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1. Introduction and summary

Matusita ([5]-[8]) introduced and discussed measures of ‘affinity’
and ‘distance’ between two statistical populations. This article is main-
ly concerned with two types of characterizations of ‘affinity’ and “dis-
tance’ when the populations are discrete. One is based on a recurrence
relation and the other deals with a maximization principle. By using
the main results obtained in this article, characterization theorems are
also given for Bhattacharyya’s measure of distance ([1], [2]), Jeffreys’
measure of invariance ([1], [3]), Pearson’s measure of discrepancy [1] and
a generalized measure of dispersion introduced by Mathai [4]. Alternate
definitions of ‘affinity’ and ‘distance,’ as solutions of certain functional
equations, are also suggested in this article.

Consider two discrete distributions given by the probabilities,

(1'1) (pl""9 pn); pigov "I=1r 2;"';”; ig:pi:l
and
(1'2) (QI""’ qn); qig()’ i=1’ 2,000, m; fgqizl .

Matusita’s measure of ‘affinity’ between the populations (1.1) and
(1.2) is defined as follows.

(1'3) pn=§ p%ﬂ }/’7 Ept=1=§q“ pi? 41120, i=19°"y'n/ .
The square of Matusita’s distance between (1.1) and (1.2) is given as,
(1.4) D,=3 (s~ g"} =2(1—p,) .
i=1

The aim of this article is to give characterization theorems for p,
and D,. Before discussing the main results, a few other measures will
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also be mentioned here. Bhattacharyya’s measure of distance between
(1.1) and (1.2) is,

(1.5) ¢=cos"!p, .

Mathai [4] defined a general measure of dispersion in a statistical
population with the help of four axioms. One measure of distance be-
tween (1.1) and (1.2) which can be derived from the general measure
of dispersion in [4] is,

n 1/r
(1.6) P.= [z lp:/*—q:fsx'} . orzl, sl
=1

When r=s=m the mth power of P,, gives Jeffreys’ measure of invari-
ance, namely,

@ L=3 [pim—q/"[".

Pearson’s measure of discrepancy between (1.1) and (1.2), denoted
by M is,

(1.8) M=4nl,,

where I, is given in (1.7), see [1]. With the help of the characteriza-
tion theorems obtained in this article, the different measures in (1.5),
(1.6), (1.7) and (1.8) will also be characterized.

2. Characterization of ‘affinity’ by recursivity property

Theorem 2.1 deals with the characterization of p, with the help of
three postulates. These are recursivity, symmetry and normalization
postulates which can also be justified intuitively. Theorem 2.1 will be
proved with the help of Lemmas 2.1 and 2.2.

Let p,,<p“""p"> be a function of p,,---, p, and q,,---, q., Where
Qiy°**y qn

P, ¢:20, 2=1,2,-.-, nm, ép,zl:i q., satisfying the following post-
=1 i=1
ulates.

P,: Recursivity

Pn(pl’ M) pn> =p,._1<p‘+p2’ Dsye ey pn> + (i + Po)H(qi + o)
Qs qn i+q, &, qn

iz er-

for all n>2, p,+p,, ¢ +¢;>0.
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P,: Symmetry
0s is symmetric in pairs {p,} , 1=1,2,3.
q:

P,: Normalization

1/4, 3/4\ _
P 2(3/4, 1/4) =cos(x/[6) -

It will be shown that the only function p, satisfying the postulates
P,, P, and P, is Matusita’s measure of ‘affinity’. Postulate P, is the
main postulate and it explains the desired nature of combinations of the
measures to be taken when the union of two events are considered. In
other words P, gives an idea about what happens to the measure when
an event is subdivided into two mutually exclusive events. P; is a de-
sired property for a measure of ‘affinity’ and P, is only a normaliza-
tion property.

Let,

(2.1) 9(=, y)=pz<:: }:;)—1 ,  wyel=[0,1].
LEMMA 2.1. v

(2.2) 9z, y)=9(1—=x,1—y), for m,yel.

ProOF. From postulate P, for =3 we have,
2.3) ps<p” Per p”>=ps<p” P p‘) ,  nApAmEatata=1.
dis 92, Qs ds2s Q15 Qs
From P, we have,
(2.4) pz(pl‘*‘pz, Pa) + (P14 o) (g + go) p2<p1/(pl+p2)’ pz/(PH‘pz))

1+, Qs a:/(q:+a2), /(01+q2)

_ (Dt D1, Ds 12 12, (Do (P21, P/(D2+D1)
= +(p:+ + .
pz(‘lz +qi, Q:s) (Pt 2"+ 0 pz(Qz/(Qz‘l‘Qt), a:/(q:+q1) >

Now by cancelling the first terms on both sides of (2.4) the lemma is
proved. Also by taking x=y=0 we have,

(2.5) 9(0,0)=g(1,1) .
LEMMA 2.2. g(x, y) satisfies the functional equation
(2.6) 9(x, y)+ (1 —2)"* (1 —y)" glu/(1—=), v/(1—y)]

=g(u, v)+ 1 —u)"*1—v)"glz/(1—u), y/(1—v)],
Sor z,y,u,v€([0,1), z+u, y+vel
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Proor. From P, for n=3,

2.7 p3<p1’ D2, pa) =Pa<ps’ D:, Pl) .
q1y 43, Q3 q3y G2, q;

From (2.7), P, and Lemma 2.1, we have

(2.8)  9(ps, @)+ (D1 +p2) (01 + @) 9D/ (01 + Do), @)@ +q2)]
=9(p1, @)+ (P + 05)*(:+ a5) g 03/ (D:+25), 0:/(q2+5)] -

Since p,+p.+1:=1=¢;+¢,+4q;, (2.8) reduces to the following.

(2.9 9(Ds; ¢:)+ (1 —13)" (1 —g5)*g[p:/(1 — ps), ¢:/(1 —5)]
=9(p1, )+ (1 —p)""(1—q)"*g[p:s/(1 —p1), @:/(1—q))] .

Now by putting py;=x, ¢s=¥, p,=u and ¢,=v, Lemma 2.2 is proved.
When P, and Lemma 2.1 are used the conditions p,#1, q#1, p,#1,
¢;#1 are automatically satisfied. Now it will be shown that any func-
tion satisfying the functional equation (2.6) is Matusita’s measure of

‘affinity.” That is, this can also be taken as an alternate definition for
¢ affinity.’

THEOREM 2.1.
p,.<p”' o p">=§5 p!'q”
Qi qn i=1

18 the only function p, satisfying the postulates P,, P, and P;. In other
words P,, P, and P, uniquely determine p, as ﬁ‘, D,
i=1

ProoF. This theorem will be proved by showing that g(x, y) de-
fined in (2.2) is of the form #'*%y'*+4(1—2x)*(1—y)"*—1.
Putting u/1—z)=p, v/(1—y)=q, 1—x=7r, 1—y=s in (2.6) gives
(2.10)  g(r, s)+r'"s"g(p, q)
=g(pr, ¢8)+ (1 —pr)*(1—gs)"”
- glA—7)/1—pr), 1—s)/(1—gs)],
for r,s€(0,1], »,qe I with pr#1, gs#1.

Let,

211)  f(», q, 7, 8)=g(r, 8)+[rs"*+(1—7)"(1—s)"1g(p, q) ,
for »,q,7,5€(0,1).

We will show that f(p, g, 7, s) is symmetric in pairs (p, r) and (g, s).
Now by using (2.10) successively we get,
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2.12)  f(p, q, 7, 8)=g(pr, gs)+(1—pr)"*(1—gs)"”
- glA—r)/1—pr), 1—8)/(1—gs)]
+(1—7)"*(1—s)"g(p, q)

(2.13) =g(pr, gs)+ (1 —pr)*(1—gs)""
- {glQ—7)/(L—pr), (1—s)/(1—gs)]
+{A—7)/1—p)]*[(1—8)/(1—g39)]"*g(p, D)}
(2.14) =g(pr, gs)+(1—pr)"*(1—gs)"”
- {9[p(1 —7)/[(L—pr), ¢(1 —8)/(1—gs)]
+[1—p)/Q—pr)] (1 —@)/(1—gs)]'7g(r, 8)} .
Now by using the result g(r, s)=g(1—7, 1—s) we have,

(2.15)  f(p, q, 7, 8)=g(pr, ¢8)+(1—pr)"*(1—qgs)"”
- {glA—p)/(1—pr), 1—9)/(1—gs)]
+[(1—p)/A—pr)]"*[(1—q)/(1—gs)]"*g(, 8)} .

Now comparing (2.13) and (2.15) we see that f(p,q, 7, 8) is symmetric
in (p, r) and (q, s). Therefore, from (2.10) and (2.11),

(2.16) f@, q, v, 8)=g(p, 9)+[p"¢"*+(1—p)"*(1 —q)"’Ig(r, 5)
=g(r, )+ [rs"*+ (1 —1)"*(1—s)"1g(p, q) .
That is,
(2.17) g(r, 8)=[r"s""+(1—r)"(1—s)"*—1]g(p, q)/
[p"*¢"24+(1—p)*(1—q)"*—1] .

Now p and ¢ are at our choice subject to the condition p, ¢€(0,1). By
using the condition given by postulate P; the second factor is cancelled
and (2.17) yields, '

(2.18) g(r, s)=r"s""+(1—7r)"*(1—s)'*—1, r,s€(0,1).
That is, 7
(2.19) oL, 8)=r"8"+(1—r)/(1—s)".

It may be noticed that py(r, s)=1 when r=s. This agrees with the con-
vention that the measure of affinity is maximum when the vectors
(o1, +-, p.) and (qi,-+,@,) coincide. Now we will extend (2.17) to the
closed interval [0,1]. To this end we have to show that (2.17) holds
for g(0, ) and g(x, 0). Since g(z, y)=g(1—=, 1—y) the other points fol-
low automatically. By putting p=¢=1 in (2.10) we get,

(2.20) [rsYP—(1—1r)"A(1—s)"]g(1, 1)=0 for all »,s€(0,1).
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That is,

(2.21) 9(1,1)=0=g(0, 0) .

By putting p=0 and s=1 in (2.10) we get

(2.22) (1-r")9(0, 9)=g(r—1)—(1—q)"’9(1—r, 0)
=[1-(1-¢)"lg(r,1), re(0,1], ¢€[0,1).

By putting p=0 and s=1/2 in (2.10) we get

(2.23) g(r, 1/2)+(r/2)"*9(0, ¢)=g(0, q/2)+(1—q/2)*g[1 -7, 1/(2—q)]

for r€(0,1], g¢ I. Now by putting »=1/2 and using the value of g(x, y)
given in (2.18) for points inside (0, 1) we get

(2.24) 9(0, 9)/2=9(0, ¢/2)+(1—q/2)"*[1/(4—2q)""+(1—q)"*/(4—2q)"*—1]

for ¢ €[0,1). Now substituting in (2.24) the values of ¢(0, ¢) and g(0,

q/2) from (2.22) to (2.24) we get

(2.25)  g(r, D{1—QA—g)"J[2Q —7r'"")]—[1—(1—g/2)"*]/(1 —7"?)}
=(1—q/2)[1/(4—2q)""+(1—q)"*/(4—2q)""] .

That is,
(2.26) g(r, )=r"2—-1 for r € (0, 1] and
(2.27) 900,9)=(1—¢q)"?—1  for g€[0,1).

Now we have g(0, y) for y €[0,1) and g(x, 1) for x € (0,1]. We already
have g(x, y)=g9(1—=,1—y). So we need only g(0,1) more. Now putt-
ing ¢=1 and r=1/2 in (2.23) and using (2.26) and (2.27) one gets,

(2.28) 9(0,1)=—1.
This completes the proof that,
(2.29) g(r, s)=rs" 4 (1 —7r)*(1—s)"*—1 for r,sel.

Now by using the recurrence relation in postulate P, successively we
have,

(2.30) . p,,(p" cry pn> —1=p,._1<pl+p2’ Dsy* ey pn) —14+(py+ o) gy + o)
Qiy* s Qn (11+Qz,(13,"'y¢1n

e -

(2.31) =3 sty P 1 ~pir]
=2 qifse, 1—qifs;
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where r,.=p,+p,+ -+ +0:, $i=1+q+ - +4q;;

(2.32) = iE; s (pg/ris) " +(L—pifr) (1 —qif,) " —1]
(2.33) = i% ¢+ éz sy — :;z ISy
(2.34) = i‘, PG pifEglE /g1
=
(2.35) = § Pg—1 .
That is,
(2.36) =3 PG

This completes the proof. By using Theorem 2.1 Matusita’s measure
of distance D, and Bhattacharyya’s measure of distance can be char-
acterized in a similar way. These are stated in Theorems 2.2 and 2.3
without proof.

THEOREM 2.2. Let
(2.37) D,=2(1—p,)
where p, is any function of py,--+, Dn and Qv , @, Dir €20, i=1,2,
cee,m, i‘.p¢=1=§] q;, satisfying the postulates P,, P, and P; then D,
8 uniq;;iy deter'rlr;zfned as 15;: (PP —qi?).

THEOREM 2.3. Let ¢=cos™ p, where p, be as defined in Theorem 2.2
and satisfying the postulates P, P, and P;. Then ¢ is uniquely deter-
mined as Bhattacharyya’s measure of distance between the populations
(ply"'r pn) and (‘h!"'sqn)-

It should be remarked that the structure of D, and ¢ as given in
Theorems 2.2 and 2.3 need not be assumed. Theorems 2.2 and 2.3 can
be restated by modifying the postulates P,, P, and P; in the light of
the structures of D, and ¢ given in Theorems 2.2 and 2.3. Also since
the p,’s and g¢,’s are restricted to be non-negative 0<¢<=z/2 and ¢ is
uniquely determined once cos ¢ is uniquely determined. As stated earlier
Jeffreys’ invariance I, for m=2 and Pearson’s measure of discrepancy
which is 4nl, are also characterized by Theorem 2.2.
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3. Characterization of Matusita’s measure of distance through a
maximization principle

Let,

Kn[gl’...’zn] ’ pi!qi>0! 1:=11°°" n, 21p1=1=2‘1u ngs’
19 °° s Yy

be any function of p,’s and ¢,’s satisfying the following postulates.
Postulates :

Q.: Structure
K,= ié-l Y f(p)— f(q.) for some function f(x).

Q.: Non-negativity
K,=0 for all n=3.

Q;: Normalization

14,341, ..,
K2[3 I 1/4] — 4sin? (z/12) .

Here postulates @, and @, give some sort of a maximization principle.
In other words the function tSnJ pY?f(g;) has the maximum value when
=1
q:=Ds, 1::11 2) cee, M.
THEOREM 3.1. K, satisfying the postulates Q,, Q, and Q; is uniquely
determined as,
K,=D,=2(1-% pigi*) .
i=1
PrROOF. In the inequality
(3.1) 2 (@) =3 P (p)
P, >0, 1=1,---,n I p,=1=3¢q,, n23,
put p,=q, for ©=3,4,.-., n, then one has,
(3.2) P f (@) + 2" f(g) = pi f (0)+ 0 f (Do)
for py, 1oy @1y €:>0, D+ Di=q1+¢:<1 .

Now we will show that every solution of (8.2) is differentiable every-
where in (0, 1) and the solutions are given by

(3.3)  f@)=az+b
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where a=0 and b are real arbitrary constants. First we will prove
that f(x) is monotonic increasing. From (3.2) we have

(3.4) (®/2)"Lf (@) — F IS f () — f (@) -

Now interchanging (p,, q¢;) and (., ¢;) which is possible due to symmetry
in (3.2) and adding the resultant expression to (3.4) we get

(3.5) [(p/p2)*—(@/a2)*11f (@) — f(p)]=0 .
Let ¢,>p, then ¢,<p, and thus from (3.5) we have
(3.6) f@)=f(p) .

This implies that f(x) is monotonic increasing and therefore f(x) is dif-
ferentiable almost everywhere in (0, 1). Now we will prove that f(x)
is differentiable everywhere in (0,1). In (3.2) let ¢;=p,+0, ¢:=p.—6
with 6>0. Then by rearranging the terms we get

(3.7 DV (p148)— f()V 6 < DY f (12) — f (D2 —)]/0 .
Let py, p, be points where f(x) is differentiable. From (3.7) we have,

(3.8) P’ f'(p)=p*f'(p)  for all p, p, such that p,+p.<1.
Therefore by interchanging p, and p, and using (3.8) we get
(3.9 P f'(p)=c

for all p for which f(p) is differentiable where ¢ is a constant. Since
f(x) is monotonic increasing ¢=0. Let p be an arbitrary point in (0, 1).
Let p, be a point where f(x) is differentiable. Then in (3.7) taking p,
to be p, taking the infimum as 6—0 and by using (3.9) we get

(3.10) c=p""D_f(p) .

In (8.7) putting p,=p, taking the supremum as 6—0 and using (3.9)
we get .

(3.11) pD*f(p)=c .

Now starting from (8.2), making appropriate substitutions, proceeding
as before and combining (3.10) and (3.11) we see that f(x) is differenti-
able everywhere in (0, 1) with (3.9) valid for all p in (0,1). Hence (3.3)
follows with ¢=a/2. From postulates Q, and Q, we get a=2 and this
completes the proof. That is,

(3.12) Kn=2(1—é p:ﬂqw) .
i=1

It may be noticed that theorems corresponding to Theorem 3.1 can be
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given for Matusita’s measure of affinity p,, Bhattacharyya’s measure of
distance ¢ and Jeffreys’ invariance I, for m=2.
4. Some generalizations

In Section 1 it is mentioned that a general measure of distance be-
tween the populations (py,- - -, p,) and (q,,- - -, ¢,) can be given as follows.

1/r
4.1) {S‘_, [ pls— ‘/‘I'} for fixed r, s=1,
Pi; 20, 1=1,---, n, ,Zp; 1= eqo

Thus when r is an even integer, say r=2¢, one has
4.2) [H)*= < )( 1)1[ piligd- /)/:] .

This show that (4.2) can be characterized by postulates similar to the
ones introduced in Section 2. In this section we consider the case when
r is an even integer. Other cases of » and s will not be discussed here.
The main theorem is as follows.

THEOREM 4.1. Let

@) My=3 () 1y B for fiaed 7,521, s,
. =0 qiy***yqn
Diy Qigoy i_—_l’"'r n, épﬂ=1=12:lqi
and let
(4.4) M,,,,—2+z:( )( 1),¢(,)[p1, p] when s=2r .
17"'7qn

Let ¢§,f”[p L p,.] satisfy the following postulates R, R, and R, where
Q1 *

.
y dn

R,: Recursivity
¢2j)[pl9 D) pnjl 2, []Jl+pz, D3yt pn] H(Di+ D) (g qo) 0
41y Qn 01+Qz,€13y"',qn

Jelprn ey

for all n=23, pi+p,>0, ¢,+¢.>0,
Sfor fixed s=1, s#2r or s=2r and j#0, j#2r.

R;,: Symmetry
&5 1is symmetric in {p‘} 1=1,2,8.
q:



R,:

(4.5)
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Normalization

¢gj)[;ﬁ, ?ﬁ} =[3j/t+3(2r—j)/:] 9-4r/s_1 |

Then M, ,, is uniquely determined as,

Mn,r, s = é [py‘ - q}i/‘]zr .
i=1

The proof is similar to the proof for Theorem 2.1. By taking,

(4.6)

h(z, y)=¢sf>[””' 1—“]
Yy, 1—y

it can be shown that

4.7)

h(x’ y) — xj/s,y(Zr-j)/s + (1 — x)j/:(l — y)(ZT—j)/s — 1 .

Now by using postulate R, it can be easily shown that M, ,, is uniquuely
determined as in (4.5). It should be remarked that Theorem 4.1 is a
generalization of Theorem 2.1 and Theorem 4.1 gives characterizations
of a number of distance measures including Jeffreys’ measure of invari-
ance I, when m is an even integer.
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