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1. Let N=N,, X, X,, -+, Xy be independent random variables, N
having a Poisson distribution with mean 2 and each X; having the same
continuous distribution function F and being independent of N. Fur-
thermore the modified empirical distribution function is defined by

H@)=1 34X, ®),

where 4(y, ) equals 0 or 1 according as y>x or y=<w respectively.
The purpose of this note is to give a systematic computational
method of the probability

(1) a¥ (8, P)=Pr {fIF@) ]IS F*x)=y[F(2)], for all x} .

Here 8 and y are monotone non-decreasing functions on [0, 1] with B
continuous to the left and 7 continuous to the right. When 8 and 7
are the linear functions

B)=t—¢, r(O=t+¢,
af(B, v) represents the probability distribution of the Kac-statistic

(2) K(@)=_sup_|F¥a)—F(z)

2. Let U, U,,--- be the independent random variables having the uni-
form distribution on [0, 1]. Since

Pr {flF(2)]<FH@)<F (@), —oo<a<oo| N=n}
=Pr [IF@IS T 314X, )=1{F(@)], —oo<z<oo]

=Pt [BF@]S T 33 AF(X), F@)SiF(@), —oo<z<oo]

Prip0=1 34U, =70, 0<t<1]=a(@ ),
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then we can express the probability (1) as
af (B, 1)= E Pr {N=n}a(8, 1)
= At
—-;Z.;v' Ta,f (B, T) .

It is easily seen that (8, y)=0 for n<28(1) or n>2ar(1). Then we have
(3) at(p, 1)= 33 X a8 1)
where m,=m,(B) is the smallest integer not smaller than 25(1) and m,=

my(y) is the largest integer smaller than 2(1). From the assumptions
on 8 and y we can define

(4)  p=p@=gup [t 0= k=12 m,

A
(5)  W=uP()=nf {t () _1".} k=1,2,---, m,

and for each n (m,;<n<m,),

(6) (B, P=Pr (P SUP SO, -+, g <UD,
pﬁ,ii+,<U<"+,, e, P SUM)
Egﬁ,l)(p?), Sty <1> 1! ﬂ<1>’ ) ﬂg)) ’
where U™, ..., U™ are the order statistics from a sample of 7 inde-

pendent uniform random variables. Thus we have

THEOREM 1. The probability (1) can be calculated by (3) and (6),
where the values of g are obtained by Theorem 4 of Suzuki [7] or Theo-
rem of Steck [6].

3. Next we proceed to the one-sided case

(7) af (B, ©)=Pr {B{F(x)]= F(x), for all z},

(8) af(0, 7)=Pr {F}¥(x)</[F(x)], for all z},

which are the generalized forms of the one-sided Kac-statistics
(9) K*(A)=sup [F(z)—F*=)] ,

(10) K~ ())=sup [F*(x)—F(2)] .

when y=c0 we have m,=m,(y)=o and
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(11) aX(B, oo
where
_ my! a® P (my+5) & (4D (my+5) o~y KB
a, =————am . (B, ———~———rU1 <Yy, UM PP
2,4 (my+5)! l+1(13 o) (m,+ )1 { Vi 1 4 l}

We shall now define the following polynomials for any »=1 and
Pis® 0y tn (Oéﬂlé v é#nél)’

Q=1
k—1
Qk:-Qk(ﬂls"'y ﬂk)=_§]<l’;>[l:‘iQi, k:l, 2,"’,'”4.

Then we have from Theorem 3 of Suzuki [7]
Pr{U®zp, - Uzt =33 (7 )@= fim, oo ) -

Therefore putting p=1—u,- -+, ptn, =1—3{",

_ CADPT ORI 5 ((RDP
a, ;= mPr {US 1+. < y U"‘l épml}
i
= (m1+ )' fm1+j(0 , 0, Pasctty [lml)
i
__my! [1 (m1+9> O .,0, . ]
(m1+_7)' +2 i+ Qt+1( Prs® s ﬁt)
=3 (™)e,
i=0 \ 9
where
KD = m!
(my+9)!
(12) N
Q= (m, -+, )= G + )‘ Qi+j(0 v Oy e ey 1) .
Consequently from (11)
(13) at (8, 5w (e,

It is easily shown by induction that
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. k—1
(14) Q=35 (-0 *) -t (-1rar.
Noting that f, represents probability, we have

7!
Q< i+s
17! @+I)

and then i QP <241 . Thus we can express the relation (13) as
j=0

(15) at(p, 00)= 20T 51 (Mg,
. i=0 1
where
(16) QP=S2Q¥,  i=0,1,---,m,.
i=0

It should be more convenient that the relation (16) is expressed by some
recurrence formula. From the definition of Q,

K+
S (4t Qus - =0

Putting p{=-- - =¢;=0, piy=pm, -, b=, we have
J

k
33 (5T ) Q00 e =0,
i.e.

e (k-IL—'J) ¢2=1 ( ) HEQ (- -y 1) =0 .

Multiplying k!2//(k+7)! and summing over j, we have

PROOF OF (14). Since relation (14) holds for k=1, we suppose the relation (14) is true
for k<ko. Then denoting fo= 0 we have

ko+1)
Qko+l f ko+t— J§0 ( 0] )Qi

== 2 (* [ 'E o4 ) et - v0@] -0
ko ko—h

== % T (- 1)i('°°+1)( otl- ')fn+(—1)"n+1Qo

ko+1 >f Z (ko-l-l —h

ko
= frgn— 3, (ko o ,.

)( 1)i+(=1)%0H1Qy

ko+1 )

=fko+1+hz=:o (—l)ko+1-h(k 1 Frt(=1)kt1Qy

k
=it 2 CO(E T fgnaoot (- iy

ko+ )

ko
= Z () st (-
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Syt n (§ e m=o.

(.7)

Consequently

Q=" $ &
2™ i=my 1!

(17 QP =QP(u)= — %i ()’

=1 gl

2";1; 1,' i=1
k=2,---,m, .

Summalizing these we have

THEOREM 2. The probability (7) can be calculated by (14) using the
relation (17).

4. We finally propose the computational method for the probability (8).
THEOREM 3. The probability (8) can be calculated by

af(0, )= 2 (DR, - - -, 1)

. Ak my—k ll
where c,(A)=e 3 zZ:'; T

PrOOF. When =0, m;=0 and we have

" - me 2"3—‘ @
a; (0’ 7‘)-—6 + E “—an (o, T)

=e '+ Z Pl‘ {UPzp,- -, UP =P}
=e {1+2 £ )
Comy o2
B 5 A (el
n=1 N k=0
— 2 Q> i A
=¢ g’ ",. + kl(n—Fk)!
_ pL "‘2 k lh
=e IZ}Qk A= o h'

=l§) c(DQulpr, - -5 1) -
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5. Finally we shall briefly sketch some historical results on distribu-
tion of Kac-statistics. We define the following functions:

min (t—e, 0) 0<t<a
Bi(t; e, @, b)=< max (t—e, 0) a<t<b
b—e b=st=1
(0<a<b=1)
0 0=<t=<¢/(1+¢)
Bit; e, b)={ (1+e)t—e e/(1+e)=t=b
(I+e)b—e b=<t<1
(0<e/(1+6)<b<1)
a+te 0<t=a
n(t;e a,b)=1 t+e a<t<b
o b=t<1

0<a<bsl).

Then we can summarize various results on Kac-statistics as follows.

Type of statistics Finite form Limit form (1—c0)
One-sided Kolmogorov
type
Bi(+; &, a, b) Csorg6 [3], Theorem 2
r=o
a=0 Csorgé and Alvo [4], Csorgé [3], Theorem 1
Theorem 1
e=0 Csorg6 [3], Corollary 2
a=0, b=1 Takécs [8], Theorem 5 Allen and Beekman [1],
Allen and Beekman [1], Theorem 2
Theorem 1
Adjoint form
B=0 Takécs [8], Theorem 4
71=(;¢0,1)
One-sided Reny type
Ba(+; & b) Csorg6é and Alvo [4],
Theorem 2
y=o0
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(Continued)
Type of statistics Finite form Limit form (2—o0)
Two-sided Kolmogorov
type
Bi(+; e a, D)
7+ & a, b)
a=a’'=0 Cso6rg6 [3], Theorem 5
a=a’, b=b Csorgé [3], Theorem 4
a=a’'=0, b=b' Csorgo [3], Theorem 3
a=a’=0, b=b'=1 Allen and Beekman [2], Kac [5]
Theorem 1
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