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1. Introduction and summary

In his monograph on Statistical inference for Markov processes,
Billingsley [1] has proved the consistency and asymptotic normality of a
maximum likelihood estimator (MLE) under some regularity conditions
which involve the second and third derivatives of the transition densities.
Prakasa Rao [8] and Daniels [3] considered the problem of maximum
likelihood estimation under nonstandard conditions for independent and
identically distributed random variables. Recently Huber [5] has given
regularity conditions in the independent case, which do not involve the
existence of second derivative of the likelihood function, under which
MLE’s are consistent and asymptotically normal. Another novel feature
in Huber’s result is that he does not assume that the underlying true
distribution is a member of the assumed parametric family.

Our aim in this paper is to extend Huber’s result to the case of
Markov processes. We do assume that the true distribution is a member
of the assumed parametric family. We shall prove that the MLE’s are
consistent and asymptotically normal under some regularity conditions
which do not involve the existence of the second derivative of the tran-
sition density. In this connection, we would like to mention that Roussas
[9], [10] also considered the problem of maximum likelihood estimation
in the Markov case.

Section 2 contains some notations and assumptions. Sections 3 and
4 contain two different sets of conditions for strong consistency of esti-
mators. Asymptotic normality of a MLE is proved in Section 5.

We chose to treat the case when the parameter is one-dimensional.
Multi-dimensional case can be treated analogously as was done in Huber
[5]. Proofs are similar to those given in Huber [5] but some modifica-
tions are required in view of the Markov dependence especially in
Lemma 5.2.
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2. Some notations and assumptions

Consider a measurable space (x, a) and for each #¢ H, let P, be a
probability measure on a. Assume that for every ¢¢ H, {X,, n=0} is
a Markov process taking values in the space (x, a, P;), with stationary
transition measures Py(¢, A)=P,[X,,, € A| X,=¢]. We assume that for
each 6 ¢ H, P,(¢ A) is a measurable function of ¢ for fixed A €a, and
a probability measure on a for fixed &. Such a set of transition meas-
ures gives rise to a Markov process by Doob [4]. We shall suppose
that there is a measure v on a, not necessarily finite, with respect to
which transition measures P,(£,-) and the initial distribution P,(-) have
densities f(&, »; 8) and f(&; 0) respectively. Assume further that f(£; )
is measurable in the pair (¢, 6) and f(&, 5; 6) is measurable in the triple
&, 19 0. If (X, X,,---, X,,;1) is an observation on the process, then it
is easily seen that the log likelihood of (X, X;,---, X,.1) is

log f(Xi, 0)+ 33 log f(Xs, Xii; 0)

except possibly on a v-null set. For reasons mentioned in Billingsley
[1], it is convenient to assume the log-likelihood function to be

L"(0)=é log f(Xi, Xei136) .

In all the later discussions, we assume that the following condition
holds. '

(2.1) For each ¢ € H, the stationary distribution exists and is
unique and has the property that for each £ in the state
space, P,(&,-) is absolutely continuous with respect to the
stationary distribution.

Now we have the following theorem due to Billingsley [1].

THEOREM 2.1. Under condition (2.1), if ¢(x;, ;) is a X a-measurable
and if E|e(X;, X;)| 18 finite when the initial distribution is stationary,
then
lim 0™ 32 Xy, X)) =EBo(Xs, X)

with probability one, mo matter what the initial distribution is.

The second result which we will have occasion to use was proved
independently by Billingsley [2] and Ibragimov [6]. This theorem is
useful in proving the asymptotic normality.

THEOREM 2.2. Let {Z,, n=1} be a strictly stationary ergodic process



MAXIMUM LIKELIHOOD ESTIMATION FOR MARKOV PROCESSES 335

such that E[Z}] 1s finite and E[Z,|Z,,- -, Z,_;]=0 with probability one

Jor n>1 and E[Z]=0. Then the distribution of n~? i‘. Z, converges
k=1

weakly, as n— oo, to the normal distribution with mean 0 and variance

E[Z2].

As a consequence of this theorem, we have the following lemma
which will be used later.

LEMMA 2.3. Under condition (2.1), for any aXa-measurable func-
tion g(z,, x;) with E[g(X;, X,)) finite when X, has the stationary initial
distribution, the distribution of

n"”kZ:l 9(Xs, Xit1)

converges weakly, as n—oo, to the mormal distribution with mean
Elg(X;, Xb)] and Var [g(X,, X;)] even if the distribution of X, is not the
stationary one.

The next lemma is very easy to prove and a proof of the same
can be found in Loéve [7], p. 386.

LEMMA 24. Let Z,,2,,---,Z, be n random wvariables such that
(i) E[Z]=0 (i) E[Z,]|Z,,---, Z,_,]=0 with probability one, 2<1<n and
(ili) F[Zf1<oo for 1=i<n. Then

Var [i‘. Zi] =$ Var Z, .
1
As an immediate application of this lemma, we obtain the following
result.

LEMMA 2.5. For a’riy a X a-measurable function g(x,, x,) with
Elg(X,, X)I
finite,
Var [ 3 0%, Xow)— Blo(Xs, Ko KD)]
=31 Var [o(Xs, Xou)— B(9(Xs, Ko | K} -
ProoF. Let Z,=g(X,, X;.1)—E{9(Xy, Xis1)| X} Clearly with prob-
ably one,

E[Z\Z,,---, Z,]
=E[(9(Xe, Xir)—E{9(Xs, Xer) | XD 21, - -5 Z3i]
=E[(9(Xe, Xer)—E{9(Xi, Xii) | XD Xy, - -y Xl
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=E[g(X:, Xer) | X1, o o, Xl —El9(Xs, Xerr)| Xi]
=E[g(X;, Xo| Xi]l — E[9(X;, Xi11)| Xi]=0

since the conditional distribution of X,,, given X,,:--, X, depends only
on X,. Since the transition density is stationary, it follows that for
1<k=<n, Var[Z,]=Var[Z] which is finite by the hypothesis since
E[g(X,, X,)]* is finite. Hence we obtain Lemma 2.5 from Lemma 2.4.

3. Consistency: Case A

Let H be an open interval of the real line R!. Suppose p(x,, ;; 6)
is a function defined on xxxxX H. Let T,=T,(x,,---, %,) be measurable
with respect to the o-field a,=axaX---Xa (n copies) such that

@.1) 17 316X, X3 T)—int ! 326X, o B0

almost surely. We shall now give sufficient conditions which ensure
that 7T, converges almost surely to some constant #,. Here and else-
where in the paper the phrase “almost surely” refers to the underly-
ing true probability measure.

ASSUMPTIONS A

(8.2) For each 6¢ H, p(x,, x,;; 0) is axXa-measurable and p(x,,
x;; 0) is seperable with respect to closed intervals of H
when considered as a process in 4.

(8.3) p(x;, x;; 6) is lower semi-continuous in & for almost all
pairs (z;, #;) € X x.

(8.4) There exists a function a(x;, «;) which is a X a-measurable
such that

Elo(X,, X;; 0)—a(X,, X)) <o for all ¢ H
and
E[p(le Xz; 0)_a(X1, Xz)]+<°° for all 9 H ,

where expectations are taken with respect to the true underlying dis-
tribution. Let ’

T(”)=E[P(Xla Xz; 0)—a(X1, X2)] .
(83.5) There exists 6, € H such that y(6)>y(6,) for all +6,.
(8.6) There exists a continuous function b(6) such that

(i) b@)>0 for 0 H,
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(ii) inf (570 oo, 7:; 6)—a@i, 2]} 2 b1, ) for some function Az, =)
such that E[|h(X;, X;)|]< oo,

(iii) lim inf b(6) >7(6,) as [#|— oo, and

(v) E[lim inf (57(0) (X, Xis 0)—a(X,, x|zt

THEOREM 3.1. Under the assumptions (3.2)-(3.6), any sequence T,
satisfying (3.1) comverges to a constant 6, almost surely.

The proof of this theorem runs parallel to the proof given by Huber
[5] except for the fact that Theorem 2.1 is used instead of the Strong
law of large numbers at the appropriate step of the argument.

Remark. By taking p(x,, 2:; 6)= —log f(x, ,; §), we obtain that a
MLE is strongly consistent if it satisfies conditions (3.2)-(3.6) since a

MLE T,=60.X,,---, X,) satisfies (3.1).

4. Consistency: Case B

As before H is an open interval of the real line R!. Suppose ¥(z,
%, 0) is a real-valued function defined on Xz xH. Let T,=T.(x;, -,
z,) be measurable with respect to the o-field a,=axax:--Xa (n copies)
such that

4.1) 7t 3 F (X, X T)—0

almost surely. We shall now give sufficient conditions which ensure
that 7, converges almost surely to some constant 6,.

ASSUMPTIONS B

(4.2) For each 0 € H, ¥(x,, x,; 6) is a Xa-measurable and ¥(x,,
x,; 0) is seperable with respect to closed intervals of H
as a process in 6.

(4.3) ¥(x,, x,; 6) is continuous in @ for almost all pairs (,, &) €
TXx.

(4.4) AO)=E[¥(X,, X;; 0)] exists and is finite and has a unique
zero at 6#=¢@,, where E denotes the expectation with re-
spect to the true underlying distribution.

(4.5) There exists a continuous function () such that

(i) b(6)=b,>0 for all ¢ H,
(i) sup {b746)| ¥ (x,, x;; 0)|} is integrable,



338 B.L.S. PRAKASA RAO

(iii) liminf {6-46)|2(8)[} =1 as |8]— oo, and
(v) E|limsup 570 [¥(X:, X, -0} | <1.

In the last assumption, separability of ¥(x,, x,; #) and the continuity

of b() with b(6)=b,>0 for all ¢, imply the measurability of the funec-
tions involved in (ii) and (iii).

THEOREM 4.1. Under the assumptions (4.2)-(4.5), any sequence T,
satisfying (4.1) will have the property that T, converges to a constant 6,
almost surely.

The proof of this theorem is similar to the one given by Huber [5]
and hence is omitted.

Remark. In view of Theorem 4.1, it follows that a MLE is con-
sistent if assumptions (4.2)-(4.5) are satisfied by ¥(x,, x;; 8)=ad log f(z,,
%;; 0)/90 since (4.1) is automatically satisfied in such a case.

5. Asymptotic normality

Assume that H is an open interval of the real line as was done
earlier. Let ¥(x,, x,; 6) be a real-valued function defined on xxxXx H.
Let T,=T,(x,,---, x,) be measurable with respect to the o-field a,=a %
aX---Xa (n copies) such that

(.1) s z U(X,, Xip1; To)—0

in probability. We shall now give conditions under which (5.1) implies
that 7, is asymptotically normal. It is easy to see that any MLE é,,
such that 8L.(6)/d0=0 for =6, satisfies (5.1) by taking ¥(x., x; 6)=
dlog f(x,, z,; 8)/d6. Under the conditions given below, it follows that

6, is asymptotically normal if it is consistent estimator. We shall as-
sume, through out this section, that T, is a consistent estimator.

ASSUMPTIONS N

(5.2) For each fixed 6 ¢ H, ¥(x,, x;; 6) is aXa-measurable and
¥(x,, «,; §) is separable with respect to closed intervals
of H Let 20)=E[¥(X,, X;;6)] and g(x,, x,; 8, d)=sup .
{|1¥(xy, @55 7)—¥ (21, X2; 0)|:|t—0|<d} where expectation is
taken with respect to the true underlying distribution
here and elsewhere in these assumptions.

(5.3) There exists 6, ¢ H such that E[¥(X], X;; 6|X;]=0 a.e.
This implies in particular that i(6,)=0.
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(5.4) There exists positive constants a, b, ¢ and d, such that
(1) 14(0)|za|6—06,} for |6—6)|<d,,
(ii) supSg(x,,xz;ﬂ, d)u(@,, do)<bd for |0—0,|+d=<d,, d=0 where p is
the t;:u‘é transitional distribution function.
(iii) supS[g(xl,xz;o, )z, dx)<cd for |6—6,|+d=d,, d=0 where pu
is as z(i:;ﬁned above.
(5.5) E|¥(X,, X;; 6,)|* is finite.
(5.6) T, converges to 6, in probability.
THEOREM 5.1. In addition to the above assumptions (5.1)-(5.6), sup-

pose that () has a monzero derivative A at 6,. Then n'YT,—6,) 1s
asymptotically normal with mean zero and variance AE[¥ (X, X;; 6,)].

Before we give a proof of this theorem, we shall state and prove
some lemmas, which lead to its proof. Let

Z.(z, 0)=1(0)| 3 (F(Xe, Xos3 ) —U(X,, Xio; 0)—2(2)+2(0))

where (z)=[n"2+n|i(z)[].
LEMMA 5.2. Under the assumption (5.2), (5.83) and (5.4)
sup {Z.(z, 6y) : |t—6,|=d,}—0
wn probability as n tends to infinity.

PrROOF. Let us suppose without loss of generality that ,=0 and
dy=1. Let C,={60:10|1=(1—q)*}, 1=k=<k, where k, and ¢<1/2 are to
be chosen suitably later. Note that C,={¢:|6|<1} and C,_,—C,={6:
(1—9)<|8|<A—q)*'}. C,_;—C, consists of two subintervals such that
the centre & of each of them has absolute value 27'(1—gq)*(2—¢q) and
there are N=2k, such subintervals contained in C,—C, . Let them be
Cyp,++, Cxy. Let us observe that for any >0,

Plsup 2, O)gze} gP{ sup Z(r, 0)_2_25] 5 P{ sup Zi(r, O)gze} :
|7]=1 7 € Ciy i=1 r€Cwp
Choose 7 in (1/2, 1) and let k,=k(n) be an integer depending on n» such
that
G.7) k(n)—1<—T1OB" gy
|log (1—q)]

Since N=2k,, it follows that N=O(logn). Let r€¢C; and C; be a
subinterval of C,_,—C;. Then by (5.4),
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|4()|zel7|za(l—q)*
and hence
(5.8) [(r) = 4(&) |=| E[¥(Xy, X,; 7)—¥ (X1, Xi; 6)]|
<E|sup V(X X )~ ¥(X, X,; 9]
=E[9(Xi, X,; ¢, d)]<bd <bg(1—q)*
where d=2""¢(1—¢)** and |¢|=2"'(1—q)*'(2—q). Clearly

(6.9)  Z(z, 0)=Z,(z, &) +1(7)

3 (X, Kot =¥ (X, X3 0= 2 |
and
(610)  Zie, S (S ¥ Xy Xepss )= F(Ke, Xewss O 1110 — 2001
<UL (31 00K, X & ) +120)— 2]
1) {33 10K, Xowss € D)+ Bol(Xs, X8, D} -
Combining (5.9) and (5.10), we obtain that
(5.11) sup {Zn(f, 0) ITE C(j)} é Uﬂ,+Vn
where
(.12)  Up=[nal—'1" S [0(X;, Xows; &, )+ Bo(X,, Xas &, d)]
and
(6.13)  Vi=[na(l—'T" | S F (X, Xos; )= ¥(Xe, Koo 0260 ,
since L (t)=(n">+n|2(z)|)'<[na(l—q)*]"'. Now for any >0,
(6.14) PIU,zel=P |31 (0(X;, Xons; & D~ E{o(Xe, Xears &, d)| X))
2ena(l—g)'— 3 E{g(X,, Xowi3 ¢, d X}
—nElg(X, Xi; ¢, d} | .
But by (5.4)-(ii),

(5.15) EM(l—q)"—Zj} E{9(X:, X.115 ¢, d)| Xi} —nE{g(X,, X3; ¢, d)}
Zena(l—g)*—2bdn =nbg(1—q)*
provided ¢ =<(8b)'ca. Choose ¢ <min {1/2, (3b)'ea} and let m,=nbg-
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(1—q)*. It now follows form (5.14) that
PIU.2e)= P[5 {0(X,, Xwss €, )= Bl9(Xe, X 6 )| X} 2ma
<mE[31{0(Xe, X € )= EL0(Xe, Xeni & DI X1} |
=m;* 33 Var {g(X,, Xons & &)= Elo(Xe, Xen; & )| XJ)
by Lemma 2.5, which in turn gives the inequality
(5.16) PlUzclSm;* 3 Bl(Xe, Xivs & d)—Blg(Xe, Xivas & )| XJ T
<2m;* {33 Blo(X, Xowi &, )P

+33 BU(Blo(X,, Xowsi €, DI XDV}

<2m;[ned+nb*d*]
<2n(c+b)m;’d since 0<d<1
=Ci[n(1 -y~

where Ci=(c+b*)b%q'(1—q)~*. Let us now consider

PV, zel=P| |5 [0 (X, Xewis —F(Xe, Xops; 0= 21| 2enall—a)
P33 1¥(X, Xows; )= F(Xe, X O)l+nl 2@ | Zenall—qF |
< P[31 00X, X & 16D +nBg(Xi, i3 €, | Zenall—aF

which in turn can be shown to satisfy the following inequality by argu-
ments similar to those given in (5. 14), (5.15) and (5.16). Since |£|<]1,
it can be shown that
(5.17) P[V,=el<2n(c+b)m; | €|

=Cn(1—q)* ']

where C,=(c+b*)(2—q)h~%¢(1—q)2. Combining (5.11), (5.16) and (5.17)
we obtain that

(5.18) P[sup {Z,(z, 0) : € Cip} = 2] =C*n~'(1—q) * "' < C*n !
where
(5.19) C*=C+C,
=(c+b)(1—g)'[b7%¢ ' +(2—q)b %]
=(c+b)(1—q) 0 ¢ *[¢+2—q]
=2(c+b)(1—q) ¢
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which is independent of & and n. Clearly
sup {Z,(z, 0): 7 € G } =m™"* $ {9(X;, Xi115 0, d)+ E[g(X, X115 0, d)]}

and hence for d=(1—¢)*<n~7, we have the following inequality.
(5.20) Plsup {Z.(z, 0) : 7 € C;, } = 2]
<P[S{0(Xi, Xos; 0, d)— E(@(X,, Xovi; 0, )| X))

22en— 3] Blg(Xe, Xoui3 0, d| X)
33 B(X, Xo013 0, )]
<P[S10(X, X3 0, d)— E(g(Xi, Xois3 0, )| X))
"
The last inequality follows from the assumption (5.4). Since 1/2<7y<1,
it follows from (5.20), that for » sufficiently large

Plsup {Z,(r, 0) : v € Cy,} 2 2]
<P[ 30X, Xeu 0, )= Bl@(Xi, X3 0, )| X} 2 en?]
<0t B 30X, X 0, d)— B@(Xe, Xeas; 0, )| X)) |
which can be shown to give rise to the following inequality by Lemma
2.5 and by the arguments used in (5.16). It can be shown that
(5.20a) Plsup {Z,(7, 0) : 7 € Cp } = 2] =2(c+ )7 .

Combining (5.6), (5.18) and (5.20a), we obtain that for n sufficiently
large,
(5.21) Plsup {Z,(z, 0) : | 7| =1} = 2]
SNC*n '+ 2¢7n7"(c+b%)
=0(n"")+0(n"! log n)

since N=0 (log »). This proves the result
sup {Z,(z, 0) : |[7|=1}—0

in probability as » tends to infinity. This completes the proof of this
lemma. '

The next lemma is useful in proving our main result on asymptotic
normality.
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LEMMA 5.8. Under the assumptions (5.1) and (5 2)-(5.5), for any
T, such that P(|T,—6,|<d))—1 as n— oo,

(5.22) W SU(X,, Xorss 00)+022(To)— 0
1

n probability as n tends to infinity.

PrROOF. We shall assume that 6,=0, d,=1 as was done in the pre-
vious lemma. Let W,=(n"+n|A(T,)|)"'. It is easy to see that

Xi13 0)+A(T)]

|2 T, Xoas T =¥ (X, Xori3 0= A(T,)]

+ 7| S, X T

<sup (Z,(r, 0); |7|S1}+n77| S U(X,, Key; T2)

where the last inequality holds good with probability tending to one as
n tends to infinity since P(|T,|<1)—1 as n—oo. Now Lemma 5.2 to-
gether with assumption (5.1) imply that

(5.23) Wa| 3 (X, Xowss O+ A(T]| -0

in probability. Let E[¥(X,, X;; 0)I’=¢* where expectation is taken with
respect to the true underlying distribution. F[¥(X,, X;; 0)]=0 by (5.3).
Hence by Lemma 2.3,

(5.24) (X, X3 0)

is asymptotically normal with mean 0 and variance o*. We shall now

show that (5.23) and (5.24) together imply (5.22). Let R,.=i‘, (X,
1

Xi.1;0). We know that » 2R, N(0, ¢*) and W,|R,+ni(T,)|>0 as n
tends to infinity. Choose any ¢>0. We can find a k=Fk(c) such that
for n sufficiently large,

(5.25) P(n "R, |>k)<—
and
(5.26) P(W,|R,+ni( T,.)|>e)<% X

(5.25) and (5.26) imply that for n sufficiently large
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P(|R,|<kn'? and |R,.+n1(T,,)|§eW,:‘)>1—% .

It is easy to see that the inequalities |R,|<kn'? and |R,+ni(T,)|<
W, ! imply that n'2|X(T,) |<(k+¢)(1—¢)~'. Hence for n sufficiently large,

(5.27) P[n| (T,) | S (k+e)(1—e) > 1.

(5.26) and (5.27) together imply that for » sufficiently large

P(n“/zlR,.+'n2(T,.)|<e+e(k+e)(1—e)“)>1—%

ie. P(n"2| Ry+na(T.) | < (k+1)e(1 —)™) >1—_?ii

where k& depends on ¢ only. This proves that
n S U(X,, Xigs; 0402 T,)—0
1

in probability which completes the proof of this lemma.

ProoF OF THEOREM 5.1. Since T,—6, in probability, P(|T,—8|=
dy)—1 as n— oo and hence by Lemma 5.3, it follows that

n-2 é (X, Xit1; 00)+n'*A(T,)—0
1
in probability and by Lemma 2.3,
n VUK, Xops; 0> N(O, o)
1

where N(0, ¢°) denotes the normal distribution with mean 0 and vari-
ance ¢=FE[¥(X,, X;, 6,))*. Hence n'?i(T,) is asymptotically normal with
mean 0 and variance ¢*. But

=A(Tn_00)+0p(Tn_00) .
Hence we obtain the result »'*(T,—86,) is asymptotically normal with
mean 0 and variance A%’ since T,—#§, in probability as n— oo.
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