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1. Introduction

Let observations X, X,, --- be independent but not necessarily
identically distributed (i.n.i.d.), and let
1 n

‘J%- g 7]1(XU 0)

be an estimating function (for example, see Wilks [13], Section 12.5 for

the concept). Let’s call a sequence of random variables, 0A,.=0A,.(X1,o ..
X,), n=1,2,---, a sequence of estimators for # based on a sequence of
estimating functions, £,(4), n=1, 2,--., when

§n(0)=5n(X1, c Yy Xn; 0)':

6,,(5,,)—»0 in probability, as n— oo .

For short we shall call é,, an estimator for # based on &,; hereafter.
In the case of independent and identically distributed (i.i.d.) obser-

vations, Huber [5] shows that the estimator é,, based on the estimating
function ¢, is consistent and asymptotically normally distributed, and,
particularly, that the maximum likelihood estimator is consistent and
asymptotically normally distributed under weaker conditions than usual.
Rao [10] extends these results to the case of markovian observations.
We shall extend Huber’s results to the case of i.n.i.d. observations and
the summand functions 7,(-, 8) of the estimating function £,(6) being not
common for all observations as stated before.

Our aim of this paper is, however, to discuss these results and new
results (proved in this paper) from the point of view that the asymp-
totic behavior of estimator 7, for @ is closely related to that of random
variable &,(7T,) which is obtained by substituting 7T, for # into the esti-
mating function £,(6). In a particular case where £,(f) is the likelihood
estimating function, we shall find that £,(7,) plays an important role in
evaluating the asymptotic efficiency of an estimator 7', as compared with

the maximum likelihood estimator é,,.

1
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In section 2 notations, assumptions, and some preliminary lemmas
without proofs are stated. In Section 3 we investigate the weak or
strong asymptotic differentiability of the estimating function ¢&,(0) (see
Lemmas 3.2 and 3.3 below, or Lemma 3 due to Huber [5]), and further-
more, prove in Theorem 3.2 below that if either one of the sequences
of distributions of yn(7T,—6) and £(7T,), n=1,2,---, is relatively com-
pact, so is the other. In Section 4 we show that the estimator (5,. based
on &,(0) is consistent and asymptotically normally distributed, and fur-

thermore, that, for some estimator T,, £,(7T,) and T,,—é,, are asymp-
totically equivalent as seen in (4.7) below.

Section 5 is devoted to the likelihood estimating function and the
maximum likelihood estimator. Héajek [4] and the author [6] proved
that the limiting distribution of estimator with some regular property
is represented as the convolution of that of the maximum likelihood
estimator and some residual distribution. In the case of markovian
observations Roussas and Soms [11] gave another proof of the same
result with more elegant methods. In Section 5 we prove again this
fact with simple and intuitive methods and show that the residual dis-
tribution is equal to the limiting distribution of —¢&,(T,).

In the last section two examples are given.

Finally we point out that similar arguments may be pursued in the
case of markovian observations by using the results of Rao [10] and
Roussas and Soms [11].

2. Notations, assumptions, and some preliminary lemmas

Notations

(X, A, P): a probability space,

6: a parameter space which is a subset of the k-dimensional
Euclidean space R* such that for any M >0, 6n{||0||<M}
is closed,

7dx, 0), 1=1,2,---: R*valued functions on X x6,

KK the maximum norm, i.e. ||#||=max {|6,],---, |6:]},

X, X,,---: observations being independent but not necessarily identi-
cally distributed,

6.}, (T} sequences of estimators for 6 where 4, and T, are k-di-
mensional measurable functions of the first n observations
(le' ) Xn)r

L(Y), E(Y), Cov(Y): the distribution, the mean vector and the var-
iance-covariance matrix of a random vector Y under the
probability measure P, respectively,

L[Y; PY: the distribution of Y under probability measure P which
is specified.
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Throughout this paper, we make the following assumptions similar
to those in Huber [5].

ASSUMPTIONS.

(i) »d=,0), ©=1,2,.-.. are A X B-measurable, where P is the o-field
of Borel subsets of @, and separable when considered as a process in 0.
(ii) Expected values 2,(0)=(°(6),- - -, A(0)) = En(X;, 0), 1=1, 2,.

ist for all 8 € @ and satisfy that

(2.1) 2(0,)=0, 1=1,2,---, for any fixed 6,€ ©
and
(2.2) 2.0 )=%§ O)—A0), as n—oo

where 2(6)+#0 if 6+6,.
(ili) There are two positive constant numbers 4., H.>0 and positive
functions b,(8)>0, 1=1, 2,--- such that

E'{SI}p [m(Xt’ 0)/bi(0)]} < oo,

2:3) Iim fim {max b@)/1I2,0)1} <1,

(2.4) lim lim [12:00)[|>2.>0 ,

(2.5) E{ulai’fi [ 74X, ) — 2D [/b:(0)} <1,
and

(2.6) E{lm [ 94X:, 6)—246)11/b(6)}} < H., ,

the last two convergences in (2.5) and (2.6) being uniform for i=1, 2,- - -
(iv) For i=1,2,---, E||p(X,, 6)—2,0)|]* exist and

(2.7) % § E||p(X;, 0)—20)|*—0 .
(v) Let
ulx, 0, d)=”rS_lﬁllgd |74 X5, ©)— 74X, O)]] -

For every compact set CC6, there are positive numbers d,, H;, and
H,>0 such that for any d<d, and any #€C

(2.8) Eu(X,,0,d)<H;-d, 1=1,2,---,

and
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(2.9) Varug(Xt, 0, d)<.EI2'd ’ 1:'—:1, 2,"' .

(vi) In some neighborhood of 4,, 4,(6), i=1, 2,--- are continuously dif-
ferentiable. Let differential coefficient matrices be

—92(0) _ (94°(6) =1 k) i=1.2...
4(0) =244 (aom ) (A, m=1,---, k) i=1,2,-- .

1 i A(6) converges to A4(6) uniformly in the neighborhood of 4,, and
n i=t

A(6,) is non-singular.
(vii) Let the variance-covariance matrices Cov (5(X;, 6))=S;, 1=1, 2,
There exists a positive definite matrix S such that

(2.10) S,.=L38-8,
n i=1

and, furthermore, there exist E||7(X;, 6)[], ¢=1,2,--- and

2.11) ﬁ SV E||7(X;, 0)[F -0, s nsoo .

Remarks.

(a) Let the minimum and maximum eigenvalues of the positive de-
finite matrix A(6,)-A4(6,) be ki and i/k (4, 4,>0), respectively (recall
that A(6,) is nonsingular). Since

(7—00) A(6) A(6,) (z — Bo) Z || A(6o) (= —b0) ||*
= (z—00)' A(6,) A(0,) (r— )

1
k
and

(52)-Ell == 0ol 2 (e~ 00 AOY AG) (=00 Z (e I ==l

it holds that
(2.12) Al —0o]|Z | A(80) (—00) [|Z A || T — 0|

(b) Chebyshev’s inequality holds for the k-dimensional random vector
Y. In faect, for any vector te R*

P{t(Y—EY)|>e} <t' Cov (Y)t/e,

—ee

and then, letting t=¢,=(0---010---0Y, I=1,---, k, vector elements,

(2.13) P{|Y—EY||>¢) gﬁl P{le(Y—EY)|>¢)
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A

max VarY®
I=1,e0,k

|& o=

[[CovY]| .

(3

&

LEMMA 2.1.

(i) 240), 1=1,2,---and A(0) are equicontinuous on any compact set, and
thus, the convergence of (2.2) is uniform on compact set.

(ii) For any >0, there exists d;>0 such that for every sufficiently
large n

@19) sup [| 33 o) — 460~ 00)

reD1

|7+l 40— <o,

where Dy ={z; ||[t—6,||<d;}. Consequently

¢
vn

(2.15) sup‘ L s 1¢<ﬂo+

msx ) /M =1 )—-A(ﬂo)-t“—)O , as n—oo .

PRrooF.

(i) For any compact set C, choose a positive number d so that for
0 € C (2.8) may be satisfied. Then for ||z—0|<d,

2(7)—20) | < Eu( X, 0, d)< Hy-d
and thus
la(z)—2(0)||=H;-d .

This implies that 2,(6), i=1, 2,--- and () are equicontinuous on compact
set C, and hence that the convergence of (2.2) is uniform on C.

(ii) It follows from Assumption (vi) that for any ¢>0 there exists a
neighborhood of 4,, D,={z;|r—¥8||<d,} such that for any ze€ D, and
every sufficiently large n

(2.16) (| 4u(z) = Al <z and  [[A(r)—A()]l <an-

It follows by mean value theorem and from (2.12) and (2.16) that

] [Em——
§§B£ Ll {/In(%)—/l(ﬁo)} (z=80)|1/2 7= 04[]

2(7)— A(6o) (z—6,)

(where 7=af,+(1—a)r, 0<a<1 and so 7€ D))

<sup L | 1,F)— AG)||+ sup = || 4G)— A@) | < -
reD1 A, reD1 Ay
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Now, (2.15) is easy to see, and the proof is complete.

From Assumptions (i), (iv) and (vii), we have the following lemma.
(See Theorem 2 of Loéve [9], p. 277 for the proof.)

LEMMA 2.2.

(1) %gm(xi,o)—»x(a) in P.

(i) L] 57X, 0|2 Ni0, 8), in law.

v ois

In parallel with the proof of Theorem 2 in Huber [5] we can prove
the next lemma about the consistency of estimators.

LEMMA 2.3. Under Assumptions (i)—(v), a sequence of estimators,
{0;}, converges to 6, in P if it satisfies the condition :

(2.17) L X, 6)-0, in P.

Let Y,, n=1,2,--- be random vectors and {_L(Y,)} be the sequence
of their probability distribution functions. {.L(Y,)} is said to be rela-
tively compact if for every subsequence {n’'}c{n} there exists a sub-
sequence {m}c{n'} such that _£(Y,) converges to a probability distri-
bution function in law as m— oo.

LEMMA 2.4.

(1) Im order for {L(Y,)} to be relatively compact it is mecessary and
sufficient that for any ¢>0 there exists a positive number M >0 such that

(2.18) P{IY,|>M}<e,  for every m.

(i) If {L(Y,)} and {L(Z,)} are reatively compact, {L(Y,, Z,)} 18 Te-
latively compact, and hence, in particlar, {L(Y,+Z,)} is relatively
compact.

These properties are well known: (i) is Prohorov’s theorem (for
example, see Billingsley [3], p. 37). (ii) is easy to see. (For example,
see Billingsley [3], p. 41, Problem 6.)

3. The “asymptotic differentiability” of the estimating function &.(6)

For a compact set C, choose a positive number d, which satisfies
the condition of Assumption (v). Put

L3 X, 6, d)— Bud(X., 0, d)}

3.1 U.0, d)= T
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and

n

(3.2) ViO=— 3 00lXKe, O) =X, 0)—240)

i=1
for 6 C and 0<d=<d,. Then

LEMMA 3.1.
(1) P{lUL0, d)|>e} < Hd/e
(ii) For d satisfying H)d<H, and 6 such as ||6—06,||<d, P{||V.(0)|>¢}
<2kH,d|.

ProoOF.

(i) Since Var u(X;, 6, d)<H,d, it is obvious by Chebyshev’s inequality.
(ii) From Assumption (v) and Remark (b)

P{|V.@®)]|>¢} =X | Cov V,(0)]

IA

” Cov {m(Xn 6)— 7]¢(Xi’ o) — 2(0)} ”

M=

A
Nla--mla- SR L WE

” ?i(Xiy 0) vi(Xl ’ 00) “

IA

E{u{(X, 6,, d)}*

|~ I~ 3|+
||M§

||M=

{sz+(H1d)2} < sz

Let’s call an estimating function to be “ weakly asymptotically dif-
ferentiable ” if it satisfies the condition (3.5) below, and to be “strongly
asymptotically differentiable” if it satisfies the condition (3.9) below.
The latter property is proved to imply the former. We show that these
asymptotic differentiabilities are satisfied by the estimating function &,.
Recall from Lemma 2.2, (ii) that

(3.3) L[6.(6:)]— N0, S) , in law .
Put
(3.4) 4V (z— 00)) = &(t) — £4(60) — A(6,) v n(z—6) .

LEMMA 3.2. Under Assumptions (i), (ii), (v) and (vi), it holds that
Jor any M >0 and large n (putting t=+n(c—8,) in (3.4)),

(3.5) sup ||4,(t)]|= sup ’—>o in P.
tlsM =M

(0 +7%) —£,(0)— A(Bo)t

ProoOF. Since, according to Lemma 2.1-(ii), (2.15), for any ¢>0 and
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every sufficiently large number n

& o) o<

ll II§M

it follows that

66 s 1401S sup | k=3 (X oot ) X 00

gl

Choose d such that 0<dH;<¢/8 and let W(t)={t'; ||t'—t||<d}. Compact
set {t'; ||t'—t||< M} can be covered with finite open sets W (¢, -, W(tn)
and it holds from (2.8) that

1 2 t .
| 7 & {2l ’“(”“Jrﬁ)}”
57_— ZEui<X‘ 0o+
Therefore, it follows that

61 sl & s ) noor-afons )|

litll= M

<
<sup S&?Jlm“{ﬂ(x bt )
t

oo )|

=, [71;@—— Sul(xo 0t 7 75
+H—~/17“{m<x 50+‘j—-ﬁ-> —7d(X;, 6)— 1<0o+1/———>}”
+ i 38X 0 7o )
S e
< {|ofor o el gl
By Lemma 3.1 we have
R T

and
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P{ n<00 >”> } 16 2kH2 M .

7
Hence from (3.6), (3.7) and (3.8), we have

Piaw |40t [>]
<P swp [|v(o e )|+ V(o 5 ) > ]
s [ Pllworfo g v 75 >

SN—Hz(d+2kM)/Jn —0, as n—oo.

This completes the proof of the lemma.

The following lemma is similar to Lemma 3 of Huber [5], but our

method of paving a region of parameter in the proof is slightly sim-
plified.

LEMMA 3.3. Under the same assumptions as those of Lemma 3.2, it
holds that, for any >0, there exists such a positive number d,>0 that

(3.9)  P{sup [[[4(vn (z—0) /A +]| 4B}V 7 (z—0) [D]>e} =0,
as mn—oo .,

where Dy= {z; ||t—06,||<d,}.

ProorF. From Lemma (2.1)-(ii), (2.14), for any ¢>0 we can choose
d,>0 such that for € D, and every sufficiently large n

31 {40 —4(6) (-—00)}

W+l 400 - 0)ID <% -

Therefore it holds that for z € D, and every sufficiently large n
(3.10) | 4a(v/ 1 (z—00)) |[/(1+ || A@o)v/ 7 (z—60) |[)
=[5 3 X a9 -2

(1+«/WIIA(00)(7—0o)II)+% .

Let 6=1/8k and consider the cubes D,={r;||z—6,||=dm™*}, s=0,
'1,.---,4k. Remark

Dy ={z; [lr— 00| Sdo [y T} = Oy —

7w b llEll=dd} .
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Cover D,,=D,—D,,,, (8=0,1,---,4k—1) with smaller cubes W,@,,), r=
1,---, N,, the length of whose edges is 2d,=(Aed,/4H)n ", and the
coordinates of whose centers, 6,,, are odd multiples of d,. Then we have

(3.11) 2~/WH!d‘=%10donl/z-(s+m

and
(3.12) N, < (2[dym=%[2d,] +2)* < (16 H,/Ae)*n’* for large = .
Similarly as in (3.7), it holds

= 3 X, 7K, 0= 2(0))
§1sS}1§I3v “ Un(a.sr ’ ds) | + ” V,,(B,r) ”} +21/%-H1ds .

(3.13) sup T =

t€D(s)

From (2.12), it holds that for = € Dy,

(3.14) 1+ V0 || A(0y) (z— ) [| = ¥V 2dyn ™2 = 2 dyn 2~ |
Therefore it follows from (3.10), (3.11), (3.13), and (3.14) that
(3.15)  P{sup [|| (v (z—0u)I/A+]| A0} % (z—0)) ID]>e}

gP{sup

€ D(s)

7177 é{ {74 Xs, ) =7l X, 00)— 2(7)} “/

nf LV (|40 = 0[]+ > <]

<P{ sup [1U(00, d)|+[Vel0) | +2 7 Hd]

. (Zodonl/z'(’+1’a)'l>%s}

=P { sup [|Un(@.:, da)|+HVn(es,)||]>%zndon1/2-<-=+m}

1s

gNZ’; {P {IUn(asrv d,)l>—2—lodon“2“””"}
£ 1/2—(s+1>8
+P (V01> S 2o ]
By Lemma 3.1 it follows from (3.12) and (3.15) that
(3.16) P {2%?) [ 4.(v/ 1 (r— ) /(1 + || ABo) ¥ 7 (z— o) [)] > €}
<(I6H, o) (Hid,+ 2™} (£ adgn=o+2)

_S_ (16H]/105)k {szoedo’n_"/sHl'i‘ 2ksz0}
. (elod0/4)‘zn’"“""’”2(‘“"’—»0 , as n—oo .
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For ok—s6—1+2(s+1)0=(k—8k+s+2)/8k< —(3k—1)/8k <0, on account
that 6=1/8k and 0=s<4k—1.
On the other hand, we have by Lemma 8.2 that, letting D,,=D,,

3.17) P{ sup [l 4u(v/0 (z=0)I/(1+1[| 4B}y R (—60) [D]>e}
=P{sup [|4.(0)][>e}—0,  as m—oo.

Hence we have from (3.16) and (3.17)
P{sup ]| 4,(¥'7 (z—0) ||/(L+ ] 4B}V 1 (—60) )] > e}
=P{sup sup [[|[4(v/ 7 (c—6))[[/(1+| G0} 7 (z—60) [)]>e}

1=854k t€ D(s)

<2 P{rgup U 4V R (z—8:)) [|/(1+]] A(0)¥ R (z—64) [)] >} —0
as n—oo .,
The proof of this lemma is complete.
Now since, for any M>0, 6,+1/y% {t; ||t|<M}cD, if n is suffici-
ently large and 1+|[4(6)t||<1+4M (from (2.12)), it holds that

P{sup [[4,0)|>¢}

<p{sup 14O+ A6 D> 757

<P fsup L4/ T = I+ AOW T =03 D> 52 -

This shows that Lemma 3.3 implies Lemma 3.2. That is, the “strong
asymptotic differentiability ” implies the “ weak ” one.

Let T,=T«(X;,---, X,), n=1,2,... be estimators of §,. Now we
shall discuss the relation between T, and &,(T,).

THEOREM 3.1. Suppose the same assumptions as in Lemma 3.2.
(i) If {LIVn(T,—6y)]} is relatively compact, it holds

(8.18) AV (Ta—00))=6T,) —£00)— AO)V (T —0)—0,  in P.

(ii) If T, is conmsistent for 6,, i.e. P{||T—6,||>c}—0, for any ¢>0, it
holds that

(319)  4Wn(T,—0)/(A+|| 40V (T,—6)|)—0  in P.

PROOF.

(i) By the relative compactness of {L[y7n(T,—6)]}, it follows that
for any ¢>0 there exists M >0 such that

P{||v/n(T.—6,)||>M} <—;— ,  for every n.
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By Lemma 3.2 it follows that for all sufficiently large n
P{llvn(T,—6)|<M, || 4.(v 1 (T, —60)) || > ¢}
<P{sup | 4.(t)||>e} <~ .
lelsx 2

Thus we have the conclusion of (i):

Pl 4.(vn(Ta—0)) || > e}
SPvn(T,—60)[|> M} + PV u(Ta—0) |I<M, [| 4(T) || > e} <e .

(ii) is easy to prove similarly as in (i).

THEOREM 3.2. Suppose Assumptions (i)-(vii) hold. In order that
{LIVnH(T,—6,)]} is relatively compact, it is necessary and sufficient that
{LIEAT)]} is relatively compact.

Proor.

(Necessity) If {L[vn(T.—6)]} is relatively compact, it follows from
Theorem 3.1-(i) that {_L[4.(Wn(T.—8,))]} is relatively compact. From
(8.3), {L16.(6)]} is relatively compact. Considering

ElT) =4, (VN (Ta—00)) +£.(600) + A(0o) v n (T —8) ,

we have by Lemma 2.4-(ii) that {L[¢.(T,)]} is relatively compact.
(Sufficiency) Since {.L[£.(T,)]} is relatively compact, it holds that

4/—‘"7 Eﬂ(Tn)—;g i(Xiv Tn)_’o ’ in P;
and, hence by Lemma 2.8, that T, converges to 4, in P, as n—oo.

Therefore it follows, from Theorem 3.1-(ii), that for any ¢>0 and all
sufficiently large n

P{||6.(T,) —£4(00) — AV 1 (T —6) [|/(1+ || AB)V 1 (T —Go)|) >} < % ,
and so, that

—;—>P{II/1(00)~/W(T,.—00) =116 Ta) — &a(00) || > e+ || A(60)v/ 0 (T — 60} |1)}

=P [l 40T T~ 00| > T2 (c+lIe T -0 )} -

It follows from (2.12) that

320) PRI 0> G e HIGTI~60) D] <5 -

—&)A
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Since {L[¢.(T,)—¢.(6,)]} is relatively compact on account of Lemma 2.4-
(ii), it holds that

(3.21) P{Ilén(Tn)—&,.(ﬁo)ll>M}<% for all n.

Put M'=(M+¢)/a(1—¢), then we have from (3.20) and (3.21) that
for all sufficiently large n

P{llvn(T.—0,)||>M'}

SP (VAT 0)1> 2 5 eI =50 )]

)

+PL L T~ 200 D>

(I—e)

£
2

This proves the relative compactness of {_L[v 7 (T,—6&)]}, and the proof
is complete.

4, Asymptotic behaviors of estimators

In this section we suppose that Assumptions (i)-(vii) hold. We
shall consider two sequences of estimators of 4,, {én} and {T.,}, and the

estimating function defined in Section 3, &,,(0)_77 i 74 X;, 0).
i=1
Let 8, satisfy the condition :

(4.1) £(6,)—0 in P.

THEOREM 4.1. The estimator é,, 18 consistent and asymptotically
normally distributed :

(4.2) LIVE(0,—0)]— N0, A8)'S(AB) Y],  in law.

ProoF. It follows by Theorem 3.2 that {L[v7(f,—6,)]} is rela-
tively compact, and therefore by Theorem 3.1 that

(4.3) £.(0,)—£.(00)— 4OV R (6,—0)—0  in P.
Thus we have from (3.3), (4.1) and (4.3) that

LIAO)V 7 (6,—0)]— N(0,S), in law.
This proves theorem.

THEOREM 4.2. If an estimator T, satisfies the condition that
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(4.4) LIE(T)]—-G, a probability distribution, in law,
it satisfies the condition :
(4.5) LG (T,—0,)]— G,  in law.

The converse is also true.

PROOF. As in the proof of Theorem 4.1 it follows by Theorem 3.2
that the condition (4.4) or (4.5) concludes the relative compactness of
{LIVn(T,—6,)}. Therefore it follows that T, satisfies

(4.6) 4V (To—0))=ET,) —6.(00)— AO)V 0 (T,—6)—0  in P.
Then (4.1), (4.3) and (4.6) imply

(4.7) &T)— A0V (T,—6,)—0  in P.

Hence either one of (4.4) and (4.5) derives the other.

COROLLARY. Suppose that { L[y n(T,—6)} is relatively compact.
Put

4 1
% __m _ 1
(4.8) TFr=T,—AT,) Wil &AT,) -
Then T} satisfies the condition (4.1), and, hence, T;* and é,, are asymp-
totically equivalent im the semse that
v (TF¥—0,)—0 in P.

PrROOF. By the relative compactness of {L[vn(T,—8,)} and As-
sumption (vi), we see that (4.6) holds and

(4.9) AT)'—A@B)" in P.

By Lemma 2.4-(ii), Theorems 3.1 and 3.2, we see that {_L[v % (T.*—86,)}
is relatively compact and so (4.6) holds for T*:

(4.10) 4 (W (T3 —00))=6(T3¥)—En(00) — A(Bo)v/ 1 (T*—6,)— 0 in P.
Hence it follows from (4.6)-(4.10) that

ETF) =4V 0 (T¥ —00))+§a(00) + A(00)V 1 (T — )
=4.(V (T —00))— 4.(v 1 (T, —6y))
+{I-AO)AT) "} e(T)>0  in P.

The proof is complete.
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5. Likelihood estimating function and maximum likelihood estimator

In this section we discuss, particularly, the likelihood estimating
function which is called so and identical with the differential of the log
likelihood function, and the maximum likelihood estimator.

{Ps}sce is a family of probability measures on (¥, ), and is in-
dexed by the parameters in ® which was defined before. Suppose and
note that a probability measure P,, plays the same role as the prob-

ability measure P in the above Sections. Let X,, ¢=1,2,--- be inde-
pendent and distributed according to distributions under P, which have,
densities fi(-,0), 1=1,2, .-+, respectively, with respect to Lebesgue
measure.

ASSUMPTIONS.
(a) fidz,6), i=1,2,--- have a common support independent of ¢ and

are differentiable with respect to 6,, r=1,---, k. Let differential co-
efficient vectors of log fi(-, 6), 1=1,2,--- be

i) ' ) 0 '
0= 2 10w 5,0 =( 2 10g £, 0+, D low 5 0)
2, O =2-log 5., 0)] = (F-log £, .-+, 108 7, 0)
1=1,2,---. Then 5(-,0), t=1, 2,--- satisfy Assumptions (i)—(vii).
(b) For A(6) in Assumption (vi) and S in Assumption (vii),
—AB)=8S (=TI, say).

Then there exists a sequence of maximum likelihood estimators
(5,,:5,,(X1,- -+, X,) of 6, such that

(5.1) £.0)—0 in P,.

(For example, see Wilks [13], Section 12.3 for the proof but we as-
sume the measurability of én.) Hence it holds that

(5.2) LITY7(0,—6); P]> N0, )  inlaw, ie.
LIVT(0,—6); P, ]— N0, ™)  in law.

Let (M) =1(Xs,- -+, Ko h)= 33 log | £ Xe, tu+—=) [ X, )] De-

note the k-dimensional normal distribution function with mean vector

¢ and covariance matrix ¥ by &(-; p, 2) and its density function by

(-5 ¢, 2). The following two lemmas are fundamental in this Section.
LEMMA 5.1.

(i) For any h € R¥,
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(.3) x,.(h)—h's,,(o.,)+-;-h'rh-»o in P, .

(i) LI8.(00); Pol— N0, I'), in law.
(iii)y For any h € R*, L[x.(h); Py]l— N(—Q1/2)W'Th, K'T'h), in law.
PROOF.

(i) Put g.(¥)=x4)—¥':(0)+(1/2y' Ty, for yeR* and O+y/vm €6.
Then ¢,(0)=0 and (3/0y)g.(¥)=&.(00+y /v N )—§.(00)+T'y=4,(y). Hence we
have from Lemma 3.2 that for any h € R*, (letting ||h||=M),

|0) | =| -2 g.) |< - sup 11 4@ | -0
oy llyll<

where [|R||<||hl|SM.
(ii) Assumption (b) and (3.3) imply (ii).
(iii) From (i) and (ii) we have (iii).

Let P, be the induced probability measure of P, with respect to
(Xi,-++, X,). Then the last lemma implies that, for any h € R*, {PJX,}
and {P5, ..} are contiguous. (See LeCam [8] for the definition of
“contiguity ”.) The following lemma comes from Theorem 2.1 in LeCam

(8]

LEMMA 5.2. Let Y,=Y.(X,,---,X,) be a random wvector and h be
any vector of R*.
(i) Y,—0 in P, implies Y,—0 in Py nvx, and the converse is true.
(ii) If for a subsequemce {m} of {n}

'E[Em(eo)y Ym; Pﬂo]_-)-E[e(), Y] y m law y
where L[&,Y] is a probability distribution, then
(5'4) I[Em(ﬂo)y Ym; P00+h/4/ﬁ]——’eh,eo-h’rh/2.£[€o, Y] ":'n law .

That s, for any bounded continuous function u,
S w2 WAL, Yo; Prosnyiw) 2, 9)
— S wz, y)e A L1g, Y](z,y), as m—oo.

In particular,
(56.5) L[6.(60); Poysrin]— Nk, I') wn law .

PROOF.
(i) This is the same as (1) in Theorem 2.1 of LeCam [8], which is
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another definition of the concept of “contiguity ”.
(ii) For a subsequence {m} of {n}, let

-C]Em(ﬂo) y Ym H Poo] '—’.E(fo, Y) in laW .
Then from (5.3) we have that for every h e R,
I[Xm(h)r E’m(eo)’ Ym; Pﬁg]_’-f(x, 50, Y) in law ,

where d_L(x, &, Y)(x, ¥, 2)=d_L(&, Y)(2, y) for x=h"2—(1/2)h'Tk, and =0
otherwise. Hence it follows by Theorem 2.1, (6) of LeCam [8] that

Lam(h)y Ex(00)y Y3 Prosnwml— €L (2 &0, Y) in law .

where e“d_L(x, &, Y) (%, 2, y)=€"*""**d_L(&, Y)(2, y), for x=h'z—(1/2)W'Th
and =0 otherwise. Therefore we have that the marginal _[[£,(6), Y.;
Py nwm] converges in law to ¥ "2 _[(&,Y). In particular, it follows
from Lemma 5.1, (i) that

LT6:(00) ; Pooinvil =€ L(&)=N(l'h, I)
in law. The proof is complete.

The author [6] proved that the limiting distribution of estimator
T, with uniformity property is represented as the covolution of that of

the maximum likelihood estimator 6, and some residual distribution which

is related to the distribution of 7,—4,. Hajek [4] and Roussas and
Soms [11] obtained the same result under more general conditions.

In order to prove the same fact more simply and intuitively and
to characterize the residual distribution, we shall extensively use Basu’s
techniques (see [1] and [2]) with which he showed that, if S is a suf-
ficient and complete statistic for {P,}..., a statistic T whose distribu-
tion _L(T; P,) is independent of the parameter h is independent of the
statistic S. Note that the family of limiting distributions of £,(6,) un-
der {PX,.nvi}, {@(-; Th, I')},cze, is complete, and that &,(4,) is asympto-
tically sufficient for {PZ,..vx} (see Theorem 3.2 in LeCam [8]), but the
latter fact is used implicitly.

Let’s call a statistic Y, to be “asymptotically locally location-invari-
ant (l-invariant)” at 6, if for any k€ R*

LIY,; Pryrval—L(Y)  in law,

where _L(Y) is a probability distribution independent of k. Call an
estimator T, for 6 to be “asymptotically l-invariant” at @, if for h € R*
h

I[FJW(Tn—ao—ﬁ> : P,Mhﬂn—]—»L in law
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where L is a probability distribution independent of 2. Then it follows
(see Schmetterer [12] and Kaufman [7]) that the limiting distribution
L of such an estimator is absolutely continuous.

THEOREM 5.1. In order that an estimator T, of 6, is “asymptoti-
cally l-invariant”, it is mecessary and sufficient that the statistic &.(T,)
18 “asymptotically l-invariant”. That is, suppose that for any h € R*
and all sufficiently large n

(5.6) ,E[NW(T,,—ao—JL%) ; P,,,,M,ﬁ]—»L in law

where L is independent of h, then it holds that _L[&.(T,); Pspryvn] con-
verges in law to a probability distribution, G (say), independent of h:

(5.7 LT Popinpyzl— G im law,

and the converse is also true.
Furthermore, the limiting distribution L of estimator T, is repre-
sented as the convolution of those of &,(8,) and —&,(T,) under P,, N0, ")

and 1—G(—2)=G(2), (say):
(5.8) L=G N0, T) .

Proor. It follows from Theorems 3.1 and 3.2 that the relative com-
pactness of one of the sequences {L[I'vn(T,—6,); P,1} and {LI¢.(T,);
P,]} implies the relative compactness of the other, and hence, that
(3.18) holds under the probability P, :

(6.9) E(To)—&60)+ Ty (T,—6)—0 in P, .

Then, by Lemma 2.4-(ii) it follows from the relative compactness of
{L16:(60); Pol} and {L[6.(T); Pol} that {L[€.(00), £(T0); Pol} is also
relatively compact: for any subsequence {n'} of {n} there exist a sub-
sequence {m} of {n'} and a probability distribution (&, &;) such that

(5'10) -E[Gm(oo)r ém(Tm); Pa(,]—’—f(eo, er) in laW .

Hence it holds by Lemma 5.2-(ii) that for any h € R* and every suffici-
ently large m,

(6.11)  LIen(00), én(Tn); Proinpm) =€ "™ L&, &)  in law.

Let _L[6,]&] be the conditional distribution of &, given &, of _L(&), &r).
Let _L(&) be the marginal distribution of & of (&, &;), then _[(&)=
N,(0, I') independently of the choice of the subsequence {m}. There-
fore we have from (5.5) and (5.11) that for any h e R* and all suffici-
ently large m
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(5.12) im L[6.(T0); Poginpnl (2)
=| _ewrrmare, e
érsz

=S R-NTIRG L) S _ dLler 6]

ér

=§ LIEx (8] (@)¢(E0; Th, T)dg, .

Taking I'vn (T,—6,) in place of &,(T,), we can see the similar result
as (5.12) hold: there exist a subsequence {m'} of {n'} and a probability
distribution _£(&, T') and, letting L (T'|&,) be the conditional distribution
of T given &, of (&, T),

(5.13) lim I[FW(T,,,,—@,—-%); P,o+n/m] @)

m/—oo

eh’éo—h’l‘h/2d.£’(50’ T)

ST—I'héZ

=fevrrrare)| arriel

T=sz+

={ LiriedG+rmge,; rh, e,

for any h € R* and all sufficiently large m'.
On the other hand, since (5.9) implies

(5.14) ElT0) =660+ TV (T,—0)—>0  in Py uum

for any h € R* and all sufficiently large n, we have (similarly as in (5.12))
that for any h ¢ R*

(5.15) lim .L’[PJW(T,,,—- ”°“¢Lq—n> ; P,.,+,.,m](z)

m-—c0

=Um _L[¢n(00) —Th—&n(Tn); Paysniwl (2)

e M L&, §1)

Sfo—l'h—eréz

- S ereo-n TG L) SE d_L1er &)

T2é0—Th—2

= 0—rtes 180~ rr—2)gte; rh, D,
(Sufficiency) Suppose that &,(T,) is asymptotically l-invariant and so
(56.7) holds for any ke R* and all sufficiently large n. Then it follows
from (5.12) that for any 4 and z¢ R*

(5.16)  G()=lm L1E(Tn); Poyinrvi] (2)=S LI |&1(R)(60; TR, IS,
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Therefore by the completeness of the family of probability measures,
{@(-; 'k, IN)}4crr, We have from (5.16) that

(5.17) LIér 6] (2)=G(2)
for a.e. & and every z. Furthermore from (5.15) and (5.17) it holds
}'}_1110 I[I’\/ﬁ(Tm—ﬂo—%ﬁ—) ; Pawn/«%](z)

28 {(1—G(&—Th—2)} $(&s; T'h, I')dE,
=§ Gz— &+ Th)§(8o; Th, T)ds,

“ =S Gz—=z)p(x; 0, INdzx
=G *9(-;0, ') (2)

which is independent of & and the choice of the subsequence {m}. Hence
we conclude that the estimator T, of 6, is asymptotically l-invariant and
(5.8) is true:

Llrya(T—6—-"L_); Ppovs | >G5 0(;0,1)  in law.
v !
(Necessity) Now suppose that the estimator T, of 6, is asymptotically

l-invariant and so (5.6) holds for any h € R* and all sufficiently large n.
Then it follows from (5.15) that for any k and z ¢ R*

618)  L@=lm L|TV(Tam =) Pusnis |@)
=| - rterlea@—Th—a (6 Th, D)y,

and, letting z=y—Th,

6:19)  La—IR)=| {1- Ll 6] €—v)} o6 Th, Do

On the other hand, it follows from (5.6) and (5.13) that
h
v’
={ L1716 G+ T1gten; Th, D,

(5.20) L(z)= lim .E[NW(TW— Gp— ) ; P,M,,,W} @)

and hence, by putting z=y—Ih, that

(5.21) L(y—rh)=S LIT &) @) Th, T)d&, .
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Therfore we have from (5.19) and (5.21) that

| (1= Ller &) 1) — LIT1Q1 @) $(60; Th, D=0

for all h € R*, and so, by the completeness of the family of probability
measures, {@(-; ['h, I)}rcre, that

(5.22) 1= Lléz1&] (6o—4)=LIT |£](¥)

for a.s. & and every y € R*. Furthermore it holds by putting &=+
Ik in (5.20) that

L(z)= S LT |z+TR)@+Th)g(; 0, Ida
and, by using (5.22), that
(5.23) L(z)= S (1= Ler |2+ TRl (x—2)) 6(z; 0, [da .

Put h=h,+h, i=1,2, x=&—Th and z=y—Ih, then we have that for
every h and h, € R*, i=1, 2,

(5.24) L(y—l“ﬁ)=g (1—L1er |8+ TR G~ )} $(Go; Th, T)dg, -

Similarly as deriving (5.22), we see that (5.24) implies

(5.25) 1= L&z [0+ TM) (Go—y)=1— L1ér |+ The] (§0—Y)

for a.s. hy and hy € R*. That is, 1—_L[¢,]|x](6éy—y) depends only on the
argument &—y and can be denoted by f}(y—é,,): for a.s. & and y € R*

(5.26) Gly—&)=1—LI¢,|2](5—Y) -
Put =0 in (5.20) and consider (5.22) and (5.26), then we conclude that

L()={ Gle—e)pe; 0, Nz,
and, that is,
L=Gx®(-;0,T).

Noting that L and &(-;0, ") don’t depend on the choice of the se-

quences {m} and {m’}, we can see that the residual distribution G is
uniquely determined by L and @(-; 0, I'). This together with (5.12) and
(5.26) implies that

lim L16(T); Pasns) @ = | (1= G(—2)}9(60; Th, Ty
=1-G(—2), for any he R*
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and, hence, that the statistic £,(7T,) is asymptotically l-invariant with
the limiting distribution G:

G(z)=1—G(-2) .
The proof is complete.

COROLLARY 5.1. The necessary and sufficient condition that an esti-
mator T, for 0 18 asymptotically l-invariant at 6, is that the statistc

J%‘(T,,—én) 18 asymptotically l-invariant at 6,. Then, the limiting dis-
tribution of J%(T,,—é,.) exists and
(5'27) lim —E[JW( Tn—oo); Pdo]

={lim LIy (T,—0,); Py} * {lim LIVT(6,—60); Pol} -

Then from (5.27) we can see that the maximum likelihood estimator
is asymptotically efficient as compared with the estimator which is asymp-
totically l-invariant :

COROLLARY 5.2. The asymptotic variance-covariance matrix (A.V.)
of VI(T,—0)=A.V. of YT (To—0,)+A.V. of YT (6,—0)=A.V. of YT (0n
—6,). (A=B denotes that A— B 1is nonnegative definite.)

COROLLARY 5.3 (Kaufman [7]). For any symmetric (about the origin)
and convex subset S in RF,

lim P, {v 7 (T,—6,) € S} <lim P, {v7 (6,—0,) € S} .

6. Examples
Example 1 is for Section 4 and Example 2 is for Section 5.
Example 1. Let 6=R! and X, i=1,2,.-- be i.i.d. according to
the distribution function F' with the density function f. Assume that

0< F(6,)=p<1, f(x) is continuous at 4, and f(8,)>0. Put 5n(x, 0)=—(1—p),
if x<0, =0, if x=0, and =p, if x>0, then

A0)=En(z, 0)=—(1—p)F(0)+p(1-F(6)=p—F(0) .
It is easy to see that Assumptions (i)-(vii) are satisfied. Note that
A@)=dA(8)[/do=— f(0) and S=p(l—Dp).

Now let 6,,=Xnmsv, the least pth sample quantile, where X<
«+ =X, be order statistics. Since for all large n

Tl'«f 2 2(Xs, 61 =717| —(1—p) [np]+p(n—[np]—1)|

1 1
=7—,n———|np‘"[np]“p|§ﬁ—’0 .



ASYMPTOTIC RELATIONS "TWEEN THE LIKELIHOOD ESTIMATING FUNCTION 23

we have the well known fact by Theorem 4.1:
LIV (G~ 0)]— N, pA—D)/[f O] -

Example 2. The situation is the same as in Section 5 but the
parameter has the linear restriction: H'6=a. We can assume a=0
without loss of generality.

ASSUMPTION.,
(¢) His a (kXr)-type matrix with rank » (r<k) and

(6.1) H'6,=0 .

We can easily see that, letting 6, be a particular solution of the
linear equation

(6.2) H'6=0,

a general solution of (6.2) is given by
~ ’
(6.3) 0=0l+(.£‘.>‘3

where g is an arbitrary vector of R*7, and P and Q are (k—r)X(k—r)-

type and (k—7)Xr-type matrices, respectively, such that (; g) is an

orthogonal matrix and

(6.4) (; g) (I— H(H'H)H'} (g” §:>= <(1).-.1 z) .

Hence it follows that there exists a vector 8, such that

(6.5) t=0+( 5 )60 -

Now we consider to estimate §,. Put

(6.6) i =[5 log s 5ok (G )8) |
=P 0+ (5 )8) -

then we have

o= @a(o+(L;)e)
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(6.7)

5O = 23X =PI+ ( £ )8) -

1

It is easy to see that Assumptions (a) and (b) in Section 5 are satisfied

by the new likelihood estimating function &,. Similarly as in Section 5
it holds that there exists a sequence of maximum likelihood estimators

of B, {f.}, such that
&()—0 in P,,
and further, that
(6.8) LIVE(B—B0); Pl > Neet(0, 1) in law .

On the other hand, for the maximum likelihood estimator of 6,
without restraint, é,, in Section 5, let

(6.9) T,=(P:Q)(6,—6)=(PiQ)(6.—00)+p> -
Then it follows from (5.2) and (6.9) that T,— 8, in P,,, and

6.10) LIVT(Ta—po); P,,,,]—»Nk_,<0, (P;Q)r-l(f.'.)) . inlaw.

Note that ¢f=6,+ (P,> T,= <g;>(P Q)(0,—0)+06, is also an estimator

of 6,. It follows from (5.2), (6.4) and (6.9) that

(6.11) _LIAO)VT (0 —6,); Pyl
_ P\ piQ—IlvT6.,—0y):
= L]0 |( 5 )P @1} ym@.~0); P.]
= LIFTHH'H) ' H'V 7 (6,—0y); P,
— N0, THH'H)"H'I'*H(H'H)"'H'I'),  in law.

By Theorem 4.2 we have, from (6.7) and (6.11), that

LIEAT.); Py}
:I[(P Q)sn(arf) ’ Pﬂo]

- N0, i@rEEm Hr-HE D (L)
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and hence that
(6.12) _LIABIVT(Toa—B.); Par]
! A
= L[~ @Qr( L )vm(T.~f); P.]

Q
o k_,(o, (PéQ)PH(H’H)"H’F"H(H’H)“H'l’(--g;)) .
Since H(H'H)H'=1I —(g-;v)(PéQ), we have that the last covariance ma-
trix is
er(f)ear(E)eor( L) -rar(L).

and therefore from (6.7) and (6.12) that

6.13) LIVE(To—p): P,J—»N,,-,(O, (P;:Q)P*(é}) —f-l) ., in law.

(6.8), (6.10) and (6.13) imply the same conclusion as Corollary 5.1:

lim .E['\/%—( Tn_ﬁo) ) Pﬂo]
— {lim LIy ATy f2); Pal} * {lim LIy Ra—fo); P} -

Acknowledgements

The author is indebted to Professor M. Okamoto for his valuable
advices and useful comments. He is also grateful to the referee for
his comments.

THE INSTITUTE OF STATISTICAL MATHEMATICS

REFERENCES

[1] Basu, D. (1955). On statistics independent of a complete sufficient statistic, Sarkhya,
15, 377-380.

[2] Basu, D. (1958). On statistics independent of sufficient statistics, Sankhya, 18, 223-226.

[3] Billingsley, P. (1968). Convergence of Probability Measures, John Wiley & Sons, Inc.,
New York.

[4]1 Hajek, J. (1970). A characterization of limiting distributions of regular estimates,
Z. Wahrscheinlichkeitstheorie verw. Geb., 14, 323-330.

[5]1 Huber, P. J. (1967). The behavior of maximum likelihood estimators under nonstand-
ard conditions, Proc. Fifth Berkeley Symp. Math. Statist. Prob., 1, 221-233.

[6] Inagaki, N. (1970). On the limiting distribution of a sequence of estimators with uni-
formity property, Ann. Inst. Statist. Math., 22, 1-13.

[7] Kaufman, S. (1966). Asymptotic efficiency of the maximum likelihood estimator, Ann.
Inst. Statist. Math., 18, 155-178.

[8] LeCam, L. (1960). Locally asymptotically normal families of distributions, Univ. Cali-



26

[9]
[10]

(1]

(12]

[13]

NOBUO INAGAKI

fornia Publ. Statist., 3, 37-98.

Loeéve, M. (1963). Probability Theory, Von Nostrand, Princeton.

Rao, B.L.S. Prakasa (1972). Maximum likelihood estimation for markov processes,
Ann. Inst. Statist. Math., 24, 333-345.

Roussas, G. G. and Soms, A. (1973). On the exponential approximation of a family
of probability measures and a representation theorem of H&jek-Inagaki, Ann. Inst.
Statist. Math., 25, 27-39.

Schmetterer, L. (1966). On the asymptotic efficiency of estimates, Research paper in
Statistics, F. N. David (ed.), John Wiley & Sons, Inc., New York, 301-317.

Wilks, S. (1962). Mathematical Statistics, John Wiley & Sons, Inc., New York.



