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1. Summary

Let # and ¢ be the unknown mean and variance of a population
distribution, respectively. An estimator Y* of & is developed which
utilizes a priori information concerning the value of the population co-
efficient of kurtosis 5,. The estimator Y* is shown to have a smaller
mean-squared error than the usual unbiased estimator s* (that is, the
sample variance). Furthermore in Table 1 we give the relative effici-
encies of Y* with respect to s?, and in Table 2 the ranges of a that

an another estimator ¥, which uses the approximate value Ba (a>0)
instead of B, in the estimator Y*, is more precise than s’

2. Introduction

Let X, X;, -+, X, be a random sample of size n from a population
with the unknown mean g and variance ¢*. Searls [1] proposed an esti-

mator X’ of the population mean, deviding the sample total ﬁ‘, X; by
i=1

a scalar which is determined by minimizing the mean-squared error.
Such an estimator X’ is although biased, has smaller mean-squared error
than the usual unbiased estimator X (that is, the sample mean). The
value of the scalar depends upon the population coefficient of variation
v=0c/p. The estimator X’ may have its utility in those situations where
an approximate or guessed value of the population coefficient of varia-
tion is available. Hirano [2] gave the relative efficiency of an estimator
X, which uses v=va instead of v, in X’, with respect to X, and the
range of « that the estimator X is more precise than X.

In this paper we give an estimator Y* of the population variance
using a priori information about the population coefficient of kurtosis

Bz, and discuss its properties in relation to the usual unbiased estimator
s*. Also we present the table of the relative efficiency of the estimator
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Y, which uses the approximate value Ba (>0) instead of B; in the
estimator Y*, with respect to s* and furthermore the range of a that

the estimator Y is more precise than s.

3. Estimation that utilizes an exact value B

Let X, X;,--, X, be a random sample of size n from a population
with the unknown mean z and variance ¢*. Consider the estimator of o

(1) Y=M 3 (X,—X)
i=1
(2) = M(n—1)s'
where X:% ﬁ‘{X, and M is a scalar.
i=

We determine the scalar M to minimize the mean-squared error of
Y. We have

(3) MSE (Y)=Var (Y)+(Bias Y)

where MSE (Y) is the mean-squared error of Y. It is well known that
(4) E@)=¢

and

(5) Var ()= f‘*+%

where p, is the fourth central moment. From (2) and (5)

Now, in view of (4),
BiasY=E(Y)—d*=M(n—1)*—d*.

Hence

(7) (Bias Y)'=0'[1—M(n—1)}.

Therefore from (3), (6) and (7) we have

(8) MSE (Y)=M*n— 1)=[£L+(3( ”)1”)]+a4[1 Mn—1)F.

Differentiating (8) with respect to M and equating to zero we get

(9)  2M(n— 1)2[&+ (3( ”’B] —20(n—1)[1—M(n—1)]=0.
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From (9) we get

_ n
(10) M= nE—2n+3+By(n—1)

where g,=p/e¢'. Further we have

a
oM?

If n=2, then all the terms in (11) are positive. We suppose that n=2
throughout in this paper. Hence (¢*/oM*) MSE (Y) is always positive.
Consequently the value of the scalar M which minimizes MSE (Y) is
given by (10).

Here we define as follow the estimator Y* with the scalar M given
by (10) that minimizes MSE (Y);

11

MSE (Y)=%;_1)04[52(n—1)+n2—2n+3] .

_ n = Y\
(12) Yr= B(n—1)+n*—2n+3 2 (XK= X)"

Equations (8) and (10) give

__ d'[B(n—1)+3—n]
MSE (Y*)= ey e

Since s is an unbiased estimator of ¢, we have

MSE (s?)= Var (sz)=;(7b%~1—)—[ﬁg(n—1)+3—n] .

Hence the relative efficiency of Y* with respect to s* is

MSE (s}) _ n*—2n+8+B(n—1)
MSE (Y*) n(n—1) '

For different values of n and 8, the relative efficiencies REF (Y*) (%)
are presented in Table 1.

REF (Y*)=

Table 1 Relative efficiencies REF (Y*) (%)

Sample size n
& 5 10 20 50 100 500 1000
1 110.0 102.2 100.5 100.1 100.0 100.0 100.0
2 130.0 112.2 105.5 102.1 101.0 100.2 100.1
3 150.0 122.2 110.5 104.1 102.0 100.4 100.2
4 170.0 132.2 115.5 106.1 103.0 100.6 100.3
5 190.0 142.2 120.5 108.1 104.0 100.8 100.4
6 210.0 152.2 125.5 110.1 105.0 101.0 100.5
7 230.0 162.2 130.5 112.1 106.0 101.2 100.6
8 250.0 172.2 135.5 114.1 107.0 101.4 100.7
9 270.0 182.2 140.5 116.1 108.0 101.6 100.8
10 290.0 192.2 145.5 118.1 109.0 101.8 100.9
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The largest gains are obtained for small sample sizes.

4. Estimation that utilizes an approximate value B

In many practical cases, what we can obtain is the estimated value
,éz of the population coefficient of kurtosis p,. Hence the assumption
that we have only the approximate value 1§2= B (@>0) of the coeffici-
ent of kurtosis is reasonable. The estimator ¥ of ¢, which substitutes
the approximate value ‘52= B for B; in the estimator Y* given by (12),
is defined by
- n n _
Y= Baln—1)+m—2ni3 & (X~ X
Now we are interested to obtain the range of a that the estimator

Y is more precise than the usual estimator s®. Such a range of « is
obtain from the following inequality ;

MSE () -

13 =
(13) MSE(Y)

REF (Y)=

After some calculation the inequality (13) is preserved and we have an
inequality
(n—1)gil(n—1)f;+3—n’]a’
+2(n—1)B,[(n—1)(n*—2n+3)B;+ (n—3) la
+nt—8n'+24n*—36n+27+(n—1)(—2n*+9In*—12n+9)5,=0

(14)

which is equivalent to the inequality (13). Then in Table 2 we give
the ranges of « that satisfy the inequality (14) for different values of
n and B,.

Table 2 Ranges of 100a% which the relative efficiency REF (¥) has more than 1

Sample size »

o 5 10 20 50 100 500 1000
1150.0-161.1 | 77.8-123.2 | 89.5-110.6 | 95.9-104.1 | 98.9-102.0 | 99.6-100.4 | 99.8-100.2
2 125.0-239.3 | 38.9-178.1 | 44.7-161.7 [ 48.0-154.3 {49.0-152.1 { 49.8-150.4 |49.9-150.2
3 116.7-350.0 | 25.9-216.4 | 29.8-186.7 | 32.0-173.8 | 32.7-170.1 | 33.2-167.3 | 33.3-167.0
4 |12.5-595.8 | 19.4-257.1 | 22.4-206.2 | 24.0-185.9 | 24.5-180.7 | 24.9-176.0 | 24.9-175.5
5 |10.0-1810.0 15.6-307.9 | 17.9-224.5 | 19.2-195.0 | 19.6-187.1 | 19.9-181.4 | 20.0-180.7
6| 8.3- 13.0-377.3 | 14.9-243.4 [ 16.0-202.9 | 16.3-192.5 | 16.6-185.1 | 16.6-184.2
71 7.1- 11.1-481.7 | 12.8-263.9 |13.7-210.0 | 14.0-197.0 | 14.2-187.9 | 14.3-186.8
8| 6.3- 9.7-659.7 | 11.2-286.7 | 12.0-216.9 | 12.2-201.0 | 12.4-190.0 | 12.5-188.8
9| 5.6- 8.6-1036.4| 9.9-312.8 | 10.7-223.6 |10.9-204.7 {11.1-191.8 {11.1-190.3

10 | 5.0- 7.8-2379.2| 8.9-343.2 | 9.6-230.3 | 9.8-208.1 |10.0-193.3 | 10.0-191.7
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From Table 2 we can conclude that the estimator Y* of & has
robust efficiency for a considerable departure B,x from the true value
B: in the small sample cases or for the not so small g;.
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