ON THE UTILIZATION OF A KNOWN COEFFICIENT OF KURTOSIS IN THE ESTIMATION PROCEDURE OF VARIANCE

J. SINGH, B. N. PANDEY AND K. HIRANO

(Received June 28, 1971; revised Nov. 1, 1972)

Summary

Let μ and σ^2 be the unknown mean and variance of a population distribution, respectively. An estimator Y^* of σ^2 is developed which utilizes a priori information concerning the value of the population coefficient of kurtosis β_2 . The estimator Y^* is shown to have a smaller mean-squared error than the usual unbiased estimator s^2 (that is, the sample variance). Furthermore in Table 1 we give the relative efficiencies of Y^* with respect to s^2 , and in Table 2 the ranges of α that an another estimator \tilde{Y} , which uses the approximate value $\beta_2\alpha$ ($\alpha>0$) instead of β_2 in the estimator Y^* , is more precise than s^2 .

2. Introduction

Let X_1, X_2, \dots, X_n be a random sample of size n from a population with the unknown mean μ and variance σ^2 . Searls [1] proposed an estimator \bar{X}' of the population mean, deviding the sample total $\sum_{i=1}^n X_i$ by a scalar which is determined by minimizing the mean-squared error. Such an estimator \bar{X}' is although biased, has smaller mean-squared error than the usual unbiased estimator \bar{X} (that is, the sample mean). The value of the scalar depends upon the population coefficient of variation $v_0 = \sigma/\mu$. The estimator \bar{X}' may have its utility in those situations where an approximate or guessed value of the population coefficient of variation is available. Hirano [2] gave the relative efficiency of an estimator \tilde{X} , which uses $v = v_0 \alpha$ instead of v_0 in \bar{X}' , with respect to \bar{X} , and the range of α that the estimator \tilde{X} is more precise than \bar{X} .

In this paper we give an estimator Y^* of the population variance using a priori information about the population coefficient of kurtosis β_2 , and discuss its properties in relation to the usual unbiased estimator s^2 . Also we present the table of the relative efficiency of the estimator

 \tilde{Y} , which uses the approximate value $\beta_2\alpha$ ($\alpha>0$) instead of β_2 in the estimator Y^* , with respect to s^2 and furthermore the range of α that the estimator \tilde{Y} is more precise than s^2 .

3. Estimation that utilizes an exact value β_2

Let X_1, X_2, \dots, X_n be a random sample of size n from a population with the unknown mean μ and variance σ^2 . Consider the estimator of σ^2

(1)
$$Y = M \sum_{i=1}^{n} (X_i - \bar{X})^2$$

$$=M(n-1)s^2$$

where $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ and M is a scalar.

We determine the scalar M to minimize the mean-squared error of Y. We have

(3)
$$MSE(Y) = Var(Y) + (Bias Y)^2$$

where MSE(Y) is the mean-squared error of Y. It is well known that

$$(4) E(s^2) = \sigma^2$$

and

(5)
$$\operatorname{Var}(s^2) = \frac{\mu_4}{n} + \frac{(3-n)\sigma^4}{n(n-1)}$$

where μ_4 is the fourth central moment. From (2) and (5)

(6)
$$\operatorname{Var}(Y) = M^{2}(n-1)^{2} \operatorname{Var}(s^{2}) = M^{2}(n-1)^{2} \left[\frac{\mu_{4}}{n} + \frac{(3-n)\sigma^{4}}{n(n-1)} \right].$$

Now, in view of (4),

Bias
$$Y = E(Y) - \sigma^2 = M(n-1)\sigma^2 - \sigma^2$$
.

Hence

(7)
$$(\text{Bias } Y)^2 = \sigma^4 [1 - M(n-1)]^2$$
.

Therefore from (3), (6) and (7) we have

(8) MSE
$$(Y) = M^{2}(n-1)^{2} \left[\frac{\mu_{4}}{n} + \frac{(3-n)\sigma^{4}}{n(n-1)} \right] + \sigma^{4}[1 - M(n-1)]^{2}$$
.

Differentiating (8) with respect to M and equating to zero we get

(9)
$$2M(n-1)^{2}\left[\frac{\mu_{4}}{n}+\frac{(3-n)\sigma^{4}}{n(n-1)}\right]-2\sigma^{4}(n-1)\left[1-M(n-1)\right]=0.$$

From (9) we get

(10)
$$M = \frac{n}{n^2 - 2n + 3 + \beta_2(n - 1)}$$

where $\beta_2 = \mu_4/\sigma^4$. Further we have

(11)
$$\frac{\partial^2}{\partial M^2} \text{MSE}(Y) = \frac{2(n-1)}{n} \sigma^4 [\beta_2(n-1) + n^2 - 2n + 3].$$

If $n \ge 2$, then all the terms in (11) are positive. We suppose that $n \ge 2$ throughout in this paper. Hence $(\partial^2/\partial M^2)$ MSE (Y) is always positive. Consequently the value of the scalar M which minimizes MSE (Y) is given by (10).

Here we define as follow the estimator Y^* with the scalar M given by (10) that minimizes MSE(Y);

(12)
$$Y^* = \frac{n}{\beta_2(n-1) + n^2 - 2n + 3} \sum_{i=1}^n (X_i - \bar{X})^2.$$

Equations (8) and (10) give

MSE
$$(Y^*) = \frac{\sigma^4[\beta_2(n-1)+3-n]}{n^2-2n+3+\beta_2(n-1)}$$
.

Since s^2 is an unbiased estimator of σ^2 , we have

MSE
$$(s^2)$$
 = Var (s^2) = $\frac{\sigma^4}{n(n-1)} [\beta_2(n-1) + 3 - n]$.

Hence the relative efficiency of Y^* with respect to s^2 is

REF
$$(Y^*) = \frac{\text{MSE } (s^2)}{\text{MSE } (Y^*)} = \frac{n^2 - 2n + 3 + \beta_2(n-1)}{n(n-1)}$$
.

For different values of n and β_2 the relative efficiencies REF (Y^*) (%) are presented in Table 1.

					(-) ()	· ,			
eta_2	Sample size n								
	5	10	20	50	100	500	1000		
1	110.0	102.2	100.5	100.1	100.0	100.0	100.0		
2	130.0	112.2	105.5	102.1	101.0	100.2	100.1		
3	150.0	122.2	110.5	104.1	102.0	100.4	100.2		
4	170.0	132.2	115.5	106.1	103.0	100.6	100.3		
5	190.0	142.2	120.5	108.1	104.0	100.8	100.4		
6	210.0	152.2	125.5	110.1	105.0	101.0	100.5		
7	230.0	162.2	130.5	112.1	106.0	101.2	100.6		
8	250.0	172.2	135.5	114.1	107.0	101.4	100.7		
9	270.0	182.2	140.5	116.1	108.0	101.6	100.8		
10	290.0	192.2	145.5	118.1	109.0	101.8	100.9		

Table 1 Relative efficiencies REF (Y*) (%)

The largest gains are obtained for small sample sizes.

4. Estimation that utilizes an approximate value $\beta_2 \alpha$

In many practical cases, what we can obtain is the estimated value $\tilde{\beta}_2$ of the population coefficient of kurtosis β_2 . Hence the assumption that we have only the approximate value $\tilde{\beta}_2 = \beta_2 \alpha$ ($\alpha > 0$) of the coefficient of kurtosis is reasonable. The estimator \tilde{Y} of σ^2 , which substitutes the approximate value $\tilde{\beta}_2 = \beta_2 \alpha$ for β_2 in the estimator Y^* given by (12), is defined by

$$\tilde{Y} = \frac{n}{\beta_2 \alpha (n-1) + n^2 - 2n + 3} \sum_{i=1}^n (X_i - \bar{X})^2$$
.

Now we are interested to obtain the range of α that the estimator \tilde{Y} is more precise than the usual estimator s^2 . Such a range of α is obtain from the following inequality;

(13)
$$\operatorname{REF}(\tilde{Y}) = \frac{\operatorname{MSE}(s^2)}{\operatorname{MSE}(\tilde{Y})} \ge 1.$$

After some calculation the inequality (13) is preserved and we have an inequality

$$(14) \quad (n-1)^2 \beta_2^2 [(n-1)\beta_2 + 3 - n^2] \alpha^2$$

$$+ 2(n-1)\beta_2 [(n-1)(n^2 - 2n + 3)\beta_2 + (n-3)^2] \alpha$$

$$+ n^4 - 8n^3 + 24n^2 - 36n + 27 + (n-1)(-2n^3 + 9n^2 - 12n + 9)\beta_2 \ge 0$$

which is equivalent to the inequality (13). Then in Table 2 we give the ranges of α that satisfy the inequality (14) for different values of n and β_2 .

eta_2	Sample size n									
	5	10	20	50	100	500	1000			
1	50.0-161.1	77.8-123.2	89.5-110.6	95.9-104.1	98.9-102.0	99.6-100.4	99.8-100.2			
2	25.0-239.3	38.9-178.1	44.7-161.7	48.0-154.3	49.0-152.1	49.8-150.4	49.9-150.2			
3	16.7-350.0	25.9-216.4	29.8-186.7	32.0-173.8	32.7-170.1	33.2-167.3	33.3-167.0			
4	12.5-595.8	19.4-257.1	22.4-206.2	24.0-185.9	24.5-180.7	24.9-176.0	24.9-175.5			
5	10.0-1810.0	15.6-307.9	17.9-224.5	19.2-195.0	19.6-187.1	19.9-181.4	20.0-180.7			
6	8.3-	13.0-377.3	14.9-243.4	16.0-202.9	16.3-192.5	16.6-185.1	16.6-184.2			
7	7.1-	11.1-481.7	12.8-263.9	13.7-210.0	14.0-197.0	14.2-187.9	14.3-186.8			
8	6.3-	9.7-659.7	11.2-286.7	12.0-216.9	12.2-201.0	12.4-190.0	12.5-188.8			
9	5.6-	8.6-1036.4	9.9-312.8	10.7-223.6	10.9-204.7	11.1-191.8	11.1-190.3			
10	5.0-	7.8-2379.2	8.9-343.2	9.6-230.3	9.8-208.1	10.0-193.3	10.0-191.7			

Table 2 Ranges of $100\alpha\%$ which the relative efficiency REF (\tilde{Y}) has more than 1

From Table 2 we can conclude that the estimator Y^* of σ^2 has robust efficiency for a considerable departure $\beta_2\alpha$ from the true value β_2 in the small sample cases or for the not so small β_2 .

Acknowledgement

The authors wish to thank Dr. K. Takahashi for his useful comments.

BANARAS HINDU UNIVERSITY, INDIA
THE INSTITUTE OF STATISTICAL MATHEMATICS

REFERENCES

- [1] Searls, Donald J. (1964). The utilization of a known coefficient of variation in the estimation procedure, *Jour. Amer. Statist. Assoc.*, 59, 1225-1226.
- [2] Hirano, K. (1972). Using some approximately known coefficient of variation in estimating mean, Proc. Inst. Stat. Math. (In Japanese), Vol. 20-2, 61-64.