NOTE ON A MULTIDIMENSIONAL LINEAR DISCRIMINANT FUNCTION

J. K. WANI AND D. G. KABE

(Received Jan. 30, 1971)

1. Introduction and summary

When \(p \) measurements \(x_1, x_2, \ldots, x_p \) are available on an individual belonging to one of \(s \) (\(\geq 2 \)) groups, to allot the individual to one of these groups a linear discriminant function is formed, say, \(y = \sum_{i=1}^{p} a_i x_i \). The coefficients \(a_i \)'s are determined by a certain procedure, see e.g., Kendall and Stuart ([3], pp. 316–318, 44.6–44.7), so that the linear function will minimize the probability of misclassification. Hayashi [1] in his studies of quantification theory proposed an alternative method for determining the coefficients \(a_i \)'s by maximizing the observed correlation ratio \(\eta^2 = \sigma_y^2/\sigma^2 \), where \(\sigma_y^2 \) is the estimated variance of \(y \) and \(\sigma^2 \) is the estimated variance of \(y \) between the groups. In many situations it becomes necessary to carry on the discrimination by more than a single discriminant function, see e.g., Radcliffe [4]. Let then these simultaneous \(m \) linear discriminant functions be

\[
y_i = \sum_{j=1}^{p} a_{ij} x_j, \quad i = 1, 2, \ldots, m; \quad 2 \leq m \leq p.
\]

In order to determine the coefficients \(a_{ij} \)'s we consider the generalization of \(\eta^2 \) given by Hayashi [2]. This generalization is \(\lambda = 1 - \sigma_y^2/\sigma^2 \), where now \(\sigma^2 \) is the observed generalized variance of \(y' = (y_1, y_2, \ldots, y_m) \) and \(\sigma_y^2 \) is the observed generalized variance of \(y \) within groups. We now define certain sample characteristics of \(y \) which are obtained from the sample characteristics of \(x \). It is assumed that \(s \) samples one for each group of sizes \(N_1, N_2, \ldots, N_s \) are available on the \(p \) component vector \(x' = (x_1, x_2, \ldots, x_p) \).

The sample characteristics of \(y \)

- \(\mu_i(\nu) \): the mean of \(y_i \) within the \(\nu \)th group,
- \(\sigma_{ii}(\nu) \): the variance of \(y_i \) within \(\nu \)th group,
- \(\sigma_{ij}(\nu) \): the covariance of \(y_i \) and \(y_j \) within \(\nu \)th group,
\(\mu_i : \) the overall mean of \(y_i \)
\(\sigma_{ii} : \) the overall variance of \(y_i \)
\(\sigma_{ij} : \) the overall covariance of \(y_i \) and \(y_j \),
\(\pi_\nu : \) the relative size of the \(\nu \)th group, \(\sum_{\nu=1}^s \pi_\nu = 1 \),
\(\mu(\nu) = (\mu_1(\nu), \mu_2(\nu), \cdots, \mu_p(\nu)) \), \(\mu = (\mu_1, \mu_2, \cdots, \mu_p) \),
\(\Sigma = (\sigma_{ij}) \), \(\Sigma_\nu = (\sigma_{ij}(\nu)) \), \(\Sigma_s = \left(\sum_{\nu=1}^s \pi_\nu [\mu(\nu) - \mu] [\mu(\nu) - \mu] \right) \),
\(\Sigma_w = \pi_1 \Sigma_1 + \pi_2 \Sigma_2 + \cdots + \pi_s \Sigma_s = \left[\sum_{\nu=1}^s \pi_\nu \sigma_{ij}(\nu) \right] \),
\(\sigma^2 = |\Sigma| \), \(\sigma_w^2 = |\Sigma_w| \).

Thus we have that
\[
\lambda = 1 - |\Sigma_w|/|\Sigma|
\]
and we may also consider the function
\[
\lambda^* = |\Sigma_s|/|\Sigma|
\]
as a function to be maximized with respect to \(a_{ij} \)'s.

The sample characteristics of \(x \)
\(m_i(\nu) : \) the mean of \(x_i \) within \(\nu \)th group,
\(\lambda_i(\nu) : \) the variance of \(x_i \) within the \(\nu \)th group,
\(\lambda_{ij}(\nu) : \) the covariance of \(x_i \) and \(x_j \) in \(\nu \)th group,
\(m_i : \) the overall mean of \(x_i \),
\(\lambda_i : \) the overall variance of \(x_i \),
\(\lambda_{ij} : \) the overall covariance of \(x_i \) and \(x_j \),
\(m(\nu) = (m_1(\nu), m_2(\nu), \cdots, m_p(\nu)) \), \(m = (m_1, m_2, \cdots, m_p) \),
\(A = (\lambda_{ij}) \), \(A_s = (\lambda_{ij}(\nu)) \), \(A_w = \sum_{\nu=1}^s \pi_\nu A_s \)
\(a' = (a_{11}, a_{12}, \cdots, a_{ip}) \), \(A = (a_{ij}) \).

If follows that \(\mu(\nu) = m(\nu)A' \), \(\mu = mA' \) \(\Sigma_\nu = AA' \) \(\Sigma = AAA' \), \(\Sigma_w = AA_wA' \), and \(\Sigma_s = ADD'A' \) where
\[
D = \sum_{\nu=1}^s \sqrt{\pi_\nu} (m(\nu) - m')
\]
Thus we have to determine \(A \) which will maximize
\[
\lambda = 1 - |AA_wA'|/|AAA'|
\]
or that \(A \) which will maximize
\[
\lambda^* = |ADD'A'|/|AAA'|
\]
We shall find an \(m \times p \) matrix \(A \) that will maximize \(\lambda^* \), the matrix \(A \)
that maximizes λ may be found on similar lines. The solution for the particular case $m=2$ is given by Uematu [6] by a very complicated procedure. We give the solution for the general case by using the following result.

2. A useful result

We wish to prove that

\begin{equation}
\text{Min} \sum_{v_1, \ldots, v_k} \frac{Y'_i A y_i}{y_i y_i} = \text{Min} \text{tr} \, Y A Y' = \theta_{p-k+1} + \cdots + \theta_p,
\end{equation}

where $\theta_1 > \theta_2 > \cdots > \theta_p$ are roots of A, Y is $k \times p$ and of rank k, such that $Y Y' = I$. The minimum is actually attained when y_i is proportional to a linear function of the eigenvectors of A. The result (7) is established by repeated application of Rao's result ([5], p. 51, Eq. 2.5) that

\begin{equation}
\text{Min} \, y' A y_y, \quad \text{subject to } y'y = 1, \text{ and } H y = 0 \text{ is } \theta_{p-k},
\end{equation}

where H is $k \times p$ and of rank k and the minimum is sought over all H. Thus from (8) we know that

\begin{equation}
\text{Min} \frac{y'_i A y_i}{y_i y_i}, \quad \text{subject to } y_i y_i = 1, \; y_i y_i = 0, \cdots, \; y_i y_i = 0 \text{ is } \theta_{p-k+1}.
\end{equation}

Next we consider the $\text{Min} \, (y'_i A y_i) / y_i y_i$ subject to $y_i y_i = 1$, and $y_i y_i = 0 \cdots$, $y_i y_i = 0$ and this minimum is θ_{p-k+1} and so on, finally we consider $\text{Min} \, y'_i A y_i / y_i y_i$ subject to $y_i y_i = 1$ which is θ_p. Adding these minima we get (7). Thus from (7) we note that minimum is given by k last roots and hence the maximum must be given by first k roots, i.e.,

\begin{equation}
\text{Max} \, \text{tr} \, Y A Y', \quad \text{subject to } Y Y' = I \text{ is } \theta_1 + \theta_2 + \cdots + \theta_k.
\end{equation}

The minimum in (7) is obtained by setting $y_i = P_{p-k+1}$, $i = 1, 2, \ldots, k$ and maximum in (10) is given by $y_i = P_i$, $i = 1, \ldots, k$, where P_i is the eigenvector of A corresponding to θ_i.

3. Determination of the coefficients A

By using (6) and setting $B = A^{1/2}$ where $A^{1/2}$ is any positive definite symmetric square root of A, we find that

\begin{equation}
\lambda^* = |B A^{-1/2} D D' A^{-1/2} B' | / |B B'|.
\end{equation}

Since the maximum of (11) is sought over all B, we take $B B' = I$, and thus from (10) we conclude that
\[(12) \quad \text{Max } \lambda^* = \alpha_1 \alpha_2 \cdots \alpha_m ,\]

where \(\alpha_1 > \alpha_2 > \cdots > \alpha_p\) are roots of \(DD'\Lambda^{-1}\), and the maximum is attained when the row vectors of \(b'_1, b'_2, \cdots, b'_m\) of \(B\) are such that \(b_i = P_i, \ i = 1, \cdots, m\), where \(P_i\) is the eigenvector of \(DD'\Lambda^{-1}\) corresponding to \(\alpha_i\). From \(B\) we determine \(A\). By taking \(m = 2\) in (12), we get Uematu’s result.

The University of Calgary and Saint Mary’s University

References

