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Summary

Definitions of different strengths are given to the notion of ‘a posi-
tively biased random variable’. This notion is related to that of ‘a
stochastically larger component of a two-dimensional random vector’,
which was introduced previously by the authors. Properties of common
rank tests of symmetry about zero against our specification of alter-
natives are studied in detail. The positive biasedness is extended to
‘ positively more biased’. Test of symmetry of a two-dimensional ran-
dom vector is also referred to.

1. Introduction

The purpose of this paper is to make clear the notion of a ‘posi-
tively biased’ one-dimensional random variable as an alternative to
‘symmetry about zero’. This notion is useful to make more precise
statements on the test of symmetry than discussed in previous publi-
cations like [1] and [2].

We introduce in Section 2 a series of definitions of different de-
grees of strictness and see their properties. We examine in Section 3
the notion from different points of view, which are based on the defi-
nitions of °‘stochastically larger component of a random vector’ intro-
duced by the authors in [5]. In this aspect the present paper is a sequel
to [5].

In Section 4 we study properties of common rank tests of symmetry
about zero when the alternative hypothesis is given by a positively bi-
ased distribution, and improve the results in [2]. In Section 5 we de-
fine the notion of ‘positively more biased,” and show a condition of
monotonicity of the power function for one-parameter family of distri-
butions. Our discussions on tests of symmetry can be applied straightly
to those of a two-dimensional random vector against some special alter-
natives (Section 6). Most of the propositions in this paper can be easily
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proved and they are stated without proof.

2. Definitions of positive biasedness

Let X be a random variable on R!' with the distribution function
F(z). X is symmetric about zero if F(x)=1—F(—x—0) for any >0,
or equivalently if X and —X have the same distribution. As alterna-
tives of symmetry ‘X is positively biased’ in some different meanings
which will be defined below and this fact is denoted by X>0 (38, or by
F(:)>0 (8).

DEFINITION 2.1.

X>0 (B,) iff (if and only if) P(X>0)=P(X<0), or equivalently 1—
F)=F(0-0).

X>0 (8) iff P(X>a,)2P(X<—a,) for any a,>0, or equivalently
F(x)+ F(—x—0)<1 for any x=0.

X>0 (8 iff P(a;2zX>a,)=2P(—a,>X=—a,) for any a,>a,>0, or
equivalently F(x+y)—F(z)=F(—2—0)—F(—x—y—0) for any
x, y=0.

5 P@z2X>a) . P(—a>X2z—a)
x>0 (B iff L& ) > f
7O S X Sa) = P(—a> X —ay O Y w>a>a

>0 such that the denominators are positive, or equivalently (F(x
+¥)—FW)/(F(—y—0)—F(—x—y—0)) is nondecreasing in both
>0 and y>0.

e Play=2X>a;) o P(—a,>X=—a,)
X0 (B) iff ) > f
7O 2 X>a) T PCas> Xz —a) O 2 @G>

such that the denominators are positive, or equivalently (F(x-+
¥—FW)/(F(—y—0)—F(—x—y—0)) is nondecreasing in both
x>0 and y.

Notice that the suffix 7 of B, corresponds almost to the number of
parameters in the definitions. The notion of ‘negative biasedness’ can
be defined similarly and denoted by X<0 (3,).

If X has a probability density function f(x) with respect to Lebes-
gue measure, then the definitions are expressed as follows.

ProproOSITION 2.1.
X>0 (B) iff f(z)=f(—=) for any >0 (a.e.).

X>0 (By) iff f(x)/f(—2), 0<xz< oo, is nondecreasing in x (a.e.) and
both f(—x)=0 and F(—z)#0 implies f(x)=0 (a.e.).
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X>0 (B) iff f(x)/f(—=x), —oo<x<oo, is nondecreasing in z (a.e.)
and f(—«)=0 and F(—x)#0 jointly imply f(x)=0 (a.e.).

B, — By
N B, B — B,

Fig. 1 Implication scheme of $;’s.

PROPOSITION 2.2. The implication relationships shown by arrows in
Fig. 1 and only these are valid.

PrOOF. The validity of these relations are clear from the defini-
tions. The impossibility of other relations are shown by the following
example.

Example 2.1. Let g(x) be a density function which is positive for
0<x<a<oco and X have the density

pg(zxjc)/c , if >0,
Sflx)= i
q9(—2) , if 2<0,
where p, ¢>0, p+q=1 and ¢>0. Then we have

X>0(3) iff pzq,
X>0 (48) iff p=q and ¢=1,
X>0 (%) iff p=cq, c=1 and g(x) is nonincreasing ,
X>0 (%) if —log g(e®) is convex and c¢=1,
X>0 (8) if the conditions for B, and B, are satisfied .
PROPOSITION 2.3.
The condition that X>0 ($,) and ($,) implies that X>0 (B,).
The condition that X>0 (B;) and (B,) implies that X >0 (B,).

When a random variable X is positively biased, this fact is due to
a factor that the probability of positive X is larger than that of neg-
ative X and/or a factor that X under the condition that X >0 is stoch-
astically larger than —X under the condition that X<0. X>0 (4, and
(B,) corresponds to the first factor and X >0 (B,) to the second factor.
Proposition 2.3 tells that X >0 (8,) and ($,;) are mixtures of these two
factors. This fact appears also in the distributions of rank statistics
as will be stated in Propositions 4.3-4.6.

PROPOSITION 2.4, The condition that X>0 (%) and X<0 ($;) im-
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plies X to be symmetric about zero.

PROPOSITION 2.5. If A(t) is an increasing odd function, then X >0
(8,) implies H(X)>0 (B;) for each i=1, 2,3 and 4.

Remark. For weaker definition the condition for the function A(t)
can be weakened. For example, assume only that A(t)>0 if t>0 and
h(t)<0 if ¢<0, and then X>0 (3B,) implies A(X) >0 (B,).

PROPOSITION 2.6. We assume that X is symmetric. If h(t)>0 for
t>0, then M(X)>0 (B). If h(t), —co<t<oo, is monotone and h(t)=
—h(—t)=0, then A(X)>0 (B,).

Example 2.2. (Shift of a symmetric distribution.) If F(x) is a dis-
tribution which is symmetric about zero, then
(1) F(x—6)>0 (B,) for any 6=0.
(2) If F(x) is also unimodal, then F(x—68)>0 (B, for any §=0. Con-
versely F(x—8) >0 ($,) for any §=0 implies the distribution to be uni-
modal.
(3) If F(x) has the density function f(x), then F(x—6)>0 (B, iff
f(x—8)/f(x) is nondecreasing.

3. Stochastic ordering and positive biasedness

In a previous paper [5] the authors introduced various definitions
which express that ‘a component X of a random vector (X, Y) is larger
than the other component Y’’. In this section we express a positively
biased random variable X in terms of the definitions in [5]. Some
new types of positive biasedness are presented here. However only
those which are defined in Section 2 seem important.

Let 0 be a random variable which is degenerate on zero. Then
(X, 0) is a random vector which is degenerate on the line y=0.

ProproOSITION 3.1.
X>0 (R) iff X>0 (48,
X>0 (Ry) iff X>0 (B,

and X>0 (R;, R, or R,) means just F(0—0)=0. More generally, for
a random vector (X,Y),

X>Y (R) iff X—Y>0 (8),

X>Y (R) iff X—Y>0 (8,
and

X>Y (Ry) iff X—Y >0 (B, .
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For a given random variable X, (X, —X) is a random vector which
is degenerate on the line x+y=0.

PROPOSITION 3.2.

X>—X (R, or R) iff X>0 (By), and X>—X (R;, R; or Ry) iff
X>0 (B,).

For a given random variable X, let X’ be a random variable with
the same distribution with X such that X and X’ are mutually inde-
pendent.

ProPOSITION 3.3.
(1) X>—-X'"(R) iff X>0 (B).

N F(x) 1-F(—x—0)
2 —-X' 4 < .
(2) X> (RY) iff oty ~1-F(—2—g—0) for any « and y>0

n g 1—F@+y) S F(—2—y—0)
3) X>-X'(Ry) iff = f .
(3) > R i 1_F@) = F(—2-0) or any z and y>0

(4) X>—-X' (Ry iff X>0 (B).
For a random variable X with the distribution F(x) we define an
independent symmetric random variable X, with the distribution func-

tion (F(x)+1—F(—x—0))/2, that is an equal probability mixture of X
and —X'.

PrOPOSITION 3.4. The following three conditions are equivalent for
t=1, 2 and 3:
(1) X>—-X"(R),
(3) There exists a random variable Z which is symmetric about zero
and such that X>Z (R,).

For a random variable X we define independent truncated distribu-
tions X,,=max (X, 0) and X,,=max (—X’, 0).

PROPOSITION 3.5. X,,>X,, (R, or R;) are equivalent to X>—X'
(R, or Ry) respectively.

For a random variable X we define X|y,, and —X'|y to be X
conditioned that X>0 and —X’ conditioned that X’<0 respectively.
They are regarded as degenerate at 0 if P(X>0)=0 or P(X'<0)=0
respectively.

PROPOSITION 3.6.

F(x)—F(©) - FO0—-0)—F(—xz—0)

i iff <
Xlpso>—X'rc (R) 1 1—F(0) F@0—-0)

?
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and

Xlee> =Xl (Re) 1T X0 (By) .

4. Statistics for test of symmetry

In this section we assume F(x) to be continuous. Let Xi,:--, X,
be a random sample from the distribution F(z), and Y,<---<Y,, be
the ordered set of Y;=|X,|, i=1,---,n. Z=(Z,, -+, Z,) is the rank
order, i.e. Z;=1(—1) if Y, corresponds to a positive (negative) X.
For a sample point x=(x,,---, x,) we denote by z(x)=(z,,--,2,) the
corresponding value of z.

Let /1, be the set of all m-vectors with —1 or 1 as components.
Savage [3] defined partial orderings S and L in I7,. We use also the
third ordering SL which is weaker than L and S. Let w=(u,,---, u,)
and v=(v,,---, v,) be elements of II,.

DEFINITION 4.1.
Partial ordering S: wuSv iff u,=v,, 1=1,---, n.

Partial ordering L: wuLw iff either (1) there exists a pair of inte-
gers (i, j), 1<j, such that w,=v,=1, w,=v,=—1, and u,=v,
for all k+4, 7, or (2) there exists a sequence w®,:-., w™® of
elements of 17, such that uLw®Lw®-..w®Ly for L’s in the
sense of (1).

Partial ordering SL: wSLv iff i u,gi‘, vy, 1=1,--+, m.
i=i j=i

ProOPOSITION 4.1. Each of uSv or uLv implies wSLv. Coversely,
if wSLv, then there exists a vector w ¢ I7, such that uSwLwv.

PrOOF. Let V=1/2é(’uj+1) and let j,,---,j, be the subsecripts
j=1

of the last V components of w such that u, =-..=u, =1, and then de-
fine w by

17 j=j19"'!jt’y
Wj=
-1, otherwise .

Clearly uSw and wSLv. We can show wLv by constructing a sequence
{w™} as follows. Put w’=w, and to construct w*" from w™ find
the largest j such that (w{™, v;)=(—1,1). Then there exists an 7 such
that 1> 7 and (w{™, v;)=(1, —1) because w™SLv by induction. We define

wrtP=—1, wmP=1 and wP=wi™, k#1,7,
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then w™Lw™* and w™*’SLv. If there are no ¢’s of the above pro-
perty, then w™ =v,

PROPOSITION 4.2. If X>0 (%, then P(Z=w)=P(Z=v) for any u
and v such that uSw.

ProoF. It is sufficient to prove the case where u,=1, v,=—1 and
u;=v;, j¥k. Then, writing

1, if 0<u, <o <Upe ot <Upey 1Ly 1< 0 0 < Ul

I(x, u, k)=
0, otherwise ,

we have

P(Z=u)=n!E[I(X, w, k) P(| X 1] < X <| Xics1 ||| Kot |, | Xiews D]
and

P(Z=2v)=n!E[I(X, u, k)P(| X; ;| < — X, <| Xer| || Xiest |, [ Xieia D] -

From the assumption of the proposition it holds that P(ea<X,<b)=
P(a< — X, <b), which completes the proof.

PRrROPOSITION 4.83. If X>0 (B;) then P(Z=wu)=P(Z=v) for any u
and v such that wLwv.

Proor. It is sufficient to prove the case where u,.,=v,=1, u;=
veu=—1 and w,=v,, j#k, k+1. Then writing

1, if 0<uyoy <o v o <Upo 1 i1 <Upy 1@ < oo s < Uy
J(x, u, k)=
0, otherwise ,
we have
P(Z=u)=nE[J(X, u, ©)P(| X1 | < = X, < X1 <| Ky ||| Kot s | Xiie )]
and
P(Z=v)=n!E[J(X, %, k)P(| Xi_1| < X; < — Xio11 <| Xps2 | || Xicm1 |5 [ XiewaD] -
As X>0 (By),
(FO)—F @) (F(—t)—F(—t—4t)Z(F(-t)—F(-b)(F(t+4t)—F(?)) .
Integrating with respect to ¢, we get
Pla< — X, < X1 <b)ZPa< X, < — X1 <b) , for any 0<a<b,
which completes the proof.

PrROPOSITION 4.4 (Corollary of Propositions 4.2 and 4.3). If X>0
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(8.)), then P(Z=u)=P(Z=v) for any u and v such that uSLw.

DEFINITION 4.2. A rank statistic 7(-), or a function r(x)=7*(z) of
2=(z,- -, 2,) is called nondecreasing if r*(u)=7*(v) whenever uSLv.

PROPOSITION 4.5. The following two conditions on a rank statistic
r(x)=r*(z) are equivalent:
(1) r(x)=r(y) if z,=y,;, 1=1,2,---, n, and
(2) r(x) is nondecreasing.

PROOF. Let u=z2(x) and v=z(y) be the rank orders of z and y.
Suppose z;=y;, t=1,---,n—1 and x,>vy,. If either y,>0 or z,<0, then
uLw, and if x,>0>y, then it is seen that uSLv. Repeating the argu-
ment, we see that z,=y,, 1=1,--., » implies uSLv. So we have (2)=
1).

O=2): Let x=(u, 2u,, - - -, nu,) and y=(v,, 2v,, -+ -, nv,), which
are typical points such that w=z(x) and v=2(y). Suppose uLv in the
strict sense (1) of Definition 4.1. Then ku,=o(k)u,u, for k=1,---, n,
where o(i)=j, o(j)=1 and a(k)=k for k+4,j. If uSv, then ku,>kv,
for k=1,---,n. Thus using Proposition 4.1, wSLv implies that r*(u)=
r(x)2r(y)=r*(v).

PROPOSITION 4.6. If X>0 (4,) and a statistic 7(-) is nondecreasing
then P(r(X)zc)=Py(r(X)=c) for any ¢, where P, denotes the prob-
ability when X is symmetric. Therefore, the test of symmetry against

X>0 (B) (excluding the symmetry case) with a rejection region »(x)
=c is unbiased provided that r(x) is nondecreasing.

PROOF. Let Fyx)=(F(x)+1—F(—x))/2. Then F(x)<Fy(x) and F;!
-(F(—2))=« for any z, where F,'(uw)=inf {z; F(x)=u}. Hence using
Proposition 4.5, P(r(X)=c)= P(r(Fy (F(X))=c)=Py(r(X)=c).

PROPOSITION 4.7. A rank statistic of the form r(x)zi‘, iz, G

i=1
-++=a,, is nondecreasing. The examples are the sign test statistic

é 2;, Wilcoxon’s one sample test statistic i 12; and Normal score test
t=1

i=1

statistic i a..2;, where a;, is the expectation of the ith order statistic
i=1

of a sample of size n from the distribution with the density +2/z-
exp (—2%2), ©=0.

Ezxample 4.1. Let the distribution function F(x) have the following
form: '

q+pG(x) , z=0,

F(x)=
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where G(x) is a continuous distribution function such that G(0)=0, p, q
=0 and p+q=1. Then F(x)>0 and F(x)<0 (B;), while F(x)>0 (B,
if p=¢ and F(x)<0 if p<q. For such a distribution

PZ=(, -, 2) ¥, Yw)=Dq""*

where szf‘_, z;. Therefore the sign test of symmetry against the alter-

i=1
native p>q in the above form of F'(x) is the uniformly most powerful
test.

Incidentally we shall show that the equiprobability of the rank
statistic Z, that is P(Z=2=(z,,- - -, 2z,))=2"" for any z € II,,, characterizes
symmetry of the population distribution for n=3.

When n=2 the probability is equal iff

Xlxs0m—X"|x <0 and Xlxs0<—=X" |30 (Ro) -

When n=38 the equiprobability means symmetry of the distribution,
since if the rank probabilities are equal, then

S (1—F(z)— F(—2)ydF(x)
= S:’ (1— F(z))dF(z)—2 S” (1— F(2))F(—z)dF (z)
+ S” FY(—a)dF(z)+ Sm (1— F(—2))dF(z)
—2 S_w (1— F(—))F(2)dF(x)+ S; F@)dF(x)
=L{P(Z=(1, 1, )~ P(Z=(1,1, 1) or (1, =1, 1)

+P(Z=Q, -1, -1)+P(Z=(-1,1,1)—-P(Z=(—-1,1, —1)
or (—1, —1,1))+P(Z=(-1, —1, —-1))}
=0.

When n=4 the equiprobability implies symmetry a fortiori.

5. Positively more biased

As an extension of positive biasedness B, we compare two random
variables X and Y with the distribution function F(x) and G(x) respec-
tively. We write

Fyt)={Ft)+1-F(-t-0)}/2,
Go(t) = {G()+1—-G(—t—0)}/2 .
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DEFINITION 5.1.

X>Y (B) (‘X is positively more biased than Y’) iff Fy(s)<G(t)
implies F(s)=G(t).

Remark. For the distribution function H(t) let H Y(u)=inf {¢; H(t)
=u}. For some purposes an alternative definition, is more convenient:
X>Y (9) iff G (u)=Gy'(v) implies F~(u)=Fi'(v).

PropoSITION 5.1. If both X and Y are symmetric about zero, then
X>Y (B) and Y>X (9B).

PROPOSITION 5.2. If h(-) is an increasing odd function, then X >
MX) (B) and M(X)> X (B) for any X. ‘

ProprosiTION 5.3. If Z is symmetric about zero, then X>Z (%)
implies X>0 (4,). Conversely if X>0 (48,), then X> X, ($), where
the notation X; means the same as in Section 3.

PROPOSITION 5.4. If X>Y (R,) then X>Y (9).

Remark. This proposition and the following observations show that
‘ positively more biased’ is a weaker notion than ‘stochastically larger.’

PrOOF. Let the distribution functions of X and Y be F(x) and
G(y) respectively. We prove the contraposition of Definition 5.1. As
F(t)<G(t), F(8)>G(t) implies s>t. Then F(—s—0)<G(—t—0), so that
- F(S)+1—F(—s—0)>G@t)+1-G(—t—0).

PrOPOSITION 5.5. (1) Let S be a random variable such that P(S
=20)=1. Then S>X (B) for any X.
(2) Let T be a random variable such that P(T>0)=1. Then X>T
(P) ift P(X=0)=1.
The dual statements on nonpositive and negative random variables are
valid. Then for a random variables S, which is degenerate on zero,
(8) S,>X (BP) and X*>S, (B) for any X.

PRrROPOSITION 5.6, If X and Y have continuous distribution fune-
tions, X>Y (B) and r(-) is a nondecreasing statistic, then P*(r(X)=c)
= P¥(r(Y)=c) for any c.

PrOOF. Firstly we remark that because of the continuity of the
distribution functions X>Y (&) implies the alternative definition in
Remark of Definition 5.1: If G Y(u)=G;!(v) then F~(u)=F;'(v). (This
fact is essentially stated in Proposition 5.2 of [4].)

As a rank statistic r(x) is invariant for the transformation of x by
an increasing odd function
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PH(r(X)ze)=P*(r(F(X)—1/2)2c)
=PY(r(F(F(U)—1/2)z¢) ,

where r(Fy(X)—1/2)=r(Fy(X,)—1/2, -, F{(X,)—1/2) and U=(U,,---, U,)
is a random sample from the uniform distribution over the interval
(0,1). Similarly

P*(r(Y)zc)=P(r(G(G™(u))—1/2) =c) .
Then the problem reduces to that of proving
(%) Fy(F(u))2G(G™'(w))  for any u,

because of Proposition 4.5. If there exists a value of v, against (),
such that Fy(F~(u))<v<Gy(G™'(u)), then G;'(v)<Gu) and F'(u)<
Fy'(v), which is a contradiction to the preceding remark.

ProprosiTION 5.7 (Corollary of 5.4 and 5.6). If a one-parameter
family of continuous distributions {F,(x)} is increasing (R,) and Fy(x)
is symmetric for a parameter value 6,, then the power function of a
nondecreasing rank test of symmetry is nondecreasing in 4.

Example 5.1. Let F(x) be a continuous distribution function of a
symmetric random variable and X;, ¢=1, 2, have the distribution func-
tion F((x—p)/o;). Suppose that the distribution range is unlimited in
both directions. Then X, >X; (B) iff p/oy=pm/o;.

6. Test of symmetry of a two-dimensionai distribution

Let (X,Y) be a random vector with the distribution function F(zx, y).
We test the hypothesis that (X, Y) is symmetric,

H,: F(x,y)=F(y, x) for any z and y.

Lehmann [2] discussed this problem without specifying the alternative.
We may specify alternatives as follows.

H: X>Y (R,
Hz: X>’Y (911) ’
.H;;Z X>Y (Qu) .

Our discussions on test of symmetry of a one-dimensional distribution
can be applied here straightly because of the following proposition, which
is a modification of Proposition 3.1.

PRrROPOSITION 6.1. The problems to test H, against H,, H, or H, are
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equivalent to test the symmetry of X—Y against (X—Y)>0 (B, B
or B;) respectively.
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