FAMILIES OF POSITIVELY DEPENDENT RANDOM VARIABLES

TAKEMI YANAGIMOTO

(Received Oct. 12, 1971; revised May 18, 1972)

Summary

Possible definitions of positive dependence of random variables are
systematically and exhaustively examined and previous results on this
notion are improved. Three approaches to the definitions are proposed.
They are similar to those given by the author and Sibuya in defining
“ stochastically larger component of a random vector.” Unbiasedness of
rank tests of independence is treated.

1. Introduction

A random variable (X,Y) is positively dependent if, roughly speak-
ing, larger values of one component correspond stochastically to larger
values of the other. Some definitions of this notion have been intro-
duced and studied in [3], [7]-[10] and [12]. The purpose of this paper
is to present systematic ways of defining of positive dependence of dif-
ferent degrees of strictness, to examine the hierarchical structure of
these definitions, and thus to improve previous results on the relations
among the definitions. As an example distributions of explicit form are
classified by our definitions.

We define families of two-dimensional random variables (X,Y), or
equivalently of distribution functions F(x,y). A family of positively
dependent variables will be denoted by <(-) with one or two param-
eters inside the parentheses. Corresponding to each family &P(-), a
family of negatively dependent variables denoted by JI(-) can be de-
fined always dually to P(-).

We present three approaches, that is we introduce three classes of
P(-)s. In the first one we consider four two-dimensional intervals,
which are finite or infinite in one or two directions, and apply the de-
finition of positive association in two-by-two tables. In the second ap-
proach we consider conditional distributions, if one component, under
the condition that the other has a certain value, is stochastically larger
than the former component, under the condition that the latter has a
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smaller value, then the random variable is defined to be positively de-
pendent. In the last approach we consider are a termed transformation
of a random vector in order to define positive dependence.

These approaches are closely related to each other, and one of our
objectives is to study relations among them. The first approach gives
rather stronger definitions and the second weaker ones. The last ap-
proach enables us to state a proposition on unbiasedness of certain tests.
Our approaches are very similar to those in the author’s previous joint
paper on the notion of “stochastically larger” [13]. In the first and
second approaches we use the notations R,;, R, Ri, RY, Ri, R, and
Ry defined in [13], and their properties.

In Sections 2, 3 and 4 the three classes of (-)’s are defined and
their properties are examined respectively. In Section 4 we also study
properties of test statistics for independence. Counter examples show-
ing the absence of certain implications are presented in Appendix.

2. Families (i, j)

In this section we define families of positively dependent distribu-
tions (1, j), ©,7€I, where I={1,2,2",2,3}. These are related to
the stochastic order relationships R, R;, RY, R, and R;, and con-
stitute a hierarchical structure: for ¢>4 and j=j' or ¢=4 and j5>7/,
the dependence in &P(%, 7) is more strict than in L@, 7).

Throughout the paper (X, Y) is a random variable with its distribu-
tion function F(z,y). Its marginal distribution are denoted by Fi(x)=
F(x, o) and Fy(y)=F(oo, y), and its conditional distributions by F'(z|y)
and F(y|x). The probability function corresponding to F(x,y) is de-
noted by P:(-), or simply by P(-).

Firstly we define families %(3, 3), &(3, 2'), P(3, 2"), L3, 1) P2",1)
and (1, 1).

DEFINITION 2.1. (i) (X,7Y) (or its distribution function F'(z, y)) is
said to be in P(3,3), if Pr((ai, a:](b;, b)) X Pr((az, as] (b, bs]) = Pr((a, a.]
(2, bs]) X Pr((@2, as] (b, b;]) for all a;<a,<a; and b;<b,<b;.

(ii) (X,Y) is said to be in 2P(3,2'), if P((a,, a:](by, b;]) X P((a;, as]
(b, )= P((ay, ;] (b;, ) X P((@s, a5} (by, bs]) for all a,<a,<a; and b;<b,.

(iii) (X,Y) is said to be in P(3, 2"), if P((a,, a;](— oo, b]) X P((a;, as]
(by, bo) = P((as, @z] (b1, by]) X P((az, as](—o0, b)) for all a;<a,<a; and b
<b,.

(iv) (X,7Y) is said to be in £(3,1), if P((a;, as](— o0, b]) X P((as, a;]
(b, )= P((ay, a](b, 0)) X P((as, as](—oo, b]) for all a,<a,<a; and b.

(v) (X,Y) is said to be in P(2", 1), if P((— oo, a,](—o0, b]) X P((a,,
a](b, 0))Z P((— 0, a;] (b, 0)) X P((ay, as](— o0, b]) for all a,<a, and b.
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(vi) (X,7) is said to be in (1, 1), if P((—oo, a](—o0, bl)X P((a, o)
(b, 00))=P((— o0, a](b, o)) X P((a, c0)(—oo, b]) for all a and b.

All other families P(%, ) for ¢, 7 € {1, 2/, 2", 3} can be defined analo-
gously. P2, 7), £(1,2) and P(2, 2) for 1, j € I are defined by P2/, 5)N
P2, 7, P@1,2YNPHE,2") and P2, 2)NPE2, 2"V N PE2", 2N P2", 2"),
respectively. JI(1, 5), t, €I is defined by inverting the inequalities in
Definition 2.1.

We denote a component Y (or X) under the condition that a,<X
<a, (or b,<Y=b) by Yl|ocxsa, (Or X5 cr<p,). The following Proposition
2.1 shows that (¢, 5)’s are also characterized by comparisons of con-
ditioned variables. For simplicity we state propositions only on the
(3, j)’s mensioned in Definition 2.1. Similar statements hold for other
combinations 4 and j.

PROPOSITION 2.1. (i) (X,Y)eP3,3) iff Ylocrsca,” Y lajcxsa, (Rs)
for all a;<a,<a;, and also iff X |p,<rso, ™ X |p <r 5o, (R,) for all by<b,<b;.

(i) (X,Y)ePB,2) iff Yloycrsa” Y lo,<xse, (R2) for all a,<a,<ay,
and iff X|,,cr > X s <rso, (Rs) for all b <b,.

(ili) (X,Y)eP3,2") iff Ylecrca,” Y lo,<xsa, (RY) for all a,<a,<ay;
and iff X|, cyss,> X|r<o, (Ry) for all b,<b,.

(iv) (X,Y)eP@B,1) iff Yloycxsa,”Y lojcxsq, (Ry) for all a,<a,<as,
and iff X|ys, > X]r<s (Rs) for all b.

(v) (X,Y)eP@2",1) iff Yo cxsa,” Y |xse, (Ry) for all a,<a,, and
iff Xlyss>Xlrss (RY) for all b.

Vi) (X, Y)eP,1) iff YVrsa?Y|xza(R,) for all a, and iff Xy,
> X|rs (Ry) for all b.

It is postulated in the above that the inequality Y |z.. > Y |x.. (Rs)
is satisfied if either probability of A or A’ is zero. Thus the symbols
P(3, j) correspond closely to the symbols R,. The following Proposi-
tion 2.2 shows the hierarchical structure of strictness of (7, j)’s. Fig. 1
illustrates just a part of it, since there are too many families to be
shown. (1, j)— P, 5') is equivalent to P(z, ) P, 7).

PROPOSITION 2.2. Define the partial ordering in I=1{1, 2’, 2", 2, 3}
by 3>2>2'>1 and 2>2">1, then P®, j)c P, j) iff i=4 and j=j7'.

PrROOF. That i1=% and j=j imply P, j)CP(?, 5) follows im-
mediately from Definition 2.1. We show that (X, Y) e (s, 5) does not
imply (X,Y) e L@, 5') if 7 is not larger than nor equal to j/. We see
in [18] that there exist distribution functions F'(y) and G(y), such that
F(y)>G(y) (R,;) but not F(y)>G(y) (R,). Let X have two positive
mass at only two points, x, and x; (x,<wx,), and let F(y) be the condi-
tional distribution function of Y given X=ux, and G(y) the conditional
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distribution function of Y given X=2x,. Then Proposition 2.1 implies
that (X,Y) € (4, 7) but (X,Y) ¢ P@E, 7).

ProprosITION 2.3. For any <, 5€I={1,2/,2” 2,3} it holds that
(i) (X,Y)e PG, ) iff (Y, X)e P(7,1),
(ii) (X,Y)e LG, j) iff (—X, —Y) e P(a(2), 6(j)), where o(t)=1 for i€
I—-{2,2"}. ¢(2)=2" and ¢(2")=2,
(iii)) (X,Y) € LG, j) iff (X, —Y)eTl(, a(j)), and (—X, Y) € Ta(2), J),
(iv) for r and s be nondecreasing functions, (X,Y)e £(z, j) implies
(r(X), s(Y)) € L1, j),
(v) (X,Y)e L@, J) and (X, Y) € Ji(z, 7) imply (X, Y) is independent.

Fig. 1. Implication scheme (i).

PROPOSITION 2.4. (i) When F(x,y) has the probability density
function f(x,y), F(x,y) € P@B,3) iff f(z,y)f (@, v)=f(x,¥)f(x',y) for
almost all z<uz’, y<y'. In this case F'(x,y) was called in [10] to be
positively likelihood ratio dependent.

(ii) F(x,y)e P3,1) iff F(y|x)=F(y|«z) for all ¥y and almost all
x<z'. In this case F(x,y) was called in [10], [11] to be positively re-
gression dependent.

(iii) F'(x, y) e L2",1) iff F(x,y)/F\(x) is nonincreasing in x for all y.
In this case F(x, y) was called in [4] to be left tail decreasing.

(iv) F(x,y)e PQ,1) iff F(x, y)=Fi(x)Fy(y) for all x and y. In this
case F'(x,y) was called in [10] to be positively quadrant dependent.

Erxample 2.1. A wide family of distributions denoted by
H (x, y)=F(x)G(y) {14+ aA(F(x)) B(G(y))}

was given by Farlie [5].

For convenience suppose that F(x) and G(y) are continuous distri-
bution functions, and that A and B are differentiable. A sufficient con-
dition for H,.(x,y) to be a distribution function is that B(1)=0 and
| P(z)Q¥)|-|a| <1 for all z,y, where P(z)=d(xA(x))/dz and Q(y)=d(yB(¥))/
dy. It follows from Proposition 2.3 (iv) that classification of the de-
pendence of H,(x,y) does not depend on what are F(x) and G(y). We
may restrict to the case that F(x) and G(y) are the distribution func-
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tion of uniform distribution U(0, 1). Then the density function of H,(z,
Y), h.(z,y), and the conditional distribution function, H,(y|z), are given
by

h(z, yY)=1+aP(x)Q(x)
and
H.(y|x)=y{14+aP(2)B(y)} ,

respectively. After direct calculations we get that for a=0 the follow-
ing four statements hold.

(i) Hy(z,y) e PQ1,1) iff B(y)(A(x)—A0))=0 for all 1>z, y>0.

(i) H,(z,y)e P2", 1) ift B(y)(A(x)—Ax')=0 for all 1>z>a'>0
and 1>y>0.

(iii) H,(x,y) € P3,1) iff B(y)(P(x)—P(x'))<0 for all 1>2>2'>0
and 1>y>0.

(iv) Hu(x,y) € P, 3) iff (P(x)—P(2"))(Qy)—Q¥')=0 for all 1>2>
2'>0 and 1>y>y'>0.

Example 2.2. Let X, =X, be order statistics of a sample of size
2 from a continuous distribution function F'(x). We know that a neces-
sary and sufficient condition for (Xq,, Xo,—X) to be independent is
that F(x) is exponential. We can extend this fact to the case of neg-
atively dependence. In fact the conditional distribution function of
X, Xo— X)) given Xg, =z, F(y|x), is given by for any y and almost
all x

1-F(y|z)=(1-F(y+=))/(1—-F(x)) .

From this the following three conditions are shown to be equivalent.

(i) —log(1—F(x)) is convex,

(ii) (Xu), X(Z)_X(l)) € 32(3% 1)
and

(i) (Xo, Xo—Xw) € TU(3, 2').

The dual statements also hold. F(x) was called in [1] to have in-
creasing hazard ratio, if the condition (i) holds and F(0)=0. Here we
remark that the condition (ii) can hold even if F(x) is discrete, and
that it gives another definition in wide sense of the concept of increas-
ing hazard ratio.

Example 2.3. Let Fy(z, y)=min {F\(z), Fy(y)} and F.(x, y)=max {0,
1—F(x)—Fyy)}. Then for any x,y Fy(x, y))=F(x, y)=F.(x,y), if F(z,y)
is continuous. Let

(1—a)F(x)F(y)+aFy(z,y)  for 1za=0

F(z,y)=
Q+a)F(x)Fy(y)—aF(z,y) for —1=<a<0.
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This family was introduced in [6]. For «=0 it holds that F.(x,y)¢€
PL@3,1), PER",2") and P(2,2'), but not that F.(z,y)e P2, 2") nor
P2, 2).

3. Families &(-,0) and &P(-, E)

In [13] we know other weaker order relationships R, and Rz, so
we may define families (i, 0) and (i, E) along the line of Proposi-
tion 2.2.

DEFINITION 3.1. (i) (X,Y)eP4,0) if Ylocxsa, ™Y loj<xse, (Ro)
for all a;<a,<as<a,.

(i) (X,Y)e@B,0) if Y'Ia,<xsas>'leal«l’s:t2 (Ry) for all a,<a;<a;,.

Other families (3, 0), (0, 7), JU(¢, 0) and JI(0, j) are defined sim-
ilarly for ¢, j5€l

(iii) (X, Y) e P(0,0) if (X,Y) has nonnegative Kendall measure of
association, that is Pr((X—X")(Y—Y")>0)= P-(X—X")(Y—Y")<0), where
the random variables (X,Y) and (X', Y’) are independent and have the
same distribution.

We could define P(4,1)’s, 1€ I={1,2',2", 2, 3}, but they coincide with
P(8, i)’s, respectively. P(4, 0) is really needed since the order relation
R, does not satisfy the transitivity, (see Example A.1 in Appendix).

PropPOSITION 3.1. Let (X,Y) and (X’,Y’) be identically and inde-
pendently distributed (i.i.d.) random variables, and let (X;, X,) be de-
fined by (X, X')[y>».. Then (i) (X,Y)e P4,0) iff X, > X, (Rs,), (ii)
(X,Y)e P38, 0) iff X;>X,(R,), (iil) (X,Y)e P2,0) iff X,>X,(R}) and
(iv) (X,Y) e P(0,0) iff X,>X,(Ry). And similar results also hold for
the other families of (-, 0), 2(0, -), JI(-,0) and JI(O0, -).

Tne following proposition gives the hierarchical structure of strict-
ness of (i, j)’s defined in Definitions 2.1 and 3.1. Let I'={0, 1,2, 2",
2,3}. We extend the partial ordering in I to that in I’ by adding an
order relation 1>0.

PROPOSITION 3.2. (i) It does not necessarily hold that (1, 0)C
(0, 0) nor dually that (0, 1)c (0, 0).

(i) PG, 5)cP@, 5') for i,7,4,5 €l' iff =7 and j=j' except
for the above case.

(iii) P4, 0)cP@, j) for ¢,jeI' iff 5=0, and P4, 0)DP(t, 7) for
1, jeI' iff =8 and j+#0. Dual statements also hold.

ProOOF. The implications are shown by Proposition 3.1 and the
hierarchical structure of R’s. The absence of implications in the cases
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of (ii) and (iii) except for P4, 0)d P(3,0), is shown by constructing
analogous counter examples as in the proof of Proposition 2.2. To prove
that (0, 7)¢ (0, 5') for 5>7 and j’, j € I', it is sufficient to show that
there exists F(y) and G(y), such that F(y)>G(y)(R,) but not F(y)>
G(y) (R;), which is assured in [13]. The remaining cases are shown by
counter examples, Examples A.1 and A.2 in Appendix.

PrOPOSITION 3.3. Paraller results for (i,0), i¢lI'U {4}, corre-
sponding to Proposition 2.3 (i), (ii) and (iii) are valid, assuming ¢(0)=0
and ¢(4)=4. But the other ones do not hold.

Before introducing families (-, E) we shall define ‘generalized co-
variance’ which will be used in the definition of P(E, E).

DEFINITION 3.2. The generalized covariance of F'(x, i) is defined by

| | tF@ 9~ @) Fwdedy

which is allowed to be positive or negative infinite. (X, Y') is said to have
positive generalized covariance, if the generalized covariance is nonneg-
ative or positive infinite.

ProposITION 3.4 ([8], [10]). Suppose Cov (X,Y) exists, then the
generalized covariance also exists, and they coincide with each other.

DEFINITION 3.3. (i) (X,Y)eP@B, E), if Ylocrsa, ™Y |ocxsa, (Ri)
for all —co=Za,<a,<a;< oo,

(i) X, Y)eP@2,E) if Yloex>Y |ojcxse, (Re) for all —0=<a,<a,
=<oo.
(i) (X,Y)e P, E) if YV|is:> Y [r<e (Rg) for all a.

(iv) (X, Y)eP(E,E) if (X,Y) has positive generalized covariance.
(v) X,Y)eP(0,E), if Y, >Y,(R:), where (v,,7,) is defined simi-
larly as (X;, X,) in Proposition 8.1.

Other families of P(¢, E), P(E, 1), TU(i, E) and JUE, i) can be de-

fined similarly for ¢ I'.

ProposiTION 3.5. (i) (X,Y)e P(1,E) implies (X,Y)e P(E, E),
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provided the generalized covariance exists.
(ii) (X,Y)e P, E) implies (X,Y)e P(0, E), provided S S [F(x—
0, ¥)+ F(x, y)— (Fi(x—0)+ Fy(x))Fiy(y)[d Fi(x)dy exists.

PROOF. Supplemental conditions are needed to apply Fubini’s the-
orem. Let x be an arbitrary number, then the distribution functions
of Yiy.. and Y|y, are (Fy(y)—F(z, ¥))/(1—F\(z)) and F(z,y)/F(x) re-
spectively. From (X,Y) e P(, E) it follows after some calculations that

| (@, v~ F@Fw)dyz0

which proves (i). Next the generalized mean difference of Y|y, and
Y |x<z is also nonnegative as is that of Y|;,, and Y|;c,. Hence it fol-
lows that

| IF@—0, )~ Fia—0)Fu)ldy=0 .
and
| IF (&, 9)+ F@—0, 1)~ (Fi@)+ Fe—0) Fiw)ldy 20
which implies
| 1§ 1P@, )+ F@—0, 1)~ (i) + Fa— ) Fi)ldy | dF @) 20

On the other hand the generalized mean difference of Y; and Y, is
given by

[ {{ Fe—0, wicdFi@) - IF)—F(e, ulicdFi@) |y

=1/e | {{ (F@ )+ Fe—-0, )~ (F(@+ Fs— ) Fa)dFi(x)|dy ,

where ¢=P(X >X'), since S[Fl(x)—Fl(x—O)]dFl(x)=1. It is nonnega-
tive, when Fubini’s theorem is applicable. This completes the proof.

Let I"=I'U{E}. The partial ordering in I”, an extension of that
in I', is given by adding the order relation 1> E.

PROPOSITION 3.6. (i) <P(i, ))c P, 5') for 4,7,%, 5 eI” iff 1=7
and j=7' except for the cases in Propositions 3.2 and 3.5.

(ii) P4,0)D%P(4,5) for 4,5eI” iff 1=3, 7#0 and j#E. For
1, jeI" P4, 0)c P(i, 5) implies P(3, 0)C P(z, 7) unless (z, 5)=(4, 0).

PrOOF. We need to show only the cases where the new parameter
E is involved. The implications are obtained by the hierarchical struc-
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ture of R’s. The absence of implications that for ¢, 7/, je I’ (¢, E)E
P(i, §), is obtained by constructing analogous examples in the proof of
Proposition 2.2. For remaining cases it is shown by the counter exam-
ples, Examples A.3, A.4, A.5, A.6, A.7 and A.8 in Appendix.

PROPOSITION 3.7. Parallel results for &(-, -) in Definition 3.3 cor-
responding to Proposition 2.8 (i), (ii) and (iii) are valid, defining o(E)
=F. But the other ones do not hold.

Example 3.1. Let X4,=---=X,, be order statistics of a random
sample X;,---, X, from the distribution F(x). Under certain regularity
conditions Bickel [2] and Lehmann [10] showed Cov (X,, Xu»)=0 for
any 1<k, k'<n. Actually Bickel proved, under the condition that E(X(3,)
and E(X&,) exist, that (X, Xu») € P(8, E) for k<K', and that Cov (X,
Xuw»)=0. Lehmann showed, under the condition that F(x) is continuous,
that (X4, Xa») € P8, 3), and that (X, Xu») € L3, 1).

We give a complete explanation from our point of view. Let U,
..., U, be i.i.d. random variables with uniform distribution U(0, 1), and
let Up=---=2U,, be their order statistics. Then by direct calculation
it follows that (U, Us») € P8, 8) for any 1<k, k'<n. Since F~'(u)=
inf {x|F(x)=u} is nondecreasing in u (0<u<1), (F'(Uw), F(Uw)) €
P(8, 3), which implies (Xq,, Xa») € P(3, 3), a fortiori (X, Xa») € P(E, E).
Thus it follows Cov (X4, Xu»)=0 by Proposition 3.4, provided Cov (X,
Xun) exists.

Other families can be defined similarly. Here we give one of them,
which defines the family of random variables with the nonnegative quad-
rant measure of association [9].

DEFINITION 3.4. For the two-dimensional random variable (X,7Y)
we write X>Y (R,.), if the median of X is not less than that of Y.
4. Families P(C) and P(A)

In this section we present the third approach based on transfor-
mations in order to define two families P(C) and P(A). Families of



568 TAKEMI YANAGIMOTO

negatively dependent random variables J)(C) and JI(A) can be defined
dually. :

Let U and V be the independent random variables each having
a uniform distribution U(0, 1). R?is the two dimensional Euclidian space
and (0, 1)* is the unit square in R

DEFINITION 4.1. (i) A function r=(r, 7)) : (0,1?— R’ is nonde-
creasing, if u<wu' and v<v' imply that r(u, v)<r ', v') and ryu, v)<
rou', v').

(ii) A function r is coherent, if for a suitable choice of numbers
¢, and ¢; in the set {—1,1}, ¢(u'—u)=0 and cy(v'—v)=0 imply that
(r(', V)—r(u, v))(rdu, v)—rfu, v)) 0. A nondecreasing function is
coherent.

DEFINITION 4.2. (X,Y) is said to be positively coherent dependent,
if there exists a coherent function »(-, -) such that (X,Y) and »(U, V)
have a common distribution function F(z, ). This is denoted by (X, Y)
€ P(C).

ProPoSITION 4.1. £P(3,1)c P(C), that is, if (X,Y)e P(8,1), then
there exists a nondecreasing function r(u, v)=(r(u), r{(u, v)) such that
(X,Y) and »(U, V) have a common distribution function F(zx, y).

PrOOF. Since (X,Y)e P(3,1), conditional distribution functions
satisfy the condition that (w'—u)(F(y|F,'(w'))—F(y|F, (u))<0 for all
y and all u,u' € A for which A (c(0,1)) has Lebesgue measure one.
For 0<u<1 let F(y|F'(w))=inf {F(y|F"(w))|u €I, w'=u}, then they
also are conditional distribution functions of F(x,y) given X=_F,"(u).
r(w) and 7ry(u,v) are defined by F,(u) and F~'(v|F,'(u)) respectively.
Then r=(r,, r,) fulfills the required conditions.

Here we discuss the unbiasedness of tests of independence against
positive dependence. Varying with the strictness of positive dependence
tests may or may not be unbiased. In [10] Lehmann showed that the
test of independence against (X,Y)e P(8,1) with its rejection region
Tzc for a nondecreasing rank statistic T and a suitable number ¢ is
unbiased. In [12] Blomqvist’s test of independence against (1, 1) was
shown to be unbiased. The following proposition gives another relation.

We denote Kendall’s rank correlation, Spearman’s rank correlation
and Blomqvist’s rank correlation by Tk, Ts and T respectively : if (X,
Y), 1=1,---,n is a sample, then

TKZE sgn (X;— X;)(Y;—Y,)/n(n—1),

Ts=3 > sgn(Xi—X,)(Y,~Y,)/n(n*—1)
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and
T,=[1/4 3 (sgn (X~ X0 +1)sgn (Y~ Yo +1)] /2021,

where X, and Y, are sample medians and [x] means the greatest integer
less than or equal to x.

PROPOSITION 4.2. Suppose that distributions are continuous. Let
T be one of Tk, Ty and T, then, for an arbitrary ¢ and F(x, y) € P(C),
P.(T>c)=P(T>c), where P, denotes the product probability measure
of the two marginal distributions of F'(x,y). In other words a test of
independence against (X,Y) e P(C) with its rejection region T >¢ for
any ¢, is unbiased.

ProOOF. It is sufficient to show that for a nondecreasing r, such
that »(U, V) has the distribution function F(z,y), T(r(u, vy, -+, 7(ty,
) =T (%, v1), + + +, (U, v,)) for almost all ((uy, 1), -+, (U, v,)). Using
the fact that for almost all ((u, v), (W', v')) (u—u')(v—2')>0 implies (r,(u,
v)—r(w, v)) (ru, v)—ry(u', v'))>0, this is obtained by direct calculation.

Finally we define the family 2(A), which was introduced in [3] with
the symbol 1.

DEFINITION 4.3. (X,Y) is called to be associated, if for any non-
decreasing function »: R*—R? Cov (r(X,Y))=0 if it exists, which is
denoted by (X, Y) e P(A).

PROPOSITION 4.3. (i) (8,1)cP(C)cP(A), and both converse
statements do not hold.

(ii) PE2,1)cPA)cP@,1), which implies that P(2", 1)UL, 2')
UL, 2"cP(A). And both converse statements do not hold.

(iii) Let (4, j) be a family defined in Sections 2 and 3. P(C)c
P(1, 7) implies P(1, 1)C P(2, 7).

(iv) It does not hold that P(2',2)U P(2", 2")c P(C).

Remark. The problem, whether P(2/,2"”) or P(2,2) is included by
P(C) or not, is open.

Proor. (i) follows from [3] and Proposition 4.1. (ii) is a result
in [4]. (iii) and (iv) follow from Examples A.6 and A.9.

P2,1)
P(3,1)

P, 1)/ P(1,1)
\

\ TN /
P(C) P(A)

Fig. 4. Implication scheme (iv).
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Here we give two typical distributions, one of which is in 2P(C)
and the other not in P(C).

Example 4.1. Let r(u, v)=(r(u, v), r{u, v)) be
u/2 for u<1/2 and v<1/2
r(u, v)=< u/2+1/2 for #>1/2 and v>1/2
uf/2+1/4 otherwise ,

and 7y(u, v)=7(v,u). Then (X,Y) (=r(U,V)) is distributed uniformly
on the shadowed areas in Fig. 5. It holds that (X,Y) is in P(C) but
not in (3, 1)U P2, 2)U P2, 2")U P2", 2")U P2", 2").

1, 7

" Y % 1
Fig. 5. Fig. 6.
Example 4.2. Let (X,Y) be a random variable distributed uniform-

ly on the thick lines in Fig. 6. (X,Y) is not in P(C). In fact let (X,
Y), -+, (X,,Y) be i.i.d. random variables with the same distribution as

(X,Y). Then
P(Y,>Y,>Y,>Y | X;>X,> X, > X))
=1—-Pu(Tx>—-1)=1/16>1/41=1—P(Tx>—-1),

which contradicts to Proposition 4.2, if (X,Y)e P(C). On the other
hand (X, Y) € P(A).
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Appendix. Counter examples to implication relationships

To complete the proofs of Propositions 3.2, 3.6 and 4.3, counter
examples are presented here. Only brief interpretation is given for
simplicity. For example it is interpretted in Example A.3 only that
P(2,1)¢ P(3, E), which implies that (3, E) contains none of £(2,1),
P2",1) and P(2, E), that dually P(1, 2)d P(F, 3) and so on.

Example A.1. A random variable (X,Y) belonging to (3, 0) but
not to (4, 0). Probabilities on 3 x4 points:

X
y\ 1 2 3
4 1/10 1/10 0
3 0 0 3/10
2 0 3/10 0
1 1/10 0 1/10

Example A.2. A random variable (X, Y) belonging to (1, 0) but
not to (0, 0). Probabilities on 4x4 points:

Xz
y\ 1 2 3 4
4 1/12 0 1/12 1/12
3 0 1/4 0 0
2 0 0 1/4 0
1 1/12 1/12 0 1/12

Example A.3. A random variable (X,Y) belonging to £(2,1) but
not to (8, E). Probabilities on 4x4 points:

Xz
y\ 1 2 3 4
4 0 0 0 1/4
3 0 1/6 1/12 0
2 0 1/12 1/6 0
1 1/4 0 0 0

Example A.4. A random variable (X, Y) belonging to £(2',1) but
to neither of (P(2”,0), P(2", E)). Probabilities on 32 points:

2 1/4 0 1/4
1 1/4 1/4 0
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Example A5. A random variable (X,Y) belonging to both of
(P4, 0), P(3, E)) but to neither of (P(0,1) and P(E, 1)). Probabilities
on 2X3 points:

X
y\ 1 2

3 1/4 0
2 0 1/2
1 1/4 0

Example A.6. A random variable (X, Y) belonging to P(C) which
is in both of (£(A), £(1, 1)) a fortiori but to none of (P2, E), P2",
E), P2, 0), P2",0)). Probabilities on 4x2 points:

N 1 2 3 4

0 1/4 0 1/4
1 1/4 0 1/4 0

Example A.7. A random variable (X,Y) belonging to both of
(P(E, E), 2P0, E)) but to neither of (£(1, 0), £(0,1)). Probabilities on
4 x4 points:

xz
y\ 1 2 3 4
4 0 1/4 0 0
3 0 0 1/4
2 0 0 0 1/4
1 1/4 0 0 0

Ezxample A.8. A random variable (X,Y) belonging to (4, 0) but
to neither to (P(E, E), L(0, E)). Probabilities on 2x5 points:

X
I 1 2
5 0 1/3
4 1/2 0
3 0 0
2 0 0
1 0 1/6

(—X,Y) belongs to both of (P38, E), P(E, E)) but to neither of (P(0,
0), P(E, 0)).

Example A.9. A random variable (X,Y) belonging to both of
(P2, 2, P2",2") but not to P(C). (X,Y) distributes uniformly on
the shadowed areas in Fig. 7 with probability 9/10, that is, its density
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3 ///////////j:j

0 2 3 5
Fig. 7.

function is 1/10, and uniformly on the thick line in Fig. 7 with prob-
ability 1/10.
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