<ﬂ,‘<1, 1<k<p; ﬁ:,rkzl) ,
The regression constants ¢,; (1=<¢<v, v=1; k=1,2,---, p) are given by
6.2) { 1—(m/v),  if the ith observation is from kth sample
6.2 CCryi =

‘ —(nlv) , otherwise ,



A CLASS OF ASYMPTOTICALLY OPTIMAL NONPARAMETRIC TESTS (I) 107

Agigy, v21; k=1,2,---,p). It is easy to see that

69 A=([EEEGERI )

(6.4) A= (([—=14+204 (O — i) (i — )1 —m) (1 — 7))} ),

d’s being Kronecker deltas. We may observe that both 4, and 4 are
ofrank (p—1). But the computations can be carried out very easily by
working with a principal submatrix of order (p—1) of 4, and 4. The
author has actually considered a numerical example illustrating this (see
[2], Chapter VI). This will be considered elsewhere.

We might remark that in the p-sample problem, Basu [1] has con-
sidered the censored case where only v* (<v) of the ordered variables
in the combined sample are observable, while v*v—p, (0<p<1) as
y—oo. A similar problem follows as a special case of ours when I;:
x<x,, while probabilities P, (j=1,---,l) of belonging to I, L,---, I,
are sufficiently small. However, while in Basu’s case v* is given, while
the corresponding truncation point is random, in our case, the trunca-
tion points are fixed, while v; (=0,1,:::,1) are random. In spite of
these basic differences, the ARE’s of the two test will be the same,
and further, we can study the optimality properties of Basu’s test ac-
cording to the criteria described earlier. As such, for the logistic dis-
tribution, Basu’s test is optimal. For related results, see also Sugiura
[9].

The above analysis is also applicable when the r.v.’s are grouped
in several ordered categories (the case of categorical data) when the
underlying parent distribution is continuous.

7. Concluding remarks

The present paper includes, as a particular case (when p=1) Sen’s
model, where, however, the null hypothesis has been tested against one-
sided alternatives. Thus, unlike his case (even when p=1), we do not get
an asymptotically (locally) most powerful test, but a test asymptotically
optimal in Wald’s sense. It may appear that our sequence {B,} of al-
ternatives is local, while the regression coefficient 8 as considered by
Hajek [4] and Sen [8] is quite general. The answer to this is that H4jek

and Sen (in the case p=1) have imposed the condition 31 (¢,.i—&.)=0(1)
i=1
along with the Noether condition max (c,,;—¢,.) / E (ci—¢€L)}=0(1). We
1Sisy i=1

need the latter, but not the former which does not hold when e.g.
=1 (1Z1=2).
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