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1. Introduction and summary

Consider the univariate discrete random variable x which is assumed
to have a probability mass function of the form

(1.1) p(z]|0)=h(x)BO)F, 6¢(,u), u>0; z=0,1,---, N,

when @ is given. The numbers N, u may be finite or infinite. Assume
that @ has an a priori distribution G(f) over the interval (0, #) such
that, for all #, x=0,.--, N,

(L.2) p()=|, p@|0)G©)>0 ,
and
(1.3) So FdG(6)< oo .

Let D be the class of all non-randomized decision functions, when
x is observed, with a generic element d. We wish to estimate 6 with
squared error loss [d(x)—6#):. The Bayes estimator, relative to G(8), and
its optimal Bayes risk are, respectively

(1.4) do(2)=w(@)p(z+1)/p(z) ,
where

(1.5) w(x)=h(x)/h(x+1)

and

(1.6) B(G)=inf é S: [d(z)—6T'p(z| 6)dG(6)

=33 | 1do(a)— 07'p(x] 0)AG) .

* This paper is part of a doctoral dissertation submitted at Columbia University,
November 1968. The research was supported by NSF Grant GP-7456.
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In practice, however, it is found that G(6) is usually unknown, but
the estimation problem about # with the same loss function occurs re-
peatedly and independently. More precisely, let (x,, 6),: -, (%, 6,),+ - -,
be a sequence of pairs of random variables, each pair being independ-
ent of the others, the #’s having a common a priori distribution G(6)
and the conditional mass function of z, given 6,=6@ being p(x|6). At
the (n+1)st stage, when the decision is to be made about 6,,,, we have

observed z,, «,,-- -, Z,,,, although the values of 4,, 6,,- - -, 6, remain un-
known. From this knowledge, an empirical Bayes estimator, d.(x)=
d.(xy,---, x,; x), depending only on z,,---,%,, %, can be constructed.

This is usually referred to as the standard empirical Bayes assumption.
The Bayes risk associated with d,(x), given by

an  B=3-3 3 [ d@-0 T seol0d6e)

will converge to B(G) as n—oo. If this can be achieved, the sequence
{d.(x), n=1,2,---} is called asymptotically optimal.

In Section 2, a sequence of empirical Bayes estimators is proposed.
This sequence is shown to be asymptotically optimal, and the rate of
convergence for the Bayes risks associated with the empirical Bayes
estimators to the optimal Bayes risk is obtained. Finally, some exam-
ples are exhibited in Section 8 to show the applicability of the main
result.

2. Rates of convergence

Fix an arbitrary decision function d, € D, the Bayes risks associated
with d; and d, can be written, respectively, as

(2.1) B(@)=co+3] 4olds, 2)

and

@2 By=co+ 3 Eldo(d,, )]

where we have set

(23) co=3: | o= 0ypiz| 0G0) ,

2.4) 46(ds, 9)=—p(@)(do— ),

@5) E[45(ds, 2))=p(@) Edy—do)'—(do—d]

and where E denotes expectation with respect to the joint distribution
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of z,, x3,--+, 2,. From (2.1) and (2.2), it is easy to prove the following
result.

LEMMA 2.1. If B(G) and B, are given by (2.1) and (2.2), respec-
tively, then

(26) 0SB,—BG) =3 p@)Eda—do)'

where E is as defined in (2.5).

We are now in a position to construct an empirical Bayes estimator
of 8. Define an indicator function

1 if x,=x

Li(x)= )
0 otherwise ,

and let
2.7  m@)=puan, e, 2 )= 1 I(2)
be an empirical estimator of p(x). It is easily seen that, for each «z,
(2.8) E[pu(x)]=p(x)
and
(2.9) Var [p,(z)]|<(4n)™" .

With the standard empirical Bayes assumptions, we propose an em-
pirical Bayes estimator of 4, at the (n+1)st stage, given by

w@)p(2+1)/pu(x)  if pu(x)20,
(2.10) d.(x)=

w(x)p(x+1)/5, otherwise ,
where {5,, n=1,2,---} is a sequence of positive real numbers with
(2.11) em <6, Zem, 0<ei=6 <00, r=1/3.

LEMMA 2.2. Let p(x), p.(x) be given by (1.2) and (2.7), respectively.
For some positive real number 3,, defined by (2.11), and some t, 0<t<1,

P[pn(x)<5n]§036£n ’ 0<e< o0,
of and only if
P[p(x)<5n]§c45:z ’ 0<C4<00 ’

ProoOF. To simplify notation, we write p,=p,(x) and p=p(x). The
“if” part:
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P(p.<0,) S P(0, <0y, | Pa—DP|>02)+ P(0,<0n, | P»—D| 0., p=20,)
+ P(Pa <0, | Dn—D|=0,, p<20,)
<P(|p.—p|>d,)+0+P(p<20,)
S0ME| pa—p[*+ci(20,)
=co, .

The last inequality is obtained by noting that

E|p,—p|*=E[E(|p.—p[*|®)]
<E[E(p.—p|*|®)]
=(4n)"*.

The “only if” part can similarly be proved.
We are now able to state the rate of convergence theorem.

THEOREM 2.1. Let p(x|6) be given by (1.1), and G(6) be such that
1.2) and (1.3) hold. To estimate 6 with squared error loss, the Bayes
and empirical Bayes estimators are given by (1.4) and (2.10), respectively,
with their corresponding Bayes risks given by (2.1) and (2.2). If,

(2.12) é w(@)p(@)p(x+1)<oo,
(2.13) S} e+ 1)< oo
(2.14) io W(@)pa+1)/p(@) < oo
and if, for some t, 0<t=1,

(2.15) Plp(x)<d.]<cd. ,
where 6, 18 defined by (2.11) and 0<c< oo, then
(2.16) B,—B(G)=0(n"*") ,

and hence the sequence {d,, n=1,2,---} of estimators given by (2.10) s
asymptotically optimal.

PROOF. To simplify notation, we write g,=p.(x+1), g=p(x+1),
D.=0.(x), p=p(x) and w=w(x). Now for each z, r=0,1,---, N, we
have the upper bound
(2.17) wE(d,—ds) £20;,°E(g,—9)*+4(9/p)’0.*E (p,— p)}

+16(g/p)*c's, ,

where 0<¢'<oo, by applying Lemma 2.2. From Lemma 2.1 and the
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inequalities (2.9), (2.17), together with assumptions (2.12) through (2.14),
we have

N
Bn_ B(G) =z§° p'E'(dﬂ'_dG)2
N N N
<o%,(2 3 wipg+4 5 wet)+1608 3 wigilp
z=0 =0 x=0
which completes the proof.

Note that conditions (2.12) through (2.14) always hold when N is
finite. Let us consider the case when N=oc. Suppose that there ex-
ist positive integers C and M, such that, for all x=M,,

o0

(2.18) 3 wi@)pa+1)<C,

z=M;

then conditions (2.12), (2.13) and (2.14) are satisfied. For, since p(x) is
a probability mass function, it is necessary that there exists a positive
integer M, such that p(x+1)<p(x) for all x=M,. Setting M=max (M,
M), we have

(i) 33 wi@)p@)p(a+1)<Cp(M),
(i) 3 wi@)p+1)=<Cp(d),

(iii) 33 w@)p(e+1)/p(n)=<C.

From which conditions (2.12), (2.13) and (2.14) follow immediately. Thus
we have proved

COROLLARY 2.1. If conditions (2.18) and (2.15) are satisfied, then
the result (2.16) holds.

Observe that (2.18) holds if one of the following three conditions is
satisfied :

(2.19) There exists a positive integer z, such that, for all x=>x,,
wi e+ 1)p(r+2) <wx)p(x+1),

(2.20) sup |w(x)|<oo ,

(2.21) lim |w(x)|=0.

3. Examples
(i) Consider a Poisson distribution

3.1) p(x|0)=e'¢x! , z=0,---,60>0,
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and let the prior probability density be
(3.2) G'(O)=ae™, 6>0, 0<a<oo .

Then we have

P)=(a/a)) | e rdo=a(a+ 1)+ |
Since for any real number b>1,
(3:3) S et =b(b+1)(b—1)"< oo ,

and since w(x)==z+1, conditions (2.12) through (2.14), which can be re-
written in the form (3.3) with b=a+1 or b=(a+1), are satisfied. More-
over, letting

Y»=—(log 6,—log a)/log (a+1) ,
we have

oo

> (a+1)—(z+l)
[v,]

P{p(x)<o,} =P(x=y.)<a .
=(1+a™)d,,

where [y,] denotes the integral part of y,, and hence condition (2.15)
is satisfied. Thus we have proved

THEOREM 3.1. Let z be a Poisson random variable with mean @
and let G'(6) be given by (3.2). To estimate 6 with squared error loss,
the results of Theorem 2.1 hold with t=1.

(i) Let xz have a negative binomial mass function
@4 =" Nea—or,  se01; 5=0,1,-,
for some fixed k=1,2,-.., when @ is given. If the prior probability
density of ¢ is
1 if 6€(0,1)
(3.5) G’(o):{
0 otherwise ,
then
p(@)=k{(z+k)(x+k+1)} .

Noting that w(x)=(x+1)/(x+k)<1, condition (2.18) is verified by (2.20).
To check condition (2.15), we proceed as follows. Let
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v= (k72 —h—1 .
Then
P(p(z)<4,) SP{(z-+k+1)* <k"l6,} = p(s>v.)
= 3 kE+Re+k+1)

r= vn
=k{[(k3;")"]}
=cd/*,

where 0<c¢<oo and [y,] denotes the integral part of y,. We may sum-
marize the result as follows:

THEOREM 3.2. Let p(x|6), G'(6) be given by (3.4) and (8.5), respec-
tively. To estimate 6 with squared error loss, Theorem 2.1 holds with
t=1/2.
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