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1. Introduction and summary

In nonparametric testing problems, it is often useful to have a
characterization of all distribution-free procedures. This is carried out
by finding an appropriate group S of permutations or transformations
of the data, such that under the null hypotheses the joint likelihood
function of the data is invariant (Bell and Doksum [3], Bell and Haller
[4], Smith [14]). Next one proves that the orbit of the data with re-
spect to S is a complete sufficient statistic. Once this is done, the char-
acterization follows from the well-known theorem on Neyman structure
and similar tests. One usually considers invariant similar tests for prac-
tical applications. It can be shown that these procedures exhibit a
stronger property than distribution-freeness. Again, one can state and
prove a characterization theorem, and again, the proof depends on a
completeness result.

In this paper, the basic completeness results needed for the above
characterizations are given, along with the specific applications to tests
of the randomness (multisample), independence, symmetry and k-factor
design (Friedman model) hypotheses. The characterization of all distri-
bution-free statistics (for a given hypotheses) will apply to multivariate
situations. However, it will be necessary to restrict attention to uni-
variate situations in order to find invariant procedures.

Similar characterization theorems can be proven for problems in-
volving nonparametric hypotheses involving stochastic processes, includ-
ing Poisson, spherically interchangeable, interchangeable and stationary
independent increment processes (Bell, Woodroofe, Avadhani [6]).

2. Terminology

Vectors and matrices will always be denoted by boldface letters.
Vectors will be thought of as ecolumn matrices:
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Ty
X= : y
Ty

and x” will denote the transpose of x. If x is partitioned into sub-
vectors, the following notation will be used :

x(l)
- |: x2‘1’ } .
If F is the distribution of a random vector x, then F, will denote the

marginal distribution of x®. If x;, x;,---, Xy is a sample of size N
from F, the N-fold power distribution will be written

Fv(x,, -+, m:ﬁ F(x,) .
The length of Euclidean norm of a vector will be written
P 1/2
lell=[2 =]
i=1

The symbol 2,() will denote the class of non-atomic probability
measures on the space X, and 2y, 2) will denote the class of prob-
ability measures on j; which are absolutely continuous with respect to
the non-atomic measure A. In this paper, ¥ will generally be a subset
of R®, that is, p-dimensional Euclidean space.

If ¢ is some interval (finite or infinite) contained in the real line,
then, 2F(X) will denote the class of strictly increasing continuous dis-
tributions on ¥ and 2F(%¢, ) will denote the class of strictly increas-
ing distributions which are absolutely continuous with respect to p.

If a hypothesis H, is under consideration, then

Q(H) = {F | F € 2,(X") and F satisfies H} .

If H, is tested against an alternative H,, then Q(H,UH,) is the set of
continuous joint distributions such that either H, or H, is satisfied. For
example, if one considered the “bivariate symmetry” hypothesis

H,: F(X)=F(X;, X;,)=F(X;, X)) for all X, X;
against a general alternative, then
Q(H) ={F™|Fe 2R, F(X,, X;)=F(X;, X;) for all X, X,}
and

Q(H,U Hy) ={F™|F € 2(R"} .
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If 2 is a class of probability measures, then 2™ will denote the
class of m-fold power measures of 2. If Z= [Xiigtys =120, my, j=
1,---, k] is a generic sample point for a hypothesis testing problem and
§ is a group of transformations or permutations on the sample space,
then S(Z)={yZ|y € S} is the orbit (or S-orbit) of Z. In the nonparam-
etric problems considered in this paper, each hypothesis can be rephrased
in terms of some group S, and S(Z) will be the complete and sufficient
statistic for Q2(H;). In particular, S, will represent the group of all
permutations of k objects, and ©, will represent the group of orthogonal
transformations on R*.

3. Basic completeness theorems

Completeness is strictly a property of a class of distributions, al-
though the term is commonly applied to a statistic. The exact defini-
tions are given below.

DEFINITION 3.1. (i) A class of distributions 2 is complete if when-
ever ShszO for each Fe®, one can conclude that P.[h#0]=0 for

each Fe Q.

(i) A statistic T is complete with respect to 2 if the family of dis-
tributions induced by T is complete in the sense of (i).

In univariate nonparametric problems, the statistic of interest is
the order statistic T'(X,,---, Xy)=[Xy, -+, Xw], Where X< X< -+
<Xu» are the ordered X’s. If h(X,,---, Xy) is a function of the order
statistic, then h is symmetric. In other words

h(Xl!' * XN)=h(X'ily' ) X;N) ’
where (i;,---, iy) is a permutation of (1,---, N).

This symmetry property is independent of dimension and therefore
can be used in multivariate work as well (Smith [16]). Accordingly,
one makes the following definition.

DEFINITION 3.2. A class of distributions 2 is symmetrically complete
if whenever h is a symmetric function of N arguments and ShdF‘”’=
0 for each F'e 2, then Prw[h#0]=0 for each Fe R.

The basic completeness theorems of this section were originally de-
vised to show the completeness of the order statistic. However, they

can be stated in sufficient generality to apply to multivariate situations,
since they are essentially theorems on symmetric completeness.

THEOREM 3.1. If p is a nmon-atomic o-finite measure on a measur-
able space (X, B), then (X, p1) is symmetrically complete.
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ProOF. Fraser [8].

COROLLARY 3.1. Let p; be a non-atomic o-finite measure on a meas-
k
urable space (€;, B,), (1=1,2,--+, k). Let S= X Sn,-  Then the S-orbit

k
18 complete with respect to X Q252(X;, w)-
i=1

ProOF. Fraser [8].

Theorem 3.1 and its corollary are important in their own right, if
one wishes to consider tests similar with respect to the class of abso-
lutely continuous distributions. However, their main value is in the
proof of the following results, which apply to all non-atomic (i.e. con-
tinuous) distributions.

THEOREM 3.2. For arbitrary X, 2(X) is symmetrically complete.

ProoF. Bell, Blackwell and Breiman [2].

COROLLARY 3.2. Let S=x 1S,. Then the orbit S(Z) is complete
i=1
with respect to X 209(26,).
i=1

k
PROOF. Let 2= X (X)) and let M(@y, -+, Tins Tast c s Bangs * 0y
o
Trtr**y Tin,) DE symmetric in (y,- -+, 1), N (o, -, T,n,), €te., such

that Sth:O for each Ge 2. Now £=U [)k< 2m(2,, yi)], where the
i=1

union is taken over all non-atomic measures on (¥, B;). Choose G* € 2.

Then G*=FX*™x F*™x ... X Fx™ and S hdG*=0 for each G*e 2=

k
X (X0, F).

But according to Corollary 3.1, the orbit is complete with respect
to 0* so that P,[h+0]=0. But since G* is arbitrary, the orbit is also
complete with respect to £.

Theorem 3.2 and its corollary provide the basic completeness result
used to characterize tests distribution-free with respect to the class of
all continuous distributions satisfying certain (multivariate) hypotheses.
The specific application of these results to common hypothesis testing
problems will be delayed until Section 4. However, in the treatment
of invariant and ranking procedures, one needs a completeness result
of a slightly different sort.

LEMMA 3.1. If XX is an interval (finite or infinite), B s the class
of Borel subsets of X and p 1s a measure on (2, B), then Q¥ (X, p) 1is
symmetrically complete.
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PrROOF. Let 2, be the class of probability distribution given by
densities (with respect to g) of the form

C(8,,: -+, 0y) exp [—sz‘i‘ﬁ 0ixi:| .
i=1

This class is symmetrically complete (Lehmann [12], p. 133). But £, and
95, p) have the same null class and Q,CQF(, p), so that QXX, p)
is also symmetrically complete.

LEMMA 3.2. Let XX, be an interval, let B, be the Borel subsets of
X: and let p, be a measure on (X, B,), (i=1,2,---, k). Let S=x S,..
i=1
Then the orbit S(Z) is complete with respect to >k< QFC(X,, py).

PROOF. Let the densities of 2, be of the form ﬁ fidp, where
i=1

Ny
Fila) =0, -, O) xp | —a+ 33 007
Jj=1
The rest of the proof is the same as the proof of Lemma 3.1.

THEOREM 3.3. If X is an interval (finite or infinite), then 25(2X)
18 symmetrically complete.

PrOOF. Note that Q2 X)=U 25(X, p). Therefore Lemma 3.1 and
3
the argument of Corollary 3.2 yield the desired result.

COROLLARY 8.3. Let S=X S, and let X, be an interval (i=1,---, k).
Then the orbit S(Z) is complete with respect to >k< QF®(X).
i=1 .

PROOF. Analogous to Theorem 3.3.

4. Characterization of distribution-free tests

Four nonparametric hypotheses will be considered in this section:
randomness, independence, symmetry and k-factor cross-classification.
The data will be multidimensional, and no restriction will be made on
the probability distributions except continuity. In this general setting
it is desired to characterize all similar tests and critical regions, and
all distribution-free statistics. The method is to rephrase the hypothesis
in terms of a suitable permutation group (or transformation group in
the case of some symmetry hypotheses). This group is the maximal
group under which the likelihood function of the data (under H;) re-
mains invariant. The orbit of the data must be shown to be a com-
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plete sufficient statistic for the testing problem. Once this is proven,
the theorem on Neyman structure (Lehmann [12], p. 184) yields the de-
sired characterization. Since the sufficiency of the orbit statistic is quite
easy to prove, the only difficulty is the proof of completeness. This is
done by applying the theorems of the previous section.

Randommess (2-sample and c-sample)

In the randomness (c-sample) problem, one obtains samples from
each of ¢ multivariate populations and tests the hypothesis that the un-
known population c.d.f.’s are the same. Therefore the hypothesis is

HR . F1=Fz="'=Fc
and the generic data point is
Z':[Xll’ XlZ;' Sty Xlnl; X2l" ) XZn,: Xcly' ) chc]
=[Z,,- -, Zy]
where N=n,+mn;+---+n.. The null hypothesis class is 2(Hz)=2{"(R?).
The joint distribution function of the data is (under H;)
Fo2)=]1F(Z) .
=1

which is invariant under S, the group of N! permutations of the col-
umns of Z. The characterization is based on showing that S,(Z) is
complete. Then one obtains the following theorems:

THEOREM 4.1. S(Z) is complete with respect to 2(Hz).
Proor. Theorem 3.2 with ¥=Rr.

THEOREM 4.2. A test ¢ is similar of size a with respect to Q(Hp)
iof, and only if,

S #7Z)=Nla  a.e. [2AH)].
7€SNr

Proor. Bell and Smith [5].

In the univariate case, Sy(Z) is equivalent to the order statistic.
Therefore, the one-dimensional version of Theorem 4.2 reduces to the
well-known theorem of Lehmann and Stein (Lehmann [12], p. 184).
When ¢=2, of course, one is dealing with the classic two-sample prob-
lem, and when ¢=N, one has the randomness problem (against alter-
natives such as upward trend, serial correlation, ete.)

Independence
The most general version of the multivariate independence problem
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(Anderson [1], Chapter 9) will be treated here. The data is a sample
of size N from a continuous, unknown distribution . The generic sam-
ple vector X (of dimension p) is partitioned into ¢ subvectors of dimen-
sion p, (1=1, 2,---, q; 3 p,=p), and the hypothesis is that the subvectors
are independent:

H,: F(x)=F(x®,. .., x?)=T] Fx¥) .
i=1
Then the joint distribution of the sample is
MIFE®)  and  QUH)=X 2R .

One notes that the joint distribution of

Xl(l) Xz(l) P XJEYI)

7= Xl(ﬂ) Xz(ﬁ) « .. XJV)

XI(Q) Xz(ll) “ e e X}SQ)

q
is invariant with respect to the group J= X Sy, the group of order
i=1

(N!)? which permutes the X{® among themselves, the X{» among them-
selves, ete. Therefore, the orbit J(Z) is the complete sufficient statistic
for Q(H)).

THEOREM 4.3. 9Y(Z) is complete with respect to Q2(H,).
ProoF. Use Corollary 3.2 with X’;=R? and n,=N.

THEOREM 4.4. A test ¢ is similar of size a with respect to Q(H,)
if, and only if,

2 GZ)=(ND)'a  a.e [2H)].
red

Proor. Bell and Smith [5].

When p=q¢g=2, the problem is the familiar bivariate independence
problem, considered by Bell and Doksum [3], along with many others.
The orbit is the same as the ordered X’s and the ordered Y’s. In fact,
whenever p=gq, the orbit reduces to the order statistics of each com-
ponent.

Symmetry

In multivariate work, some attention has been given to tests of
spherical symmetry, and also to tests of interchangeability of the com-
ponents of a random vector (Mauchly [13]; Smith [14]; Wilks [15]; Bell
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and Haller [4]; Bell and Smith [5]; Bell, Woodroofe and Avadhani [6]).
These symmetry hypotheses can be subjected to a unified treatment
by using the idea of invariance under a group of transformations of
p-dimensional space. For example, spherical symmetry could be ex-
pressed as:

H, : Py[X e A]=P;[CX € A] for every orthogonal matrix C.
Similarly, interchangeability could be expressed as:
H :Fx)=F(Gx) for all yeS,
rather than the more familiar
H,: F(x,, %2, -+, %) =F (2, @iy -+ +, T4 )

for each permutation (3, 4;,---, %,) of (1,2,---, p) and for all (z,,---, x,).
The group formulation allows one to treat other symmetry hypotheses,
when symmetry can be expressed in terms of a group. Therefore, a
generalized symmetry hypothesis will be considered here:

H,: PJ[X e Al=P;[yX € A]

for all measurable A and for all y € S (where S is a compact transfor-
mation group). The likelihood function with respect to some measure
¢ on R? of the generic data point. Z=[X,, X,,---, Xy] is

LZ)=11 F(X,),

where f(x)=f(rx) under H,. It is clear that if a transformation r, €S
is applied to X;, and then the y,X; are permuted, L(Z) does not change.
Such transformations form a group, the so-called wreath product (Hall
[11], Frucht [10]) of S and Sy, written W =S 1 Sy. The orbit F(Z)
is the complete sufficient statistic for Q(H,)={F V| P;[X € A]=P;[rX € A},
r €S} . However, the proof of completeness cannot be given until some
preliminary lemmas are proved.

One first needs a decomposition of R? into the product of the group
& and a space E, which is the space of the maximal invariant under S.
For example, if one considers the sphericity problem, S=0©,. A maxi-
mal invariant under O, is the length of the vector x, since rotations
do not affect lengths. Since lengths are non-negative real numbers,
E=]0, o). For the interchangeability problem, F = {x|z, <%, <:--<x,}.

LEMMA 4.1. The correspondence Pp—Py(-|E) is a one-to-one corre-
spondence between the continuous symmetric distributions and the conti-
nuous distributions on E.
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Proor. Write X=(Y,7), Y€ E, y€S. The symmetry hypothesis
states that X and yX are identically distributed. This implies that ¥
and y are independent and that 7 is distributed uniformly on S. Now
the condition X € K is the same as the condition y=e, the identity ele-
ment of S§. Therefore, given any probability measure Q on E, let P,
be given by @x U, where U is the uniform measure on S. This shows
the desired correspondence.

THEOREM 4.5. The orbit YW(Z) is complete with respect to 2(H,).
PrRoOOF. Express the generic data point as
Z=[Y1, 715 YZ! Tert s YN9 TN] y (Y] EE’ 7i € S; j‘:l,' ) N)

and let - be invariant under 9% and such that
ShdF”V’:O for each F ¢ Q(H,) .
Then h must be independent of the 7, and symmetric in the Y, so that

S o hdF(N) ZS v th(N)
R

E
where G is a distribution on E. However, 2,(F) is symmetrically com-
plete (Theorem 3.2) so that A(Y,,---,Yy)=0 a.e. [2*(E)]. But using
the correspondence of Lemma 4.1 and the invariance of % under 94/, it
follows that A(Z)=0 a.e. [2(H,)], so that ¥/ (Z) is complete.

THEOREM 4.6. A test ¢ is similar of size a with respect to Q(H,)
if, and only if,

N
5] S---gqi(er);ﬂdU(rj):N!a
eSSy =1

where U(-) denotes the uniform measure on S, the existence of which s
guaranteed by the compactness assumption on S. [Some specific sym-
metry hypotheses are given in Table I, along with the corresponding
S’s].

k-factor layouts
The k-factor designs considered here are extensions of the Friedman
[9] model. It is assumed that one has collected data of the form
Z={X,.,;|11=0,=¢c,, v=1,-+-,k; =1, -, n(i, -+, )} .

That is, the data is vector valued, with possibly several observations
per cell. One wishes to test the hypothesis of “no first factor effect.”
The crucial assumption of the Friedman model is that there is no inter-
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action under the hypothesis. When k=2, n(i;, 7,)=1, then Friedman’s
original two-factor classification model results.

The hypothesis becomes H: Fi;iz---ik':piz---iu and under Hjy, the
joint distribution of the data is invariant if, for fixed 1,, %, -+, 2,, the
“i,-subscripts ” are permuted. If one introduces the notation

1
N(iz,---,ik)= 21 (i, vy %)
iy=

and considers the permutation group ¥= x S Neioomiss then the orbit
(igeerig) L2t

F(Z) is the complete sufficient statistic for
AHp)=_ X GXGOR?)
ORI

THEOREM 4.7. F(Z) is complete with respect to Q2(Hy).

ProorF. Corollary 3.2 with X =Rr.

dgeeeiy
THEOREM 4.8. A test ¢ is similar of size a with respect to Q2(Hy)
if, and only if,

3 ¢yZ)=a T] N+, 0)!  for ae. Z.
TEF Cigrerig)

PrROOF. Analogous to Theorem 4.2.

The results of this section are summarized in Table I. For each of
the common nonparametric problems, the table lists the corresponding
transformation or permutation group, the cardinality of the orbit, and
the relevant completeness theorem.

5. Invariant and strongly distribution-free tests

Nonparametric problems are usually simplified in practice by using
the invariance principle. The use of invariance has practical import-
ance in that it leads to the use of ranks, and in addition it simplifies
the mathematical problems inherent in nonparametric work, enabling
one to construct optimal tests.

The invariance method is based on the use of a group € of trans-
formations of the sample space. This group has two properties:

(i) If FeSAH), then F,=F[g7'(-)] € 2(H,);

(ii) If Fe 2(H,) then F, e 2(H,).

As an example, in the univariate two-sample problem, &G is the group
of strictly increasing continuous transformations of the real line onto
itself. Having found a suitable &, one then restricts attention to in-
varvant tests, i.e., such that ¢(Z)=¢(gZ). It can be shown that every
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invariant procedure is a function of a so-called maximal invariant sta-
tistic. In the univariate two-sample problem, a maximal invariant is
the ranks of the pooled sample.

As a rule, invariant procedures do not exist for multivariate prob-
lems, either because a suitable group has not been found or because
the invariance method eliminates too much information (Smith [14];
Bell, Woodroofe and Avadhani [6]). In this section, therefore, the di-
mension of the data will be restricted.

The study of the structural properties of invariant procedures de-
pends very much on the alternatives under consideration, and the idea
of completeness is an important tool. First, however, it is necessary
to introduce two concepts closely related to invariance.

DEFINITION 5.1. (i) A statistic T is almost invariant with respect
to a class of probability measures 2 and a group & if

P, T(x) # T(gx)]=0 for every ge & and for every Fe Q2.

The exceptional set on which T'(x) # T'(gx) may depend on g, but not on F.
(ii) A set B is almost invariant if I, (the indicator function of B)
is an almost invariant statistic.

DEFINITION 5.2. A statistic T is strongly distribution-free with re-
spect to a class 2 of distributions and a group & if for all real ¢t and
all Fe®

Pp[T(x)=t]=Ps[T(x)<t]

whenever G(x)=F (x)=F[g7'(¢)] for some ge¢ &. The power function
of a strongly distribution-free test is constant over each equivalence
class of 2=0(H,U H,) under &.

The study of the structure of invariant statistics does not always
lead to a full characterization. However, if the procedure is nonsequen-
tial (i.e., does not depend on the “chronologicalorder” of the data),
characterizations are possible. This is because each nonsequential sta-
tistic is a function of a complete sufficient statistic for Q(H,U H,). The
formal definition is given below.

DEFINITION 5.3. Let the hypothesis H, be tested against a general
alternative H; and let &’ be the maximal group of permutations (or
transformations) on Z such that the joint distribution of Z under H,
remains invariant. If 7(Z) is invariant with respeet to &', then T is
nonsequential (for the testing problem H, vs. H)).

For example, if one tested H, against the two-sample alternative
(i.e., X, -, X, form a random sample from F' and X, ., -+, Xpn.n form
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a random sample from G, with G#F'), then any statistic which is in-
variant under permutations of X,,---, X,, among themselves and also
under permutations of Xn.1,- -+, Xnin among themselves is non-sequen-
tial. For this example, §'=S,XS,.. If one considered a c-sample alter-
native then &'=S8, XS, X+ ++XS, . Another way to define a non-
sequential statistic is to say that T is a function of the sufficient statistic
for 2(H,U H,).

Almost invariant and strongly distribution-free statistics are related
by the following lemma.

LEMMA 5.1. (i) If T is an almost invariant statistic with respect
to Q(H,UH) and G, then T is strongly distribution-free.

(i) If T is mon-sequential, then T is almost invariant if, and only
if, it is strongly distribution-free.

PROOF. Smith [14] provides a proof for the independence problem.
However, the proof is easily applied to any of the other nonparametric
problems of Table I. Note that completeness of 2(H,U H;) (which fol-
lows from Corollary 3.2) is required to prove (ii).

The relationship between strongly distribution-free and invariant
(i.e., rank) statistics is based on a theorem of Berk and Bickel [7].
They consider the sample space of some random variable Z and a family
of distributions 2 generated by a group &. Thatis, 2 ={F,|g € &} for
any Fe . They also assume that I is a maximal invariant statistic and
that S is some other statistic such that the correspondence Z—(I, S) is
one-one, bimeasurable and such that & induces a group &, acting on S.
That is, if Z—(I, S), then gZ«(I, g,S). Their theorem can be stated as
follows.

THEOREM 5.1. If S is sufficient and boundedly complete, then any
test which is almost imvariant (with respect to Q2 and Q) is Q-equivalent
to an invariant test.

In the nonparametric problems considered here, the role of S is
played by the orbit and I is usually the rank statistic. However, 2(H,)
is not of the form {F,|ge &}, so that one must prove Theorem 5.1 for
a special subclass of Q2(H,), then extend the results to the entire null
hypothesis class. Eventually, one can prove a theorem of the form:

THEOREM 5.2. (i) If T s almost invariant with respect to 2(H,
UH,) and G, then T is equivalent to rank statistic.

(ii) Let T be non-sequential. Then T s strongly distribution-free
if, and only if, T is equivalent to a rank statistic.

In the remaining portion of this section, the method outlined above
will be applied to each of the nonparametric hypotheses. For each hy-
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pothesis, the group, the maximal invariant and the necessary complete-
ness theorem are given. The results of this section are summarized in
Table II.

Randommness vs. c-sample alternatives

The null hypothesis H, of Section 4 is tested against the general
c-sample alternative

H,:F+F, for some 1, j.

The maximal group of permutations of the data which leaves likelihood
function invariant under H, is Sn XSp, X -+ - XS, , the group of permu-
tations which only permutes observations within each sample. There-
fore, a statistic T is non-sequential for this problem if it is invariant
under S, X ---XS,. The method of invariance leads to good results
only if the data is univariate, i.e., p=1. In this case, & is the group
of strictly increasing continuous transformations of the real line onto
itself. The maximal invariant is the set of ranks of the combined sam-
ple, that is,

c T
Ri/:EEG(XU—Xku) (t=1,---,¢; g=1,---,m,) .

To prove the structure theorem (Theorem 5.2) for this problem, one
considers Q¥(Hy) ={F{™|F ¢ Q¥(R)}, where 2}(R) is the class of strictly
increasing continuous distributions on the real line. The first step is to
apply the Berk-Bickel theorem (Theorem 5.1) to 2*%(H;). Here, S is the
Sy-orbit and I is the rank statistic. The bimeasurability condition is
obviously satisfied and S is a sufficient statistic (in fact, S is the order
statistic of the combined sample). Therefore one needs only to prove
the following lemma.

LEMMA 5.2. The orbit Sy(Z) is complete with respect to Q*(Hp).

Proor. This follows immediately from Theorem 3.8 with ¥ =R.

Lemma 5.2 implies that the Berk-Bickel Theorem holds in the uni-
variate c-sample problem, if attention is restricted to strictly increasing
distributions. However, the more general result is Theorem 5.2 which
is proven here for the special case of the c-sample problem.

THEOREM 5.2a. (i) If T is almost invariant with respect to 2(HyU
H.,), then T is equivalent [2(H3)] to a rank statistic.

(i) Let T be a nonm-sequential statistic. Then T is strongly distri-
bution-free if, and only if, T is equivalent to a rank statistic.

Proor. Clearly, if T is almost invariant with respect to 2(H U H.,,),
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then it is almost invariant with respect to 2%(H). The Berk-Bickel
Theorem states that 7 is equivalent [2*(H)] to a rank statistic. But
the null classes of 2(H;) and 92%*(Hj) are equal, so the result may be
extended to equivalence [2(Hg)]. If T is non-sequential and strongly
distribution-free, then Lemma 5.1 says T is almost invariant, and (i)
then applies. Conversely, if T is non-sequential and equivalent to a
rank statistic, it is almost invariant. Applying Lemma 5.1 again, one
concludes that T is strongly distribution-free.

Total independence

The general treatment of independence does not lend itself to the
invariance method. However, the special case of total independence

Hyr: Fx)=11 Fi)

can be treated effectively by this method. For this problem, a non-
sequential statistic is one invariant with respect to Sy. The transfor-
mation group is the group of strictly increasing continuous, 1—1 trans-
formations applied to each co-ordinate of the sample vector X. The
maximal invariant is the sets of ranks R,; of the co-ordinates, where

N
Rij:)cz:i € (Xij—Xik) .
To explore the structure of rank statistics, one again uses the Berk-
Bickel Theorem. For this problem, S is the orbit J(Z), or, in other

words, the order statistics of each co-ordinate. (Recall that J= >,,< Sw).
i=1

As in the c-sample case, one first proves Theorem 5.1 for
QH(Hyi) = [F|F(x) =] Fix), Fie O5(R)] .
The necessary preliminary result is the following lemma.
LEMMA 5.3. The orbit I(Z) is complete with respect to 2*(H,,).
Proor. Corollary 3.3 with n,=N, X,=R, 1=1,---, p.

Once this lemma is obtained, then Theorem 5.2 can be proven for
the problem of testing H,, against the general alternative H,. The
proof is an exact parallel to the proof for the randomness hypothesis,
and so will not be repeated.

Sphericity

The general alternative to the p-variate sphericity hypothesis is Hj,
i.e., the data consists of a random sample from a non-spherical distri-
bution. Accordingly, a non-sequential statistic is one which is invariant
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with respect to Sy. For the sphericity problem the appropriate trans-
formation group is

Gr=1glo(1 X1], O)=(g(I X)), 6) ,

where g is a strictly increasing continuous transformation of [0, o) onto
itself}. Here the vector X has been expressed in spherical co-ordinates:

X, =[|X||siné,
X; =||X]| cos b, siné,

X,.1=|| X || cos 6, cos ;- - -cos 8,_,sin ,_,
X, =||X||cos 6 cos8b--cosb,,cos6,,

where
| X ||=(X24-- -+ X2, —1/2Z560,=Zx/2 (i=1,---,p—2),

and —7=6, ,=<rz. In words, G is the group which makes monotone
distortions of the length of X while leaving its direction fixed. The
maximal invariant under &, is the set of ranks of the norms and the
set of direction angle vectors (Smith [14]). That is,

I=(R(|| X:]), 8. R(|| Xzl]), 025+ - -5 B(|| Xy 1))

where
N
R(lIXfI|)=§E (X 1= 11 XD -

To apply the Berk-Bickel Theorem, one notes that the orbit (O, ! Sy)(Z)
satisfies the bimeasurability conditions. One first considers the class

Q*(H,) ={F“|F is spherical and F)y, € 25[0, o)}

(where F)y, is the || X||-marginal). One must prove the completeness
of (0,1 Sy)(Z) with respect to 2*(H,).

LEMMA 5.4. The orbit (O, ! Sy)(Z) is complete with respect to Q*(H.).

ProOF. The orbit (O, Sy)(Z) is equivalent to the ordered norms,
since the ordered norms are the maximal invariant under 0,1 Sy. To
prove the completeness of the ordered norm statistic, one applies Theo-
rem 3.3 with X' =[0, o).

Now the structure theorem (Theorem 5.2) follows using the same
arguments as in the randomness case.

As yet, the other symmetry problems have not yielded to the in-
variance technique, because it has not been possible to find an appro-
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priate group &. In fact, for the bivariate interchangeability problem,
it has been conjectured that no such group exists (Bell and Haller [4]).

Univariate k-way layouts

When the observations are univariate, the invariance method can
be used to treat k-factor designs. If there are several observations per
cell, then these observations may be permuted without changing the
value of the likelihood function under H,. Therefore, a non-sequential
statistic is one which is invariant under X Shcty,eonips Since this group

permutes observations within a given cell. The appropriate transfor-
mation group for this problem is the group of strictly increasing, con-
tinuous transformations of the real line onto itself. To construct the
maximal invariant, one takes each combination of “block ” effects (i.e.,
factor 2, factor 3,---, factor k effects) and ranks the observations. In
other words, one calculates
ny "(il"‘ik)
B Xyt ) =2 2 €Kiy =Xy, )

for each (%s,---, %) .
The Berk-Bickel Theorem is first applied to
QX Hp)= X QF¥ar-w)(R)
Cigeerig)

where as before, N(i,-- -ik)=21} (%, - -1x). Thus, all that is needed is
i1=l

to prove the completeness of the orbit with respect to Q*(H;).

LEMMA 5.5. The orbit | X Sweyip|(Z) is complete with respect
(igreriy
to QX(Hs).

Proor. Corollary 3.3 with each X;=R. The rest follows as in the
randomness case.

The results of this section are summarized in Table II. For each
testing problem considered, the transformation group, dimensional re-
strictions and “non-sequential” group is given, along with the complete-
ness result needed to prove the completeness of the orbit with respect
to 2*(H,). The notation G¥(X’) denotes the group of strictly increasing
transformations of X onto itself, where X is an interval.
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