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Summary

Consider k p-variate normal populations z; with means g, and com-
mon covariance matrix 3, i.e., 7, : N(i, 3). The problem is to design
a sequential procedure to rank these populations with respect to some
distance function. We consider two distance functions gjg, and p/3'y,.
Procedures on the lines of Chow and Robbins [3], Paulson [5] and Hoel
and Majumdar [4] are obtained.

1. Introduction

Suppose an experimenter is concerned with comparing k categories,
such as k new machines or k new drugs, etc. We assume that k cate-
gories are of experimental nature (that is, no standard or control is
used). The experimenter is practically certain that the k categories dif-
fer among themselves, and his objective is to select the “ best category ”
on the basis of information supplied by taking measurements from each
category. Denote the k categories or populations by =, my,« -+, me. It
is assumed that =; (i=1, 2,---, k) is a p-variate normal population with
mean y; and covariance matrix J, that is, =, : N(g;, 2). Each category
is characterized with respect to some distance function. We consider
two distance functions, the Euclidean,

(1.1) o= pip »
and the Mahalanobis distance function,
(1.2) r=pZ 'y, .

The best category is defined as the category with the largest value of
the distance function.
In Section 2, sequential procedures similar to Chow and Robbins [3]
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are obtained. It follows from Srivastava and Bhargava [8] that the
suggested procedure is not only asymptotically efficient but EN—C is
uniformly bounded where C is the fixed sample size required to reach
a decision when ¥ is known.

In Section 3, Paulson’s [5] selection procedure is extended to the
multivariate case. For the non-truncated procedure, it is proved that
the proposed procedure terminates with probability one.

Let X,; denote the jth observation vector on category =, (t=1, 2,
-+, k, j=1,2,-..). We assume that X, is a sequence of independent
p-vectors, with E(X;;)=p, and Cov (X,,)=2.

2. Asymptotic procedures

Suppose that the ordered set of & (=(u'n)"?) values of =y, m;,- -, 7,
are denoted by 8,;<6,;<:--<d,y. The d-values are assumed to be un-
known and the best category is the one which corresponds to Ouy- In
this section we apply Chow and Robbins [3] sequential theory to design
a class { of sequential procedures for selecting the best category so that

(2.1) lim P{Selecting ﬂ[ﬂla[k]_a[k_ugd} g l—a ,
4-0
where 4 and « are preassigned constants determined in advance of the

experiment on the basis of practical considerations. For univariate re-
sults see [6] and [7].

2.1. % known case
Let X,,=n"! i X, 1=1,2,---, k. If X were known, one could take
Jj=1
a sample of size
(2.2) n=al [£=C

from each category and select the population with the largest X/ X,, as
the best population, where

(2.3) Ai=max ¢'Xc

c:cle=1

that is, 4, is the maximum characteristic root of 3 and
2.4) O(—a/V2)=alk—1)"", ¢(m)=§x [e=*2(2x)""]du .

It can be shown (see the unknown I case below) that (2.1) is met.

2.2. 3 unknown case

We now consider the case when X is unknown. Let
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(2.5) Su=(nk)™ 33 33 (X=X (Xu— XY .
Define
(2.6) An= max b'S,b .
v:vb=1
Note that lim2,=4 a.s. Let a, a.,--- be any sequence of positive

n—co

constants such that lima,=a, where a is defined by (2.4). Then the

n—00

sequence {a,} determines a member of the class { of sequential proce-
dures as follows:

(1) Start by taking m,>7p observations from each category and then
sample one observation at a time from each category and stop accord-
ing to the stopping rule defined by

(2.7) N=smallest n=mn, such that 1,<nf/a} .

(2) When the sampling is stopped at N=m, select the population with

the largest X/ X, as the best category. It may be noted that the ran-
dom sample size N depends on 4 and N(d)— a.s. as 4—0. It fol-
lows from Srivastava and Bhargava [8] that

(2.8) ENZC+0(1),

where C is defined by (2.2). Thus the sequential procedure is not only
asymptotically efficient but EN—C is uniformly bounded.

ProOF OF (2.1). Let 6, denote the parameter configuration dp =
du-n+4, and let 6F denote the parameter configuration 9,=4,+4 for
j=1,2,--.,k—1. Then from the symmetry of the sequential procedure
it is sufficient to prove that the probability of a correct selection is
=1—a when [k]=Fk and the parameter point belongs to 6. Hence

P(x, is eliminated|6})

= P(Incorrect selection|é;)
=P{For at least one value of 7 (:=1,2,--+,k—1),

XI:NXkN_XiGVX‘LN < 0 I 0#‘}
k-1 — — — —
=3 P{XvXew— X]v X5 <0167}

k-1 _ _ _ _
=1§1 P{(XJN_XkN),(XJN+XkN)gO|0ik}

=,§ P{(X-’N - X“V— (¢ —ﬂk))’(XjN‘FXkN)
= (e — 1) (X + Xiew) | 05}
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-5 118 (Xyw—Xiw— (5 — 1)) (X v+ Xiw)
R+ s s

oW __ _ (78 __#j),(fj_l\[“xkiv)
2O (Rt RV 2 Ko + Ko7

=3 EP{( N/2)2 Xy —Xw— (15— 1)) Xyv+ Xow)
=

o;k}

[(XjN +XkN)’2(XjN+XkN)]1/2

1/2 (I-lk - IH)’(X/N + Xm)
=(N/2) [(Xuv + Xm)'z (X,m + va)]x/z

=k—1 _ 1/2 (pe—pe Y(X. v+ Xew)
% oy laprat i )

0, Zyn -+ Xon)

Since @(-) is a continuous function, N4*/2,—a’ a.s. (see [3] and [6]), and
X+ Xiwv— f;+ e a.8., it follows that

1/2 (e — 9 (Xyw+ Xiw)
2 [(NA’/2) / A( X+ X:N)’E (ijN +Xew)1 ]

— 0| (a2 1{”(#1:_!‘1)'(1‘14‘”*) .8. .
@2 A[(a,+y.,)'z(p,+m)l”’] +

Since @(-)<1, it follows from Lebesgue bounded convergence theorem
that

1/2 (e — #1)’()?” + Xw)
e s -t amn ]

O (2 o)1/2 zi/z(ﬂk_#!)'(ﬂk—i'ﬂl)
@12) 4[(#»+w)’2’(m+p,)]‘/2]

>0 [ at/ 22 (e —p9) (e +12y) ]
=2 |@f2) A phpn+ e+ 2 prkp) ety ) 112
r 4 7
=@ | (a/2)" Pl — Pyl ]
I A" Gy
=@ -(a2/2)1/2 (#{:[‘k)m_(l‘.,iﬂj)m]
L 4 '

2 0 [(a*/2)"]
since (pfp)*=0, and (5,—d;)=4. Hence,

lim P[z, is eliminated |6f1<(k—1) [1—0(a/vV2)]=a,
—0

which proves (2.1). It may be noted that the assumption of normality
is not required.
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3. Extension of Paulson’s results

Denote the ranked z’s (=¢/27'p) by tyy< 7=+ =Zr1;. The r-values
are assumed to be unknown and the best category is the one which
corresponds to the largest r value. The problem is to design a pro-
cedure for selecting the best category so that

(3.1) P{Selecting Tk | Tkl Tlk-1] gd} g 1 —a .

Here d and a are constants which are specified by the experimenter on
the basis of practical considerations, and =;;; is the category with pa-
rameter ;.

When ¥ is known this problem for fixed sample size has been con-
sidered by Alam and Rizvi [1]. However, the tables for » are not yet
available to carry out the procedure. In this section we are concerned
with the sequential aspect of this problem. Truncated and non-trun-
cated sequential procedures similar to Paulson [5] and, Hoel and Mujum-
dar [4] are obtained.

The case when Y is not known and a preliminary sample is taken
to estimate X, the procedure similar to Paulson [5] can also be obtained.

In the sequential procedures developed in this section the inferior
categories are eliminated before the final stage of the experiment, which
tend to decrease the number of observations required to reach a decision.

We also prove that in the non-truncated case the proposed sequen-
tial procedure terminates with probability one.

The following lemma is needed in the sequel:

LEMMA 1. Let Z,, Z,,--- be a sequence of independently distributed
random variables having the same distribution as Z=x—y where x and
y are independent mom-central chi-square random variables with p de-
grees of freedom and nmom-centrality parameter 6 and ¢ respectively. Let
0<é, 0<21<p—0 and b>0. Then

Plsup 3 Z+2)>b) e,

m 1=l

where t*>0 is the solution of
(3.2) max {t : (1_4t2)-p/zec[x—w2+2z(¢+a)-(¢—o)1/(1—4z2)é1} , 0<t<1/2.
For proof refer to ([2], p. 164).

In Table I, the solution of (2.1) is given for selected values of p,
¢—0 and ¢+6. It may be remarked that an exact solution of (3.2) is
not possible unless an upper bound of ¢+6 is given. This does not seem
to seriously limit the use of the sequential procedures of Section 4 since
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one may have a lower bound for ¢—¢@ and an upper bound for o —6.
In Table II, solution of (8.2) is given for the special case 1=0.

3.1. Non-truncated sequential procedure
Let

Uts=Xi§2-1Xit ’ i=1’ 2;"" k; 3=1r 2:"' ’
(3.3)

n
zin=21 Uis ’
8=

(8.4) Co=(1/t*) log ((k—1)/a)

where t* is the solution of (8.2), with 1=0. We start with one obser-
vation on each category =, and compute z,, i=1,2,.---,k. Then we
eliminate from further consideration any category z; for which

(3.5) Zp=max (Z,)—C, .

If all but one category are eliminated, we stop the experiment and
select the remaining category as the best one. Otherwise we go on to
the second stage of the experiment and take one observation on each
category not eliminated. Proceeding this way, at the mth stage of the
experiment (m=2,3,-.-) we take one measurement on each category
not eliminated after the (m—1) stage, and then eliminate any category
z; for which

(3.6) Z;,=max (Z,,)—C, ,

where the max is taken over all categories left after the (m—1) stage.
We shall terminate the procedure at the stage when only one popula-
tion has not been eliminated and select it as the best. We now prove
that this procedure guarantees (3.1).

Let 6, denote the parameter configuration z;,=7;_,;+d, and let 6%
denote the parameter configuration c,=z;+d for j=1,2,-.-,k—1. It
is obvious from the symmetry of the sequential procedure that it is
sufficient to prove that the probability of a correct selection is >1—a
when [k]=k and the parameter point belongs to 6. Hence '

P{Incorrect selection|6;}
=P{r, is eliminated |6y}
<P{For at least one value of 7 (1=1, 2,---, k—1),
Zin=Z;n,—C, for some m< oo|05}

<3 P{(Zin— ) 2C, for some m< oo |65}
i=1
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<(k—1)e7ts*-b/o from Lemma 1 with 2=0 and (3.2)

=a.

We will now show that the procedure terminates with probability
one®. Let M denote the integer, 1<M<k, for which max Z,, occurs.

1Z5i<k
Then

P{N=o0}= P{For at least one value of 1=M (1=1,2,---,k)
< P{Ziy—Ci< Zuy for N|6}}
i=1
=(k—1) P{N((Zy/N))—(Z:y|N))<C, for all N|65} .

Since for the parameter point 6F, (Z,x/N)—(Z;y/[N)—¢—6>0, a.s., it
follows that P{N=o00}=0.

3.2. Truncated sequential procedure

It has been proved in Section 3.1, that the non-truncated sequential
procedure terminates with probability one. However, it has not been
possible to obtain any upper bound of the expected sample size as in
Section 2. Thus, a truncated sequential procedure similar to Paulson
[5] may be desirable.

We introduce a parameter 7, 0<»<d, and start by specifying a
class S, of truncated sequential procedures and then show that for each
7, 0<y<d, the corresponding procedure satisfies (3.1). Let

3.7 C,=(1/t,) log (k—1)/a) ,

where £, is the solution of (3.2) with 2=7. Let W, be the largest in-
teger less than C,/y. We start sampling as in non-truncated case with
(8.5) and (8.6) replaced by (3.8) and (3.9) defined below,

(38) Zjlémax (ZSl)—C’I+”
and
(3.9 Z;n<max (Z,,)—C,+my .

If more than one category remain after W, stage, the experiment is
terminated at (W,+1) stage and from the remaining categories, the one
for which Z value is maximum is selected as the best category. We
now show that for each 7, the corresponding procedure satisfies (3.1).

2 The statement of this kind has been made in the literature, see, e.g., [4], but this
seems to be the first simple, neat proof.
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P[Incorrect selection|6y]
=PIr, is eliminated on or before (W,+1) stage|6§]
< P[For at least one value of ¢ (1=1,2,---,k—1)
there exist an integer n,<(W,+1) so that
aniézini_cq+ni77 |65]

k-1

ég‘{ PlZ,=<Z;,—C,+ny for some n<(W,+1)|6F]
k—

ng P(Z..£Z,—C,+ny for some n< oco|6f]
=1

=’§ P[é (Uis— U +9)>C, for some n<oo|0;<]

S(k—1)e7's“*~v= from Lemma 1 with 1=7 and (3.7)

- .

At present the “optimum” choice of » is unknown. As recommended
by Paulson [5], one may take p=d/4.

Table I. Values of ¢

t values
¢—0 2 o+6
p=2 3 4
0.5 0.1 4.5 0.0308 0.0267 0.0235
0.1 6.5 0.0235 0.0211 0.0190
0.2 4.5 0.0231 0.0200 0.0177
0.2 6.5 0.0177 0.0158 0.0143
0.3 4.5 0.0154 0.0133 0.0118
0.3 6.5 0.0118 0.0105 0.0095
0.4 4.5 0.0077 0.0067 0.0059
0.4 6.5 0.0059 0.0053 0.0048
1.0 0.2 5.0 0.0574 0.0502 0.0446
0.2 7.0 0.0446 0.0401 0.0364
0.5 5.0 0.0359 0.0314 0.0279
0.5 7.0 0.0279 0.0251 0.0228
0.7 5.0 0.0215 0.0188 0.0167
0.7 7.0 0.0167 0.0150 0.0137
0.9 5.0 0.0072 0.0063 0.0056
0.9 7.0 0.0056 0.0050 0.0045
2.5 0.6 6.5 0.1143 0.1019 0.0920
0.6 8.5 0.0917 0.0836 0.0769
1.2 6.5 0.0784 0.0699 0.0630
1.2 8.5 0.0629 0.0573 0.0526
1.8 6.5 0.0419 0.0374 0.0337
1.8 8.5 0.0337 0.0307 0.0282
2.4 6.5 0.0059 0.0053 0.0048
2.4 8.5 0.0048 0.0044 0.0040
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Table I. (Continued)

t values
o—0 A o+

p=2 3 4

5.0 1.0 9.0 0.1911 0.1745 0.1604

1.0 11.0 0.1590 0.1473 0.1372

2.2 9.0 0.1355 0.1231 0.1129

2.2 11.0 0.1124 0.1038 0.0965

3.5 9.0 0.0716 0.0651 0.0597

3.5 11.0 0.0597 0.0552 0.0513

4.8 9.0 0.0092 0.0084 0.0077

4.8 11.0 0.0077 0.0072 0.0067

8.0 1.6 12.0 0.2472 0.2298 0.2144

1.6 14.0 0.2114 0.1985 0.1870

3.5 12.0 0.1783 0.1644 0.1526

3.5 14.0 0.1515 0.1416 0.1329

6.5 12.0 0.0566 0.0524 0.0489

6.5 14.0 0.0488 0.0457 0.0430

7.8 12.0 0.0072 0.0067 0.0063

7.8 14.0 0.0063 0.0059 0.0056

12.0 3.0 16.0 0.2821 0.2657 0.2507

3.0 18.0 0.2465 0.2338 0.2223

6.0 16.0 0.1932 0.1803 0.1691

6.0 18.0 0.1678 0.1583 0.1498

9.0 16.0 0.0920 0.0862 0.0811

9.0 18.0 0.0810 0.0766 0.0726

11.5 16.0 0.0141 0.0134 0.0127

11.5 18.0 0.0127 0.0121 0.0115

Table II. Values of ¢ for 2=0
t values
¢—0 é+0
p=2 3 4

0.5 4.5 0.0381 0.0325 0.0287
: 6.5 0.0287 0.0259 0.0231
1.0 5.0 0.0709 0.0625 0.0550
: 7.0 0.0550 0.0493 0.0447
2.5 6.5 0.1478 0.1328 0.1197
’ 8.5 0.1197 0.1094 0.1000
5.0 9.0 0.2321 0.2134 0.1966
: 11.0 0.1947 0.1806 0.1684
8.0 12.0 0.2931 0.2753 0.2594
’ 14.0 0.2537 0.2406 0.2275
12.0 16.0 0.3437 0.3287 0.3137
: 18.0 0.3062 0.2931 0.2819
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