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1. Introduction

In recent years there has appeared some work on queueing systems
in which the service time distributions depend on the queue length.
Such models may be expected to represent situations where the server’s
working rate is determined by his observations of the queue length.
For example in most practical situations a server will work faster if the
queue becomes long and conversely, he will be inclined to work rather
more slowly if the queue is very short.

It appears that nearly all the work on systems of this nature has
been devoted to the case of Poisson arrival processes. In this paper
we shall consider the simplest case of a general input process. Speci-
fically, we shall assume that customers arrive at a single counter ac-
cording to a renewal process, and all service times are exponentially
distributed, and service is in order of arrival. We consider two types
of service discipline.

D;: If a customer initiates a busy period his service rate is i,
and the service rate of all other customers in the busy period is p.

D,: 1If the queue length at the initiation of service of a customer
<N, a positive integer, the service rate is g and is p otherwise.

In Section 2 of this paper we shall consider the GI/M/1 system with
the discipline D,. It is clear that the queue lengths at arrival epochs
do not form a Markov chain since, in general, we lack knowledge of
the server’s working rate. We shall see that by introducing an appro-
priate supplementary variable a Markov chain is obtained, but to sim-
plify the algebra we shall restrict ourselves to the calculation of limiting
distributions. However, in Section 3 we shall briefly consider transient
distributions and in Section 4 we show how the methods of Section 2
extend to cope with the discipline D,. For the standard GI/M/1 system
(=) our results yield some interesting facts about the limiting queue
length distribution. In Section 5 we show that the methods of Section
2 yield results for the GI/M/1 version of Finch’s model [2].
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2. The discipline D,

Assume that the customers arrive according to a renewal process
where A(-) denotes the inter-arrival time D.F. of successive customers
and T, (n=0,1,-..; T,=0) denotes the epoch of arrival of the nth cus-
tomer, C,. Let @, be the queue length at epoch T,—0. It is well
known (e.g. [3]) that for the standard GI/M/1 system, {Q,} defines a
Markov chain. However, for the discipline D, this is no longer true
since it is not known at what rate the server works at (assuming he is).

Accordingly, when Q,>0 define the random variable ¢, specifying
the state of the server at T,—0. Thus ¢,=1 if at T,—0 service is in
progress on the customer who initiated the current busy period, and
g,=2 if any other customer is receiving service at 7,—0.

We consider a discrete time stochastic process which moves on the
phase space g ;.Jl {(Z, N} U {(0)}. State (i, r) is occupied at time n (n=
0,1,...) if Q,=% and ¢,=7, and (0) is occupied at time = if Q,=0.
Assuming that the sequences of service times at rate g, and service times
at rate p are both independent sequences of random variables, it is clear
that the process defined above has the Markov property. In this sec-
tion we shall obtain the limiting-stationary distribution of this Markov
chain and thus the limiting waiting time distribution.

For n=0,1,---; 4,5=1,2,--- and r,s=1, 2, let

o, r: 7, 8)=Pr{Qu1=J, 0,.:=5|Qx=1, 0,=7} ,
o(1, 7: 0)=Pr {Qu,=0|Qu=1, 0,=71} ,
»0: 7, )=Pr {Qu.1=7J, 0111 =3|Q=0} ,
p(0: 0)=Pr {@,,,=0|Q,=0},
=(j, 8)=1lim Pr Q.= 3, 5,=s}
and

#(0)=lim Pr {Q,=0} .

Fig. 1 shows the allowed single step transitions.

Using the correspondence (0)—0, (j,1)—2j—1 and (4,2)<-2j (j=
1,2,.-.), the states of the above Markov chain can be identified with
those of a Markov chain having the non-negative integers as state-space.
This latter Markov chain can be seen to be irreducible and aperiodic,
hence if a stationary distribution can be shown to exist for the above
Markov chain, it will be unique and given by the limits above, which
are now seen to exist.
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(i+1,1) (i+1,2)

(i+2,1) (i-'+-2.2)

Fig. 1. Diagram of possible one step-transitions for the GI/M/1 sys-
tem under discipline D;.

Figure 1 shows that the stationary distribution must satisfy

(1) n(0)==(0)p(0, 0)4‘“221 (1, 7)p(t, 7: 0)

(2) ”(jr 1)=7t‘(j—1, l)p(j—ly ]-:jv 1) (j=21 37"’)

(3) =(1, 1)==(0)p(0: 1, 1)

(O G 2D=5 e Ve, 11,2+ 3 #2000, 2: 5, 2)
(j=2’ 3’ .. .)

and

(5) =(1, 2)=§1 [=(z, 1)p(2, 1: 1, 2)+2(z, 2)p(¢, 2: 1, 2)] .

It is easily seen that p(0:1,1) and p(—1,1:7,1) (=2, 3,---) equal
the probability that no customer is dismissed during an inter-arrival
period when the server is working at rate g, and this is given by a=

a(p1)=S: e **dA(x) and (2) and (3) yield
(6) =(j, 1)=z(0)a’  j=1,2,---.

Clearly »(,2:3,2) (1,7=1,2,--.) is the probability that there are
1+1—7 departures during an inter-arrival period when the server works
at rate p for all the services and so p(s,2:7,2)=b,y_; (F=1,---,1+1;
t=1,2,.--) and is zero otherwise, where

pR)=3ba'=alpl-2]  (zI<D).

Now, p(3, 1; 7, 2) is the probability that during an inter-arrival period
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14+1—j services are completed, the first at rate g and the remainder
at rate pg. Define a modified renewal process by a sequence of inde-
pendent events, the first having the lifetime D.F. 1—e " and the re-
mainder having the lifetime D.F.=1—e**. Letting N(x) be the count-
ing process for this renewal process, we have

oG, 1: j,2)= S: Pr {N(2)=i+1—j}dA(@)=c.,,_,

for j=1,---,4+1; i=1,2,..-, and zero otherwise. On using equation
(5) p. 38 of [1] and inverting the resulting Laplace transform we have
(7) (@ =[(¢—m)(1—2)a—p2p))/[(1—2)— ] ,

(8) 71(2) = pz(a— B(2))/[p(1 — 2) — 1]

where r(z)=7r,(2)+¢, =§3 ¢z,

Denoting the first sum on the right of (4) and (5) by x; (=1, 2,---),
equation (6) yields

ri=n(0)a’r(a) .

Let 1/p=—pa’(0). It is well known (e.g. [3]) that if p<1 there
exists 0<6<1 uniquely satisfying z2=p(z) in the open unit disc. We
shall now show that a solution of the form

7(j, 2)==(0)(Ca’ 4 Dé’)

satisfies equations (1)-(5). Substituting this expression into (4) and (5)
yields

Ca+ Dé=r(a)+C(8(a)—bi)+D(8(3) —br)
and
(9) Caf+b6’=af“r,(a)+Caf'1ﬁ(a)+D6f (7=2,8,--+)
which combine to give
(10) C=pa/lp(1—a)—pm],

which, with (9) and on noting that b,>0, yields D=—C. Note that
these manipulations are only valid if a#46, that is, if p(l1—a)—p+0.
This exceptional case will be dealt with below.

Hence equations (2)-(5) are satisfied by solutions of the form

(1) =(j, )=m(0)’ and =(j,2=x(OC@ —&) (j=1,2,---; a#3) .

Noting that the probabilities must sum to unity, we obtain
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(12) w(0)=(1—-8)[x(1—-a)—pm][(1—8)(p—p)—mal  (a#3).

On observing that p(0:0)=1—a, p(i,1:0)=1— ch and p(7,2:0)=1—
Z b., it is easy to check that (1) is satisfied by (11) and (12).

It only remains to prove the positivity of z(0) and =(s, ). To show
that this inequality holds when r=2, consider the denominator of the
right hand side of (10) as a function, f(-), of 1. We have

F)=p|1- | ereda@)| -

Clearly f(0)=0 and f(x(1—d))=0, since in this latter case a=s5. On
noting that f'(0+)=p7">0, f'(m)—>—1 (m— ) and f"(z)>0 (1,>0)
we have f(¢)>0 (resp. <0) if a>6 (resp. a<3). Hence =(0) and =(j, 7)
are either all positive or all negative and since their sum is unity, the
former is the case.

Let #(3)==(j, 1)+=(4, 2), the limiting probability of an arriving cus-
tomer finding j customers ahead of him. Then

(j)=1=9)(—p) A —a)a’ +am(1 —58)5"
(1=0)(u—p)+ma

When g, > the queue length distribution is a mixture of two geomet-
ric distributions.

Putting =g in (11) and (12) yields =(j, 1)=(1—d)a’ and =(j, 2)=
(1—0)(3’—a’) which for a standard GI/M/1 system gives, for example,
the limiting probability that an arriving customer finds j others in front
of him and that the customer receiving service began the busy period.
If z, (r=1, 2) is the limiting probability that ¢,=r, we have

m=az(0)/(1—a), =a(1-0)/1—a) if p=p
m=Cr(0)(a—d)/[[(1-a)1-0)], =@—a)/(l—a) if p=p,.

Let =(j|7) (4=1,2,---; r=1, 2) be the limiting probability of an arrival
finding j customers ahead of him conditioned on the state of the server.
We have

#(J|11)=1-a)’™, =(j|2)=1-a)1-8)(a'—d)/(@a—35) (a#0).

Thus we see that given that the customer receiving service began the
current busy period, the queue lengths have a geometric distribution
on {j=1,2,.-..} and given that the customer being served did not be-
gin the busy period, the queue length distribution is a convolution of
two geometric distributions.

Still assuming stationarity, we have
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E(@Q,)=7(0)[a+C(a—3)(1—ad)/(1—-08)')/(1—a).

If a=4, use of L’Hospital’s rule on the expressions above, or direct
substitution, shows that

(0)=(1-0)(1—-)/A-1-0p©), (4, N==(0),
(3, 2)=(1—3)'8'(6)7o' /(1 —(1—6)'()) ,
=(j, )=Q1—-0)'"", (4, 2)=(Q1—0)'jo'™
and
EQ.)=[6+p)1/(1—0)1—-(1—-0)pF()) .

If g(9) is the L.S.T. of the limiting waiting time D.F. of an arriv-
ing customer, then a standard argument shows that (e.g. [3], p. 121)

7(0)| 1 amlp—p(1—0)](#+6) s
( )[ +(m—p(l—a))(#(1—5)+0)(;z1+0)] (@9)

£9(1—0) (pz+6) (a=9) .
O+ 56 <p(1—a)+o>2]

g(0)=

3. The transient distribution

For the Markov chain discussed in the last section denote the n-step
transition probability from state (-) to state (x) by p™(-:x). The task
of finding generating functions of these quantities is tedious and the
resulting expressions are complicated. However, for the sake of com-
pleteness we shall outline the derivation of the generating function for

p™(-:0).
The transition diagram (Fig. 1) shows that the relevant backwards
Chapman-Kolmogorov equations take the form

pt(0: 0)=ap™(1, 1: 0)+(1—a)p™(0:0),
P(, 1: 0)=ap™(i+1,1: 0) +§; Cis1eD™(k, 21 0)
+ <1 — g ck>p‘"’(0 :0)
and
PG, 2 0)=31 biuroap™(k, 2: 0)+ (1= 35, p™(0: 0)
For |z], |w|<1 let

P.(z, w)= % ii:‘,l p™(z, r: 0)z'w" (r=12),

n
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Uo(w)=§pw(o:0)wn and U,(w)=§o p™(L, r: 0w (r=1,2).

Noting that »®(0: 0)=1, the above equations yield

(13)  U(w)=[1+awUw)l/[1—w(l—a)],

(14)  Pi(z, w)=w[B(2) Pz, w)—azU(w)—cUy(w) +2A(2)Uy(w)]/(z— aw)
and

(15)  Pyz, w)=2zw[L(z2)Uy(w) —bU(w)]/(z—wp(2))

where A(z)=c¢,+(z2—1(2))/(1—2) and L(z)=b,+(z—p(2))/(1—2). Thus P,(z,
w) is expressible in terms of the three functions Uf(w) (¢=0, 1, 2).
Equation (18) gives one relation between these functions and another
two may be found by observing that regularity of P.(z, w) in |z|<1 for
each w in |w|<1 implies that the numerator of (14) must have a zero
at z=aw and that of (15) has a zero at d(w), the unique zero in |z|<1
of z—wp(z) (e.g. see [3]). Thus we can evaluate P,(z, w).

4. The discipline D,

Assuming that service times with parameter y, are mutually inde-
pendent and those with parameter p are mutually independent for the
GI/M/1 queue under the discipline D,, we see that the following sto-
chastic process is a Markov chain which will enable us to determine the
probabilities of queue lengths at customer arrival epochs. The process
is in state (¢) (¢=0,1,-.-, N) at time n (n=0,1,-..) if C, arrives to
find © customers ahead of him, and it is in state (1, 7r) ?=N+1, N+2,
««+; r=1,2) at time n if C, arrives to find ¢ customers adead of him
and the server is working at rate g (r=1) or p (r=2).

This Markov chain may be dealt with in much the same manner
as that in Section 2. Letting =(j) (=0,1,---, N) and =(4, r) (j=N+1,

-+; r=1, 2) be the limiting-stationary probabilities, it can be shown that

n(j, 1)=n(N)a’™" and z(j, 2)=n(N)Cla’ ¥ —0'""]

where a, d and C are as in Section 2. By working recursively =(j) can
be found in terms of n(j+1),---, o(N) (=0,---, N—1) from the equa-
tions

N © o
”(j)= > ai+1-j7f(7:)+ > 71'(":, 1)di—N,N+l—j+ > 77-'(7:, 2)dt+1—N,N-j
i=j—1 i=N+1 i=N+1
(37=1,---, N)

where a,:S: e "% (ux)'[ildA(x) and d;; is the probability of i41 events
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in the random interval (0, T) of a modified renewal process where the
lifetime distribution of the first event is Erlangian with parameters g,
and j and succeeding lifetime distributions are exponential with param-
eter y, and D.F. of T is A(-).

If Q,=j then C,_, is the customer receiving service on C,’s arrival.
We have for j=N+1, N+2,-..

Pr(anj|an_j§N)=(1_a)aj-N—l
P,(@.= 13y 2 N+1)=(1-0)(1-3) (@7~ ")/(a—2)

where 9, is the queue length at C,’s service inception and assuming
that the stationary distribution obtains. The first distribution is geo-
metric on {N+1, N+2,-..} and the second is a convolution of two geo-
metric distributions on this set. When pgy=g we obtain the following
results for the standard GI/M/1 system

P.{Q.=J, 0, ;=1} = (1—d)d'a’*
PQ.=7,0,_;>1} =(1—0)(0'—0'a’%)  (j=i4+1,542,--+; 1=1,2,--+).

These results complement those near the end of Section 2.

5. A queueing model of Finch

Finch [2] considered a system in which customers arrive according
to a renewal process and were served in order of arrival with identically
and independently distributed service times. Those customers who arrive
to find the counter vacant are delayed before their service begins. These
delay periods are identically and independently distributed.

In this section we consider the case of exponentially distributed
service and delay times having parameters g and g, respectively. Finch

has shown that a limiting waiting time D.F. exists when 1<pu Sw xd A(x)
0

< oo where A(-) is the D.F. of interarrival times. We obtain the L.S.T.
of the limiting waiting time D.F. by first finding the limiting queue
size distribution.

This latter task is carried out in substantially the same manner as
that of Section 2. We consider a discrete time process having the state
space as in Section 2. State (0) is occupied at time n if C, arrives to
find the counter vacant and (j, r) is occupied at n if C, arrives to find
j customers ahead of him and the server idle (r=1) or serving (r=2).
Fig. 1 is applicable here, but with the following additional transitions:
(0)—(1, 2) with probability ¢, (notation as in Section 2) and (7—1,1)—
(7,2) (7=2,38,--+). The transitions (i, 1)—>(7, 2) have probability ¢,_;,,
(i=5-1,4,---; 7=2,8,---, and 1=1, 2,--- when 5=1). All other transi-
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tions into (j, ) have the same probabilities as in Section 2. Letting
7(0) and =(j, r) be the limiting probabilities, it is not difficult to show
that if a+#4o

m(0)=(1—0)(p(1 —a) — )/ (p(1 — ) — p2,)

7(7, 1)==(0)a’ and z(7, 2)=n(0)E(a’ — &%)
where E =p/(¢(1—a)—p,). These results may be used to calculate quan-
tities of interest as in Section 2. One measure of customer dissatisfac-
tion in this system that may be of interest is the probability, P, that
a customer arrives to find others ahead of him and the server idle.
This is given by

P=a[(1-0)/(1—a)] [(#(1 —a)— p)/(pe(1 — 6) — p2,)]

=a(l—9) if p, is large but not g

a if p is large but not p, .

n

Thus it would appear that shortening the delay period may please cus-
tomers more than having shorter service times, although, other factors
must of course be considered.

The L.S.T., g(6), of the limiting waiting time D.F. may be found
in the usual way and is given by

90)=n(0)(p+0)/(e(1—08)+0) (1. +6)  (a#9) .
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