AN ASYMPTOTIC COMPARISON OF SUBSET SELECTION PROCEDURES*

MILTON SOBEL AND S. P. YEN

(Received Feb. 16, 1971)

A procedure R for selecting a subset of k populations containing at least one of the t best populations was introduced in [2]. For normal populations we put π_i in the selected subset if and only if $\bar{X}_i \geq \bar{X}_{[k-i+1]}$ $-a_i$, where \bar{X}_i is the sample mean from π_i and the ordered sample means are $X_{[1]} \leq \cdots \leq X_{[k]}$. Under procedure R both $s \geq 1$ and $a_s \geq 0$ are determined so that the probability of a correct subset $P\{CS\} \ge P^*$ (specified), whenever the minimum difference between any one of the t largest population means and any one of the k-t smallest is at least δ^* (specified). For t=1 and $\delta^*=0$ the goal is the same as that considered by Gupta [1], but his procedure R_g is not the same as procedure R. In [2] many exact and asymptotic comparisons are made for $t \ge 1$ and $\delta^* \ge 0$ but the emphasis there is on the equal parameter (EP) configuration, where the expected subset size is maximized. Moreover for t=1 and $\delta^*=0$ the value of the expected subset sizes $E\{S|EP\}$ is the same, namely kP^* , for both procedures and hence this criteria does not lead to any clear preference in this special case. It was shown in [2] that if either t>1 or $\delta^*>0$ then asymptotically $(P^*\rightarrow 1)$ the value of $E\{S|EP\}$ is smaller for procedure R than for the natural generalization R_{M} (cf. [2]) of procedure R_g for t>1 and $\delta^*>0$; in fact, the ratio approaches zero as $P^* \rightarrow 1$.

In this note we consider only the special case t=1 and $\delta^*=0$ and make asymptotic $(P^*\to 1)$ comparisons of $E\{S|\theta\}$ for any k-vector θ of true parameter values. Let $\theta_{[i]} \leq \cdots \leq \theta_{[k]}$ denote the ordered parameter values and let $\delta_{ij} = \theta_{[i]} - \theta_{[j]}$. In terms of the differences δ_{ij} , we find the exact sets S_R and S_G of vectors θ which have a smaller asymptotic $(P^*\to 1)$ value for $E\{S|\theta\}$ under procedure R and R_G , respectively. Since both S_R and S_G are non-empty, it follows that neither of these two procedures is uniformly better than the other in the sense of this criterion. We assume normal populations with a common variance σ^2 , which we can take to be unity. Let $\overline{X}_{(i)}$ denote the sample mean which

^{*} This research was supported by National Science Foundation Grant GP-28922X.

has parameter value $\theta_{[i]}$ (i=1, 2, ..., k).

Under procedure R with t=1, we set s=k-1 for P^* close to one and obtain for $\delta^*=0$

$$\begin{split} (1) \qquad E\{S|\boldsymbol{\theta},R\} = & \sum_{i=1}^{k} P\{\bar{X}_{(i)} \geq \bar{X}_{[2]} - a_{k-1}\} \\ = & \sum_{i=1}^{k} \left[1 - \sum_{\substack{j=1 \ j \neq i}}^{k} P\{\bar{X}_{(i)} + a_{k-1} < \bar{X}_{(j)}, \ \bar{X}_{(j)} = \bar{X}_{[2]}\} \right] \\ = & k - \sum_{i=1}^{k} \sum_{\substack{j=1 \ j \neq i}}^{k} \int \boldsymbol{\Phi}(x + \lambda_{ji} - A) \prod_{\substack{a=1 \ a \neq i,j}}^{k} \left[1 - \boldsymbol{\Phi}(x + \lambda_{ja}) \right] d\boldsymbol{\Phi}(x) , \end{split}$$

where $A = a_{k-1}\sqrt{n}$, $\lambda_{ij} = \delta_{ij}\sqrt{n}$ and $\Phi(x)$, $\varphi(x)$ are used to denote the standard normal c.d.f. and density, respectively. As in Section 8 of [2] we use the Laplace-Feller expansion for the 'tail' of the normal c.d.f. in (1), drop the denominator and then 'complete the square.' Neglecting the error term, $o(\exp{\{-\theta^2(A-\lambda_{kl})^2/2\}})$, we obtain

$$(2) \quad k-E\{S|\boldsymbol{\theta},R\} \approx \frac{C}{A} \sum_{i} \sum_{j \neq i} \int \left[\varphi(\chi+A-\lambda_{ji})\varphi(x)\right] \prod_{\alpha=1}^{k} \boldsymbol{\Phi}(x-\lambda_{j\alpha}) dx$$

$$\approx \frac{C}{A} \sum_{i} \sum_{j \neq i} \phi\left(\frac{A-\lambda_{ji}}{\sqrt{2}}\right) \int \prod_{\alpha=1 \atop \alpha \neq i,j}^{k} \boldsymbol{\Phi}\left(\frac{\boldsymbol{y}}{\sqrt{2}}+D_{\alpha}\right) d\boldsymbol{\Phi}(\boldsymbol{y})$$

$$\approx \frac{C}{A^{k-1}} \sum_{i} \sum_{j \neq i} \varphi\left(\frac{A-\lambda_{ji}}{\sqrt{2}}\right) \int \left[\prod_{\alpha=1 \atop \alpha \neq i,j}^{k} \varphi\left(\frac{\boldsymbol{y}}{\sqrt{2}}+D_{\alpha}\right)\right] \varphi(\boldsymbol{y}) d\boldsymbol{y}$$

$$\approx \frac{C}{A^{k-1}} \sum_{i} \sum_{j \neq i} \varphi\left(\frac{A-\lambda_{ji}}{\sqrt{2}}\right)$$

$$\cdot \exp\left\{-\left[\sum_{\alpha \neq i,j} D_{\alpha}^{2} - \frac{1}{k}\left(\sum_{\alpha \neq i,j} D_{\alpha}\right)^{2}\right]/2\right\}$$

where $D_a = (\lambda_{ji} - A - 2\lambda_{ja})/2$. Collecting the factors of the form $\exp\{-CA^2\}$ and $\exp\{CA\}$, we use the fact that

$$(3) (k-1)\lambda_{ji} - \sum_{\alpha \neq i} \lambda_{j\alpha} = \lambda_{ji} + \sum_{\alpha \neq i} \lambda_{\alpha i} = \sum_{\alpha} \lambda_{\alpha i}$$

does not depend on j, and obtain from (2)

$$(4) k-E\{S \mid \boldsymbol{\theta}, R\} \approx \frac{C}{A^{k-1}} \sum_{i} \sum_{j \neq i} \exp\left\{-\left(\frac{k-1}{2k}\right) (A - \lambda_{ji})^2\right\}$$

$$\cdot \exp\left\{\frac{1}{k} (\lambda_{ji} - A) \sum_{\alpha \neq i, j} \lambda_{j\alpha}\right\}$$

$$\approx \frac{C}{A^{k-1}} \exp\left\{-\left(\frac{k-1}{2k}\right) A^2\right\} \sum_{i} \exp\left\{\frac{A}{k} \sum_{\alpha} \lambda_{\alpha i}\right\}.$$

The maximum term in (4) for large A is obtained by maximizing over i the sum in braces and this clearly occurs for i=1. Hence

(5)
$$k-E\{S \mid \boldsymbol{\theta}, R\} \approx \frac{C}{A^{k-1}} \exp\left\{-\left(\frac{k-1}{2k}\right)A^2 + \frac{A}{k} \sum_{\alpha} \lambda_{\alpha 1}\right\}.$$

It is shown in (8.11) of [2] that for $P^* \rightarrow 1$

(6)
$$A \approx \sqrt{2\left(\frac{k}{k-1}\right)ln\left(\frac{1}{1-P^*}\right)}$$

and applying this to (5) gives the final form for procedure R

(7)
$$k-E\{S|\theta, R\} = \frac{C}{A^{k-1}}(1-P^*) \exp\left\{\left(\sum_{\alpha} \lambda_{\alpha 1}\right)\sqrt{\frac{2}{k(k-1)}ln\left(\frac{1}{1-P^*}\right)}\right\}$$
.

For procedure R_g it is easily shown as in Gupta [1] that

(8)
$$E\{S \mid \boldsymbol{\theta}, R_G\} = \sum_{i=1}^k \int \prod_{j \neq i} \boldsymbol{\Phi}(x + A + \lambda_{ij}) d\boldsymbol{\Phi}(x)$$

$$\approx \sum_i \int \left\{ 1 - \sum_{j \neq i} \left[1 - \boldsymbol{\Phi}(x + A + \lambda_{ij}) \right] \right\} d\boldsymbol{\Phi}(x)$$

$$= k - \sum_i \sum_{j \neq i} \left[1 - \boldsymbol{\Phi}\left(\frac{A + \lambda_{ij}}{\sqrt{2}}\right) \right].$$

Hence

(9)
$$k-E\{S|\boldsymbol{\theta}, R_{o}\} = \frac{C}{A} \sum_{i} \sum_{j \neq i} \varphi\left(\frac{A+\lambda_{ij}}{\sqrt{2}}\right)$$
$$\approx \frac{C}{A} e^{-A^{2}/4} \sum_{i} \sum_{j \neq i} e^{A\lambda_{ij}/2}.$$

The maximum term for large A is obtained by setting i=k and j=1; hence this gives

(10)
$$k - E\{S \mid \boldsymbol{\theta}, R_G\} \approx \frac{C}{A} \exp\left\{-\frac{A^2}{4} + \frac{A}{2} \lambda_{k1}\right\}.$$

In (8.11) of [2] we set s=t=1 to obtain the A-value for procedure $R_{\mathcal{G}}$, namely

$$(11) A \approx 2\sqrt{\ln\left(\frac{1}{1-P^*}\right)}$$

and applying this to (10) gives the final form

(12)
$$k-E\{S \mid \boldsymbol{\theta}, R_g\} \approx \frac{C}{A} (1-P^*) \exp\left[\lambda_{k1} \sqrt{\ln\left(\frac{1}{1-P^*}\right)}\right].$$

It follows from (7) and (12) that $E\{S|\theta,R\}$ is smaller than $E\{S|\theta,R_G\}$ for P^* close to one when

(13)
$$\sqrt{\frac{2}{k(k-1)}} \sum_{\alpha} \lambda_{\alpha 1} > \lambda_{k1} ,$$

and it is larger when the inequality is reversed. For k=2 the procedures are identical and (13) is vacuous. For k=3 the inequality in (13) holds when

$$\delta_{21} > (1+\sqrt{3})\delta_{32} = (2.732...)\delta_{32}.$$

If we define the configuration C_i $(j=1, 2, \dots, k)$ by setting

(15)
$$\theta_{[1]} = \cdots = \theta_{[k-j]}; \quad \theta_{[k-j+1]} = \cdots = \theta_{[k]}$$

then (13) takes the form

$$(16) j > \sqrt{\frac{k(k-1)}{2}}$$

and we note that (13) always holds for C_{k-1} for k>2. On the other hand, for all k>2 the inequality in (13) is reversed for C_1 and also for the configuration in which adjacents parameters are equally spaced.

A table of values for $E\{S|C_j\}$ (j=1, 2, 3, 4) for k=5 is included in [3] and it illustrates numerically the results proved above.

UNIVERSITY OF MINNESOTA, MINNEAPOLIS, MINNESOTA

REFERENCES

- [1] Gupta, S. S. (1965). On some multiple decision (selection and ranking) rules, *Technometrics*, 7, 225-245.
- [2] Sobel, M. (1969). Selecting a subset containing at least one of the t best populations. Multivariate Analysis Vol. II, Proceedings of an International Symposium. Ed. by P. R. Krishnaiah, Academic Press, New York.
- [3] Yen, S. P. (1969). Efficiency Comparisons for Two Subset Selection Procedures, University of Minnesota, Technical Report, 119.