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A procedure R for selecting a subset of k populations containing at
least one of the t best populations was introduced in [2]. For normal

populations we put z; in the selected subset if and only if X;=X_,,q
—a,, where X, is the sample mean from =, and the ordered sample

means are X;;<---=<X;;. Under procedure R both s=1 and a,=0 are
determined so that the probability of a correct subset P{CS}=P* (speci-
fied), whenever the minimum difference between any one of the ¢ largest
population means and any one of the k—¢ smallest is at least o* (spe-
cified). For t=1 and 6*=0 the goal is the same as that considered by
Gupta [1], but his procedure R, is not the same as procedure E. In
[2] many exact and asymptotic comparisons are made for t=1 and é*=0
but the emphasis there is on the equal parameter (EP) configuration,
where the expected subset size is maximized. Moreover for t=1 and
0*=0 the value of the expected subset sizes E{S|EP} is the same, name-
ly kP*, for both procedures and hence this criteria does not lead to any
clear preference in this special case. It was shown in [2] that if either
t>1 or 0*>0 then asymptotically (P*—1) the value of E{S|EP} is
smaller for procedure R than for the natural generalization R, (cf. [2])
of procedure R, for t>1 and 6*>0; in fact, the ratio approaches zero
as P*—1,

In this note we consider only the special case t=1 and ¢*=0 and
make asymptotic (P*—1) comparisons of E{S|8} for any k-vector 8 of
true parameter values. Let §,;,<--:<6,, denote the ordered parameter
values and let d,;,=6,,—6;;;. In terms of the differences d,,, we find
the exact sets S; and Sg of vectors @ which have a smaller asymptotic
(P*—>1) value for E{S|6} under procedure R and R;, respectively.
Since both S; and S; are non-empty, it follows that neither of these
two procedures is uniformly better than the other in the sense of this
criterion. . We assume normal populations with a common variance o7

which we can take to be unity. Let X, denote the sample mean which
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has parameter value 4, (=1, 2,---, k).
Under procedure R with t=1, we set s=k—1 for P* close to one
and obtain for 6*=0

(1) E{Slo, R} = é P{X(i)gX[Z]'—ak—l}

3
=2 [1 2 P{X(i)+ak-l<X(j)’ X(j)_X[ZJ}]

i=1
j#i

S(D(m+2ﬁ—A) ﬁ [1—0(x+1,)]d0() ,
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o
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J
where A=a,_v%, 2,;=0,,4#/7 and &), ¢(x) are used to denote the stand-
ard normal c.d.f. and density, respectively. As in Section 8 of [2] we
use the Laplace-Feller expansion for the ‘tail’ of the normal c.d.f. in

(1), drop the denominator and then ‘complete the square.” Neglecting
the error term, o(exp {—6*(A—2.,)*/2}), we obtain

(2) k—E(S10, R} =< 5 5 | tola+ A= 2,09 [T 0a—1,.)d

~Ensg( A2 1 @(%+Da)d¢(y)

A

~— S se( A7) | [ 1T o +D.) oty
(

-exp{—[aE,D‘?_—(m; )]/2}

where D,=(2;,—A—21,,)/2. Collecting the factors of the form exp{—CA’}
and exp {CA}, we use the fact that '

(3) (k—l)lﬁ" 23 A=A+ 2_ 2 =2] Au
a#i, § atj a

does not depend on j, and obtain from (2)

9

(4) k—E{Slo,R}z———ZZexp{ (k 1>(A 21:)2}

i j#i

+ €xXp {?(Rji_A) 2 Aja}

o {-( )] peeig2ad

The maximum term in (4) for large A is obtained by maximizing over
4 the sum in braces and this clearly occurs for 1=1. Hence
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k-1

(5) k—E{S|8, R}z%exp{ ( =

)A2+ S -

It is shown in (8.11) of [2] that for P*—1

(6) Az\/z(kfl>l”<1—lp*>

and applying this to (5) gives the final form for procedure R

1
— == * .
(1) k—E(S|0, R} = Ak _(1-P )exp zz,l \/k(k . (1_P*>}
For procedure R, it is easily shown as in Gupta [1] that
k
(8) E(S16, Ro}= 3 | T 0w+ A4+1,)d0()

5 S {1— >y [1—¢(x+A+z,.,)]}d¢(x)

k-3 5[0 ()]

Q

Hence

A+zi,-> '
V2

e~ 4 ST SV eduslt |

i j#i

(9) k—E{S|6, RG}=% e (

MQ

The maximum term for large A is obtained by setting 1=k and j=1;
hence this gives

(10) k—E{S|, R.} z%exp {—_*3_+A1,,,] .

In (8.11) of [2] we set s=t=1 to obtain the A-value for procedure
Rs, namely

(11) Ax2 m(.l_l_P*>

and applying this to (10) gives the final form

(12) k—E{S|6, R} z%(l—P*) exp {x,,l \/ ln<1__1P_*) } :

It follows from (7) and (12) that E{S|8, R} is smaller than
E{S|6, Ry} for P* close to one when
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2
18 —=—— 312>,
(13) Jk(k—l) §1 1> Ant
and it is larger when the inequality is reversed. For k=2 the proce-
dures are identical and (13) is vacuous. For k=3 the inequality in (13)
holds when

(14) 0> (1+4/3)05,=(2.732...)3s; .
If we define the configuration C; (=1, 2,---, k) by setting
(15) 0[1]"_—' e =0[k—j] ; 0[l:~j+l]= e =0[k]

then (13) takes the form

(16) i> \/-"—(kz“—”

and we note that (18) always holds for C,_; for £>2. On the other
hand, for all £>2 the inequality in (13) is reversed for C, and also for
the configuration in which adjacents parameters are equally spaced.

A table of values for E{S|C,} (§=1, 2, 8, 4) for k=5 is included in
[3] and it illustrates numerically the results proved above.
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