NUMERICAL ALGORITHMS FOR THE MOORE-PENROSE
INVERSE OF A MATRIX: ITERATIVE METHODS

NOBUO SHINOZAKI, MASAAKI SIBUYA AND KUNIO TANABE

(Received Jan. 10, 1972)

Summary

The iterative methods by Ben-Israel and others for computing the
Moore-Penrose inverse of a matrix are examined. Ill conditioned test
matrices are inverted by the methods and some difficulties are found
out. The iterative methods do not seem superior to direct ones.

1. Introduction

The role of generalized inverse matrices in linear statistical infer-
ence and other applications is well recognized as recent publications
show. See, for example, three books by Pringle and Rayner [5], Boul-
lion and Odell [2], and Rao and Mitra [6]. Accordingly it is important
both practically and theoretically to find good algorithms for computing
generalized inverse matrices.

In a previous paper the authors surveyed, classified and tested direct
methods for computing the Moore-Penrose inverse of a possibly rectang-
ular real matrix. In this subsequent paper we consider about iterative
methods. The Moore-Penrose inverse is not the only one important
among generalized inverses of a matrix. It is necessary, however, to
define a unique inverse to find algorithm, and the Moore-Penrose in-
verse is defined in a very natural way for a given matrix.

The motivation of the research was the hope for finding a better
algorithm in ill conditioned case. Our experiences show that the iter-
ative methods are not superior numerically to the direct methods.

The iterative methods may be applied to least-squares solution of
a system of linear equations, which is not treated here. There exists
a good iterative method as proposed by one of the authors [8].

Ben-Israel and others proposed iterative methods for computing the
Moore-Penrose inverse of a matrix (see [1] and the papers in its refer-
ences), and Petryshyn [4] and Zlobec [9] extended the methods to a
general one (see also [3]). The purpose of this paper is to summarize
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these papers and add some new results (Section 2); and to apply the
methods to test matrices and point out difficulties in practical computa-
tion (Section 3).

Let A be an mXn complex matrix of rank r<min(m,n) (we as-
sume m=n without loss of generality), A* its conjugate transpose, At
its Moore-Penrose inverse, R(A) its range space, g (A)=---=0,(A)>0
its singular values (s,(A) is the spectral norm of A), and /7, an orthogo-
nal projection on R(A). Let A=UDV* be a singular value decomposi-
tion of A, that is U and V are unitary matrices of dimension m and n
respectively, D is m xXn and has zero elements except for that the first
r diagonal elements are equal to ¢,(A),---, ¢,(A). The following known
facts will be used often in our discussion:

AtA=11,., AA'=I,, A=A ,=A',
and /7,X=X for any matrix X such that R(X)c R(A).

2. Algorithms and theorems

Algorithm 1 (the pth order hyperpower method). Let p=2 be a
fixed integer. Compute a sequence of nXm matrices {X(k); k=0, 1,
2,...} starting from a matrix X(0) and following the relation

(1) X(k+1)= 2'2: (I— X(K)AY X(k) .

Remark. Since (I-XA)X=X(I—AX) the expression (1) can also
be written as

(1) X(k+1)=g X(k)(I— AX (k) .

Notice that we are assuming m=n and the number of arithmetic multi-
plications for computing one step of (1) is (p—1)n*+mn? while for (1)
(p—1)mP+nm?.

THEOREM 1. If X(0)=A*WA¥*, where W is an arbitrary mXxn
matrix, then the following relation holds for the sequence {X(k)} of Al-
gorithm 1,

(2) At—X(k+1)=A'I— AX(k))»=AYA(A'— X (k))*
=(I—-X(k)AyPA'=((AT—-X(k))A) AT,
k=0,1,2,....

Remark. The condition on X(0) is equivalent to R(X(0))c R(4*)
and R(X(0)*)c R(A).
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Proor. Evidently X(k)’s satisfy the condition on X(0). Here we
drop the parameter of X(k) and write X for short. The equivalence
of the last four expressions can be shown by noticing the following
equalities.

A'—X=A'—1I1,X=A(I—-AX)
=A'— XIT,=(I—- XA)A',

Inn,—AX=0,I-AX)=(I-AX)1,,
and
II,.— XA=1 .(I- XA)=(I—- XA) . .
Now we prove the first equality by induction with respect to p.

A(I— AXy=(A1—X)(I—AX)
—A'—X—(A'—X)AX
—At—X—(I-XA)X .

If the first equality is valid for p=¢—1, then
AY(I—AX )= <A*—;S;‘_z - XA)fX)(I— AX)
= A*-—X—jz;: (I— XAY(I— XA)X
=AT—‘§ (I- XA)X .
Remark. The first equality holds for any X(0) such that R(X(0))

CR(A*) and A'—X(k+1)=({I—X(k)A)*A' for any X(0) such that
R(X*0))c R(A).

COROLLARY 1. Under the same condition on X(0)

(3) 1,—AX(k+1)=(l,— AX(k)yP=1 ,(I- AX(k)),
and
(3 II,.—X(k+1)A=(1 .— X(k)AYP=(I— X(k)A)*1I ,. .

PROOF. Pre- and post-multiplication of A and (2) leads to (3) and
(3") respectively.

COROLLARY 2. Under the same condition on X(0),

(4) At— X (k)= AYI— AX(0))"" = AT ,— AX(0))"
=(I—X(0)A)"At=(II ,,.— X (0)A) At .

So that X(k)— A, AX(k)—1II, and X(k)A—1,. (k— o) iff oIl ,—
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AX(0))=a,(I1 o— X(0)A)<1.

ProoOF. The equality of the two singular values is shown from the
singular value decomposition of A.

COROLLARY 3. If, in special, X,=wA*, then the convergences in
Corollary 2 are valid iff 0<w<2/di(A).

PROOF. o,(/T,—wAA*)=0,(I] »—wA*A)=|1—wsi(4)|.
COROLLARY 4. We assume X(0)=wA*. When p is even,
trace X(k)A=trace AX(k)Tr, if 0<w<2/di(4) ,
and when p is odd,
trace X(k)A=trace AX(k)|r, if 1/a(A)<w<2[di(4),
for k=1,2,--..

Remark. The last condition on singular values 0.5<s%(A)/si(4) is
too restrictive for general application. Trace X(1)A can be greater or
less than trace X(0)A.

ProOF. It is shown that (/1 ,.—wA*A)P=VK?V*, where K is an
nXm matrix with zero elements except for the first r diagonal elements
1—wd(A), 1=1,---,r. Then

trace X(k)A=r—trace (/I ,.— X(0)A)*"
=r—3) (1—wdi(A))" .
i=1
Algorithm 2 (the linear method). Compute a sequence of nXm

matrices {Y(k); k=0,1,2,---} starting from a matrix Y(0) and follow-
ing the relation

(5) Y(k+1)=Y(k)+a(I-Y(k)A)A*.
THEOREM 2. For any Y(0)

(6) A —Y(k)=(A1—Y(0))(I—adA¥)*, £k=1,2,3,---.
ProoF.

A=Y (k)= A'—Y(k—1)—a(A*— Y (k—1)AA%)
— A'—qATAA*—Y (k—1)+aY (k—1)AA*
= (A=Y (k—1))(I—adA*) .

COROLLARY 1. Assume that R(Y*(0)CR(A). Then Y(k)— A,
AY(k)— 11, and Y(k)A—1I ;. (k— o) iff 0<a<2/si(A).
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"PrROOF. It is shown that (I—adA*)*=U(I—aD*)*U*. So this se-
quence of matrices converges to I—-17, iff —1<1—asi(4)<]1.

Remark. The dual of Algorithm 2 is defined by the relation

(5" Y(k+1)=Y(k)+aA*(I—AY(k)) .
Thus,
(6 A=Y (k)=(I—aA*A)(A'-Y(0)) ,

and for Y(0) such that R(Y(0))c R(A*) the convergence statement in
Corollary 1 is true. The following Corollary 3 is also true for this dual
algorithm.

COROLLARY 2. If we take X(0)=aA* in Algorithm 1 and Y(0)=
ad* in Algorithm 2 (or its dual algorithm), then

(7) X(k)=Y(»*-1).
PROOF. Both sides are equal to
Al — A(I—aAA¥y = At—(I—aA*A)" At .
COROLLARY 3. When Y(0)=wA* and 0<a<1/6(A) in Algorithm 2,
trace AY (k)=trace Y(k)Alr, if w<l1/ai(4),
and
trace AY(k)=traceY(k)A|r, if 0>1/6}(A) .
PrOOF. Under the assumption on Y(0),
Y(k)A=1II js— (I »— 0 A*A) (Il jo—aA*A)*

and the second term of the right-hand side is equal to VK,V* where
K, is an mXn matrix with zero elements except for the first r diago-
nal elements (1—ws})(1—ad))t, i=1,---, 7. Thus,

(8) trace Y(k)A:r_ié (1—we?)(1—ad?),
=1
which completes the proof.

Finally, we remark inequalities to determine a and w:

(9) HA)S| A*All=max 33| S ata,,

and

(9) A=l All-=Zay .
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Both inequalities are sharp and there is not much difference between
them. And for the smallest singular value:

(10) o A=|(AN*AM|.  and oM A)=|IAMls -

So we get an estimate of ¢,(4) only after obtained a good approxima-
tion of A'.

3. Numerical practice

The convergence of our iterative algorithms depends heavily on the
distribution of singular values of a given matrix. To examine actual
numerical process we need matrices with different conditions. The al-
gorithm used in [4] provides a matrix of given size with a given set
of singular values.

QOur first observation is the slowness of convergence of the linear
method, Algorithm 2. Fig. 1 shows the behavior of trace Y(k)A stated
in Theorem 2, Corollary 8 when A is a very well conditioned matrix.
The elements of Y(k) converge as slowly as the trace. The proof of
Theorem 2, Corollary 3 shows that the convergence of the trace is de-
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Fig. 1. trace Y(k)A in Theorem 2, Corollary 3. A is 8x8 and has singular
values 21.17, 18.33, 15.49, 9.80, 8.00, 4.00.
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Table 1.

Elements of the matrix A of Fig. 1
1000903 1000901 1000902 1000894 1000900 998800 998450 998250
— 999701 — 999703 — 999702 — 999694 — 999700 —1001800 — 997950 —1001750
— 999603 — 999601 — 999602 — 999594 — 999600 —1001700 —1002050 — 998250
999801 999803 999802 999794 999800 997700 1001550 1001750
—1000897 —1000899 —1000898 —1000906 —1000900 — 998800 — 998450 — 998250
999699 999697 999698 999706 999700 1001800 997950 —1001750
999597 999599 999598 999606 999600 1001700 1002050 998250
— 999799 — 999797 — 999798 — 999806 — 999800 — 997700 —1001550 —1001750
Singular values of A
8x105, 5499.09 (=300xv 6x7x8), 5422.18 (=350xv5x6x8),
5201.50 (=250xv 7x8x8), 19.5959 (=2x+3x4x8), 4

termined by the behavior of (1—as?)*=(1—0%/a})*. So the convergence
is tediously slow unless the condition number ¢,(A)/s,(A) is small enough.
Theorem 2, Corollary 3 looks nice for determining rank A, but it is
practically useless. We shall treat only Algorithm 1 in the following.

Our second observation is the accumulation of rounding errors, which
occurs since Algorithm 1, as well as Algorithm 2, is not self-correcting.
Put X(k)=A'+Z, where Z is an approximation error. Applying Algo-
rithm 1 one step we get

Xk+1)=A'+Z(I-1)+(I-1,)Z
+—-2)(I—-I )Z(I—11 )+ (higer order of Z) .

So that Z does not vanish unless Z € R(A*) and Z* € R(A). Thus, the
error in “the subspace orthogonal to 77,.XIT,” will accumulate.

A method to cancel the components outside I7,.XIT, is to premul-
tiply A*X*(k) and postmultiply X*(k)A* to X(k) regarding the multi-
pliers as estimates of I7,. and IT, respectively. The multiplications may
be needed at the final stage of iteration and they should be done in
higer accuracy.

The third observation is the difficulty of terminating the iteration.
The trouble occurs when the singular values of A clump into a few
groups of different orders. For example, if a matrix of rank 6 has one
singular values of order 10%, three of order 10° and two of order 1, then
trace X(k)A becomes stationary near 1 at first, after some iterations
begins to change and becomes again stationary near 4. The authors
failed to find any practical algorithm giving a sequence of numbers
which approaches to rank A from above (remember Theorem 1, Corol-
lary 4). A rule, which is sometimes uneconomical, is to let the iteration
continue long enough to make trace X(k)A larger than the ‘approximate
rank.” Let ¢ be the maximum value such that machine computation of
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the logical expression 14+e¢=1 is true. If we disregard singular value
such that ¢,/0,<d then we need to repeat about %k times, where k is
such that

(1—6)=e.

For p=2 and ¢e=6=2"*, k is approximately equal to 2y which is close
to our experiences.

Figure 2 shows the behavior of trace X(k)A in Theorem 1, Corol-
lary 4. The matrix A and its singular values are shown in Table 1.
And the values of the (1, 1) elements of X(k) is shown with the true
value in Table 2. The approximation of X(k) becomes worse in later
steps. Computation was done by IBM-7040 WATFOR with 27 bit man-
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Fig. 2. trace X(k)A in Theorem 1, Corollary 4 for the matrix of Table 1.

Table 2.
k (1,1) element of X(k)
42 .05815
43 .06640
44 .06797
45 .06813
46 .06856
47 .06946

true value .06774
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tissa and all inner products were computed by double precision.

Finally we remark on the choice of p. As discussed by Garnett,
Ben-Israel and Yau [3], p=38 is the best choice if we consider the con-
vergence rate per algebraic multiplication. When X(k) is close to Af,
however, the correction term (I—X(k)A)’X(k) becomes smaller than
machine accuracy and the cubic-convergent procedure works actually as
if it were quadratic convergent. So, in practice p=2 is better than
p=3. A Dbetter procedure is to begin with p=3 and change to p=2
when the last term of (1) becomes small enough.
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