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1. Decomposition of an infinitely divisible characteristic function (abbr.
ch.f.)

— [ ur_q_ U2 0 (iw_ _ itx ) }
(1) o(f)=exp {So (e 1 1+x2) dM(x)+S_m e —1—HE) AN (o)
into a product of infinitely divisible factors is nothing but a decomposi-
tion of the spectral functions M(x) and N(z) into sums of monotone
non-decreasing functions. An infinitely divisible ch.f. (1) may, however,
have a factor which is not infinitely divisible. All non-normal stable
ch.f.’s are infinitely divisible and have non-infinitely divisible factors.
The purpose of the present article is to give some of the factors, which
are not necessarily infinitely divisible, of a stable ch.f. with the charac-
teristic exponent a not greater than one.

2. The results of this section are based on the following well-known
theorem due to Polya [2].

THEOREM. Let ¢(t) be a real valued continuous function defined for
all real t and such that (i) ¢(0)=1, (ii) ¢(t)=¢(—1t), (iii) lim ¢(t)=0,
and (iv) ¢(t) is convex for t>0. Then ¢(t) is the ch.f. of an absolutely
continuous distribution.

We shall use the theorem in the following restricted but more con-
venient form.

COROLLARY 1. Let g(t) be a real valued twice differentiable even
function such that g(0)=0, limg(t)=—c0, and ¢"'(t)+g*({t)=0 for all
t—co

t>0. Then o(t)=e'* 18 a ch.f.
From the corollary we can immediately derive the following

COROLLARY 2. If f(t) is a real valued continuous even function

347



348 RYOICHI SHIMIZU

such that f(0)=0, f'(t) and f'(t) exist and bounded and f(t)=0(t) as
t—oo. Then for sufficiently large 1>0,

(2) p(t)=exp {—2t|+ f(1)}

18 a ch.f. and,

COROLLARY 3. Let p be a positive integer and 0<a< - - <a,<1
be an arbitrary set of numbers. Let fi(t), ---, f(t) be a set of bounded
real valued functions which have bounded first and second derivatives.
Then for sufficiently large 4,>0 and 2,>0,

(3) #(t)=exp {(— 1+ log [¢) ¢[+ S fillog [ ¢
(=2, log [¢D)El"7] .

18 a ch.f.

Remark. Yu. V. Linnik [1] proved that if 0<a<2, «<--:<a,
and if f,’s are constants with —2,+ f,<0, then for sufficiently large
4>0, (3) gives a ch.f. (Polya’s theorem cannot be applied!). He also
showed that if f.’s are polynomials, then it satisfies the relation of the
form

(4) E elat)= ;ll e(b,t) ,
where a’s and b’s are real numbers such that
(5) o@)=a;[*+ -+ +|a["— b ["— - - - —]b, [*£O .

Though ch.f. ¢(t) given by the corollary 3 does not necessarily satisfy
(4), we have the following

PROPOSITION. If f’s are periodic functions with the common period
>0, then there exist sequences {a;} and {b,} of non-negative numbers
less than 1 such that the series i‘. aj and i b7 are convergent for x>0,

1 1
that ¢(t) satisfies the relation

(6) 1T ¢lait)=TT o(bst)
and that
(7) a(x):jéa’j—jéb?io.

If e~*x*, k=1, --., p are all rational numbers, then (6) and (7) reduce
to (4) and (5).

PrOOF. Let £=¢(k) and p=yx(k) be positive integers such that
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a=a(k)=e v >b=bk)=1—¢a’>0, k=1,---,p.

Put ¢/ ,=0, and

c§,,,=[<b—— gci,,‘a‘>/af] , j=2, ...

where [x] denotes the greatest integer not greater than x. Let {c;,}, k
=1, ---, p be sequences of integers defined by

-1 if 7=0
cl,k: c_;,k if jgl’ j$”(k)
ciaték) if  g=nk)

Then ¢;,, 1=<j, 1=<k<p, are non-negative integers bounded by
&(k)+1/a(k) and we have i ¢;@’(k)=1. This means that a(k)=e " is
i=1

a zero of the series g\(x)= i‘,c,,,,x’ which converges for |r|<1. Put
0

g(x)= ]2] g-(x) and represent it as
1

(8) 9@)= 3o~ Sima’

where I’s and m’s are non-negative integers, and put I_;=m_,=1 and

(9) Q1= :aln_l-iilnzbmn_l+l= ce=bp,_ym, =€,
n=0,1,2,.-- .

Then we have for any x>0, i a? and i b7 are convergent and
(10) oln)= 3l aj— 3 bj=g(e™) .

Clearly o(a,)=0, k=1, ---,p. It is not difficult to show that ¢(t) satisfies
(6). When e+, is equal to a rational number »/r,, k=1, --.,p, we
can use g,(x)=(rix—r,) in place of 3¢, .2/, and (10) reduces to a finite
sum. q.e.d.

Corollaries 2 and 3 enable us to give some decompositions of the stable
ch.f.’s.

THEOREM 1. Let £&(t) be a ch.f. without a zero. Suppose that f(t)
=log |£(t)| has the bounded first and second derivatives for t>0. If
F(@®)=0(t) as t—oo, then &(t) is a factor of the Cauchy ch.f. o(t)=e™",
provided 2>0 is large. If 0<a<l, and if fP{)=0("*") as t—oo
(k=0,1, 2), then &(t) is a factor of the symmetric stable ch.f. o(t)=e *!""
provided 2 is large.
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PROOF. The stable ch.f. ¢(t)=e *“" is formally decomposed as

eI L E() &(L) | (a=1)
(11) so(t)={ .
@(TAHRUBILIIEI®  £(8). &(L) , (1),
where
{ —2f(@), (a=1)
(12) k()=
—2f(e)e ™, (a<l).

Under the assumptions of the theorem, A(t) has bounded derivatives and
as t—oo we have Ah(t)=O0(t) (when a=1) and A(t)=0(1) (when a<1).
The theorem is a consequence of the corollaries 2 and 3.

Example. For any real p such that 0<p<1, &(t)=p+(1—p)e " is
the ch.f. of the distribution obtained by compounding the standard
normal distribution and the distribution degenerate at zero. It is easy
to see that it satisfies the conditions of the theorem. &(t) is a factor
of the symmetric stable ch.f. e %" 0<ax<1, if 1 is large.

COROLLARY 4. If ¢(t) is the ch.f. of a distribution with the finite
variance, them the ch.f. &(t)=exp {u(c(t)—1)}, >0 of the compound
Poisson distribution is a factor of the Cauchy ch.f. o(t)=e ", provided
2 18 sufficiently large. FEspecially the Poisson distribution is a factor of
the Cauchy distribution.

COROLLARY 5. FEwery infinitely divisible ch.f. defined by (1) is a
Sactor of a Cauchy ch.f., if as |x|—0, M(x)=0(x"') and N(x)=0(z™),
and if

rm’dM(x)+So 2 dN(z)< oo
J0 —00

COROLLARY 6. Let &(t) be the ch.f. of a distribution with the finite

variance and suppose that inf |£(t)|>0. Then it is a factor of a Cauchy
t

ch.f.

3. So far we have been concerned with the construction of symmetric
ch.f.’s. The results of the preceeding section can be generalized using
the following generalization of Pblya’s theorem.

THEOREM 2. Let ¢(t) and ¢(t) be real valued continuous functions
which satisfy the conditions (i) ¢(0)=1, (ii) 1=Z¢(t)=¢(—t)=0 and ¢(t)
=—¢(—t) for all real t, (iii) ¢(t) is differentiable and absolutely integrable
over (0, ), and (iv) for all real ¢ with [c|<1. ¢(t)+cd'(t) and o(t)+

cS:ogb(z') dr s convex on (0, o). Then ¢u(t)=p(t)+id(t) is the ch.f. of a
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distribution of which distribution function F(x) has the form
F(x)=p-e(x)+9G() .

where 1=2p=1—q=0, and «(x) and G(x) are the distribution functions,
respectively of the distribution degemerate at x=0 and of an absolutely
continuous distribution.

PROOF. Under the conditions of the theorem 2, ¢(t) is monotone
non-increasing for ¢>0 and is bounded from below by 0, so that p=
lim ¢(t) (1=p=0) exists. If p=1, then condition (iv) implies ¢(t)=gp\(t)
t—oo

=1. We therefore assume p<1. Put &(t)=(¢(t)—p)/a, g=1—p, or ¢(t)
=p+q&(t). Then &(t) satisfies the conditions of the Polya theorem and
hence is the ch.f. of an absolutely continuous distribution with the

density function p(x), say. Put, r(x)=?"’—r e "*=¢(t)dt. Then we have
ng J-e
for z+0,

(13) p(x)+r(x)=-217rw<£(t)+%'¢(t)> et dt
=%{S:€(t) costxdt+S:%¢v(t) sin tx dt} x#0,
and

(14) &) =p+a|"_(p(@)+r() e ds .

Since Sw (p(x) +r(x)) dr=(¢y(0)—p)/g=1, we have only to show that
p(x)+7r(x)=0, for x#0. We note first of all that IL(t)= —-E(t)———Z—gb’(t)

and Jc(t)E—-E(t)—E—Sm(ﬁ(t) dr are concave on (—oo,0) and on (0, oo) if
q t

le|<1. Especially they have, for almost all ¢, the derivatives which are
non-increasing on (—oo, 0) and on (0, ©). When 0<|x|<1, integrating
the first term of (13) by parts, we obtain

(15) p(x)+r(x)=%S:J,’(t) sin tz dt

=1 i S”/${J£<t+—2—n—7r>—Jx’(t+ 2n+1n)} sintx dt =0
wx 0 Jo x x

If |#|=1, integrating the second term of (13) by parts we have

(16)  pla)+r(@)= ls " Lu(t) cos ta dt:LS”L;,(t) sin tz d¢
T Jo Tr Jo
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=15 S'/’{L’,,<t+2—”n)— 1§,(t+ 2n+1 n)} sin tz dt=0
Tr o 0 x x

q.e.d.

We can use the theorem to derive

THEOREM 3. Let &(t) and 7(t) be real valued and, respectively, even
and odd functions which are differentiable three times. Suppose E{°(t),
k=1,2 and 3, and 7*{t), k=0,1,2,3 and 4 are bounded and that &(t)
=0(t) as t—oo. Then for sufficiently large 4,>0,

po(t)=exp {—Alt]|+&o(t) +im(t)}

18 a ch.f.
PrOOF. Choose a positive integer k, so large that |n(f)/k)|<=/3 for

all . Let k(=k,) be an integer and 2>0 be a large number, both being
determined later. Put &(&)=&(t)/k, »(t)=nt)/k, o(t)=e ""1+O  cos 9(t),

PE) =1+ sin 9(), L(t)=p(t)+cg/(t) and Jc(t)=ga(t)+cgj¢(r) dr .

We have to prove that I/(t)=0 and J//(t)=0, for, |c|<1, t>0.
Differentiating we have

I(t)= {a(t) cos (t)+b(?) sin 7(t)} e~ 1+,
and
J/'(t)= {c(t) cos p(t) +d(t) sin p(t)} e~*11+® |

where a(t)= {(1+3cn’)(— A+&)2+3ep"(— 2+£)
+&"— vlz +307’5" +C77m _ c?m} ,

b(@)={c(—2+§')— (29’ +3en* —Bcg")(— 2+§') + €™ —3en'y"}
c@)=(—2+&)+&" —y"—cy’, and d()=—(27'+e)(—2+£)—7" .
Let 2>0 be so large that a(t)=1 and c(t)=1 hold for all ¢, k=k,
and |c|<1. Since cos n(t)g’/_2-_§>-;~g]sin 7(t)], and since b(t) and d(t) are
bounded, we can take k large enough to make

I/() 2 (cos 7(t)— |b(t)| sin 7(¢)) e 111+ >0 ,
and
JI'(t) = (cos (t)— |a(t)] sin p(t)) e+ >0 |

By the theorem 2,

2e(t)=p(t) +1ig(t) =exp {—Alt|+£(t) +in(t)}
=exp {—2t|+&(0)/k+1n.(t)/k}
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is a ch.f.. Since k is a positive integer,
@o(t) =exp {—A|t|+&(E) +im(?)} A=k
is also a ch.f. qg.e.d.
COROLLARY. Suppose 1,(t) satisfies the conditions of Theorem 3.
Then for sufficiently large A,>0,
¢(t) __~e—10|tl+iﬂo(t)

18 @ ch.f. for which |p(t)|=e ",
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