A RANDOM OBSERVATION PROCESS FOR STOCHASTIC APPROXIMATION

SIRÔ YAMAZOE

(Received June 23, 1970; revised April 3, 1972)

1. Introduction and summary

Consider a family of probability distributions \(\{F_z\} \) with a controllable parameter (level) \(z \) and finite means \(M(z) \). As is well known, the stochastic approximation method may be used to find the location \(x_0 \) at which the function \(M \) has a certain property. In fact Robbins and Monro [6] proposed the following procedure to estimate the root \(x_0 \) of the equation \(M(x) = a \), assuming that \(M \) is an increasing function:

\[
(1) \quad x_{n+1} = x_n + a_n (a - y_n),
\]

where \(\{a_n\} \) is a fixed sequence of positive constants and \(y_n \) is a random variable with the conditional distribution \(F_{x_n} \), given \(x_1, \ldots, x_n, y_1, \ldots, y_{n-1} \). It is proved that \(x_n \) converges to \(x_0 \) with probability one under some conditions; see Blum [1], Dvoretzky [3] and Schmetterer [7]. In case \(M(x) \) is strictly increasing for \(x < x_0 \) and decreasing for \(x > x_0 \), a procedure to estimate \(x_0 \) given by Kiefer and Wolfowitz [4] is as follows:

\[
(2) \quad x_{n+1} = x_n + \frac{a_n}{c_n} (y_n - y_{n-1}),
\]

where \(\{a_n\} \) and \(\{c_n\} \) are sequences of positive numbers and where \(y_n \) and \(y_{n-1} \) are random variables which are conditionally independently distributed according to \(F_{x_n + \epsilon_n} \) and \(F_{x_n - \epsilon_n} \), respectively, given \(x_1, \ldots, x_n, y_1, \ldots, y_{n-2} \). The convergence of \(x_n \) to \(x_0 \) with probability one under some conditions is proved by Blum [1], Dvoretzky [3], Burkholder [2] and et al. As is shown in (1) and (2), the characteristic of \(M(x) \) is made the best use of and then the above methods are thought not to be robust to the condition of \(M \). It means that the stochastic approximation method is used seldom, if ever, in other cases.

From this point of view, a random observation process is proposed to estimate the location \(x_0 \). The estimation procedure is defined successively as follows, beginning with an initial value \(x_1 \in [0, 1) \). For any
positive integer n let x_1, \ldots, x_n be the levels of observation chosen up
to the nth stage and let y_1, \ldots, y_n be the observed values at the
respective levels. Using the x's and y's, we first construct an estimate
M_n of the function M and then a probability distribution β_n over the
interval $[0, 1)$. A subsequent level x_{n+1} is chosen by a chance
mechanism with the distribution β_n and a corresponding value y_{n+1} is observed
according to the distribution $F_{x_{n+1}}$. A reasonable criterion for the pro-
cedure may be that the distribution β_n converges to x_0 in law with
probability one. The convergence is proved in Section 4 in case that
the root of the equation $M(x) = a$ is to be estimated, while it will be
discussed in the forthcoming paper [8] for the problem of estimating
the maximum point of $M(x)$.

2. Notations and formulation

Let $\{F_x; 0 \leq x < 1\}$ be a family of probability distributions on \mathbb{R}^i
with finite means, say $M(x)$, such that for any Borel set B of \mathbb{R}^i $F_x(B)$
is measurable. For every non-negative integer m we define a half-open
interval B_{mi} as

$$B_{mi} = \left[\frac{i-1}{2^m}, \frac{i}{2^m} \right) \quad i = 1, 2, \ldots, 2^m.$$

Let $\{k(m); m = 0, 1, \ldots\}$ be a sequence of integers satisfying the follow-
ing condition:

(3) \hspace{1cm} k(m) \text{ is strictly increasing and } k(0) = 1.

Let Ω be the Cartesian product $\prod_{i=1}^m (\mathcal{X}_i, \mathcal{Y}_i)$, where $\mathcal{X}_i = [0, 1)$ and $\mathcal{Y}_i =
\mathbb{R}^i$. Let \mathcal{A} be its Borel σ-field. For any $x \in [0, 1)$, $\omega = (x_1, y_1; x_2, y_2; \cdots) \in \Omega$ and $n = 1, 2, \cdots$ we define $X_n(\omega) = x_n$, $Y_n(\omega) = y_n$ and $N_n(x, \omega) = k(m_n)$, where

$$m_n = \max \{m; \#[j; X_j(\omega) \in B_{mi}, x \in B_{mi}, j = 1, \ldots, n] \geq k(m)\},$$

the symbol $\#[A]$ denoting the number of the elements of the set A.
The number m_0 is determined uniquely. We denote $B_n(x, \omega) = B_{m_0}$,
where $N_n(x, \omega) = k(m_0)$ and $x \in B_{m_0}$ and let $C_n(x, \omega)$ be the set of $X_j(\omega)$
belonging to $B_n(x, \omega)$ with the smallest subscript, $k(m_0)$ in number.
Define a random function on $[0, 1)$

(4) \hspace{1cm} M_n(x, \omega) = \frac{1}{N_n(x, \omega)} \sum_{j \in \omega} Y_j(\omega),

which may serve as an approximation of $M(x)$ and put
(5) \[Z_n(\omega) = Y_n(\omega) - M(X_n(\omega)) \]

and
\[M^*(x, \omega) = \frac{1}{N_n(x, \omega)} \sum_{j \in \mathcal{E}_n(x, \omega)} Z_j(\omega). \]

It follows from the measurability of \(F_n^*(B) \) for every Borel set \(B \) of \(\mathbb{R}^i \) that \(M(x) \) and hence \(Z_n(\omega) \) are measurable. Furthermore let
\[\alpha_n(x, \omega) = h \left[N_n(x, \omega) \right] \exp \left\{ -N_n(x, \omega) | M_n(x, \omega) - a |^b \right\}, \]

where \(b \) is a positive constant and \(h(m) > 0 \) for every \(m = 1, 2, \ldots \).

Finally define a density function on \([0, 1]\) by
\[\beta_n(x, \omega) = \frac{\alpha_n(x, \omega)}{\int_0^1 \alpha_n(t, \omega) dt} \]

and the corresponding probability distribution \(P_{\beta_n(\cdot)} \) on \([0, 1]\).

Since it can be easily proved from the measurability of \(F_n^*(B) \) that \(P_{\beta_n(\cdot)}(A) \) is measurable for every Borel set \(A \) of \([0, 1]\), we can consider the probability measure \(P \) on \((\Omega, \mathcal{F})\) having the following properties (i) and (ii) for every \(n = 1, 2, \ldots \).

(i) For every Borel set \(A \) of \([0, 1]\)
\[P(A' | X_i(\omega) = x_i, Y_i(\omega) = y_i, i = 1, \ldots, n) = P_{\beta_n(\cdot)}(A), \]

where \(A' = X_{n+1}^{-1}(A) \).

(ii) For every Borel set \(B \) of \(\mathbb{R}^i \)
\[P(B' | X_i(\omega) = x_i, Y_j(\omega) = y_j, i = 1, \ldots, n, j = 1, \ldots, n-1) = F_{x_n}(B), \]

where \(B' = Y_n^{-1}(B) \).

3. Lemmas

The arguments in this section are based on the probability space \((\Omega, \mathcal{F}, P)\) introduced in Section 2.

Lemma 1. Under the following two conditions:
\[\sum_{m=0}^{\infty} 2^m k(m)^{2-b/2} < \infty \quad \text{and} \quad b > 2, \]

the variances of random variables with the distribution \(F_x \) are uniformly bounded by \(V < \infty \),
we have
\[\lim \sup_{n \to \infty, 0 \leq x < 1} |M'_n(x, \omega)|^s N_n(x, \omega) < \infty \text{ w.p. } 1.\]

Proof. By the definition of \(M_n(x, \omega) \) we have

\[P_\infty = P\left\{ \omega; \lim_{n \to \infty} \sup_{0 \leq x < 1} |M'_n(x, \omega)|^s N_n(x, \omega) = \infty \right\}\]

\[= \lim_{K \to \infty} P\left\{ \omega; \text{There exist some } m, i, n \text{ and } x \text{ such that } \right.\]
\[B_{mi} = B_n(x, \omega) \text{ and that } |M'_n(x, \omega)|^s N_n(x, \omega)^{\frac{1}{\beta}} > K \}
\[\leq \lim_{K \to \infty} \sum_{m=0}^{2m} \sum_{i=1}^{P_{mi}},\]

where

\[P_{mi} = P\{\omega; \text{There exist some } x \text{ and } n \text{ such that }\]
\[B_{mi} = B_n(x, \omega) \text{ and } |M'_n(x, \omega)|^s N_n(x, \omega)^{\frac{1}{\beta}} > K \} .\]

Now we fix \(i \) and \(m \) and for every \(\omega \in \Omega \) and for every positive integer \(l, \) let \(t(l, \omega) \) be the \(l \)th smallest index \(j \) that \(X_j(\omega) \in B_{mi} . \) When such index does not exist we denote \(t(l, \omega) = \infty . \) We define

\[Z'(l, \omega) = \begin{cases}
Z_{t(l, \omega)}(\omega) & \text{if } t(l, \omega) \neq \infty \\
0 & \text{if } t(l, \omega) = \infty
\end{cases} .\]

Then

\[P_{mi} = P\{\omega; \# \{ j; X_j(\omega) \in B_{mi} \} \geq k(m) \text{ and }\]
\[\left| \sum_{j \in B_m(x, \omega)} Z_j(\omega) \right| > Kk(m)^{1-\frac{1}{\beta}} \}
\[\leq P\{\omega; \left| \sum_{i=1}^{K(m)} Z'(l, \omega) \right| > Kk(m)^{1-\frac{1}{\beta}} \} .\]

Moreover by Markov's inequality we have

\[P_{mi} \leq K^{-\frac{k(m)}{2}} E\left[\sum_{i=1}^{K(m)} Z'(l, \omega) \right]^2\]
\[= K^{-\frac{k(m)}{2}} \left(\sum_{i=1}^{K(m)} EZ'(l, \omega) + 2 \sum_{i < i'} Z'(l, \omega) Z'(l', \omega) \right) .\]

But (9) and (11) imply

\[EZ'(l, \omega) = E\{ E[Z'(l, \omega) | t(l, \omega) = t, X_i(\omega) = x] \} \leq V\]

and for every \(l < l' \)

\[EZ'(l, \omega) Z'(l', \omega) = E\{ E[Z'(l, \omega) Z'(l', \omega) | t(l, \omega) = t, t(l', \omega) = t', X_i(\omega) = x_i, i = 1, \ldots, t', Y_j(\omega) = y_j, j = 1, \ldots, t' - 1] \} = 0 .\]
Then

$$P_{m} \leq K^{-2}k(m)^{-1+1/3}V.$$

Thus from (13) and (16) we have

$$P_{\infty} \leq \lim_{K \to \infty} \sum_{m=0}^{\infty} K^{-2}k(m)^{-1+1/3}V = \lim_{K \to \infty} \sum_{m=0}^{\infty} 2^{m}k(m)^{-1+1/3}V = 0,$$

where the last equality follows from (10). Hence Lemma 1.

Lemma 2. Suppose that the conditions (10) and (11) are satisfied and further that $h(m)$ and $M(x)$ satisfy the following conditions:

(17) for every $\alpha > 0$ the sequence $\{h(m) \exp(-\alpha m), m=1, 2, \ldots\}$

is bounded,

$$(M(x) - a)(x - x_0) > 0 \quad \text{for any } x \neq x_0,$$

and

$$\inf_{|x - x_0| > \varepsilon} |M(x) - a| \neq 0 \quad \text{for any } \varepsilon > 0.$$

Then for every $\varepsilon > 0$ the set $\{\alpha_n(x, \omega); n=1, 2, \ldots, |x - x_0| > \varepsilon\}$ is bounded with probability one.

Proof. We fix $\omega \in \Omega$ which satisfies (12) and let $C = C(\omega)$ satisfy

$$|M_n(x, \omega)|^N_n(x, \omega) < C \quad \text{for any } n=1, 2, \ldots, 0 \leq x < 1.$$

From the definition of $B_n(x, \omega)$ it follows that for every $\varepsilon > 0$ only finite many of the sets $B_n(x, \omega)$ with $n=1, 2, \ldots$ and $x < x_0 - \varepsilon$ satisfy that $x_0 - (\varepsilon/2) \in B_n(x, \omega)$. Then we can choose positive integers n_0 and p and the half open intervals E_1, E_2, \ldots, E_p such that

(i) $\alpha_n(x, \omega)$ is constant with respect to $n > n_0$ and to $x \in E_j \cup \bigcup_{j=1}^{p} E_j$ and for every $n > n_0$ the set $C_n(x, \omega)$ does not contain any $X_i(\omega) > x_0 - (\varepsilon/2)$.

Hence we have only to prove that $\alpha_n(x, \omega)$ is bounded with respect to

$$x \in \left(\bigcup_{j=1}^{p} E_j \right)^c \cap [0, x_0 - \varepsilon)$$

and for every $n > n_0$ the set $C_n(x, \omega)$ does not contain any $X_i(\omega) > x_0 - (\varepsilon/2)$.

And we can choose an N_0 such that for any $N_n(x, \omega) > N_0$

$$|M_n(x, \omega)| < C^{1/3}(N_n(x, \omega))^{-1/3} < \varepsilon/2.$$

From (19) and (20) it follows
\[M_n(x, \omega) - a = \frac{1}{N_n(x, \omega)} \sum_{x \in G_n(x, \omega)} M(X(x, \omega)) - a \cdot M'_n(x, \omega) \leq -\varepsilon/2 \quad \text{for } N_n(x, \omega) > N_0. \]

On the other hand for \(N_n(x, \omega) \leq N_0 \), \(a_n(x, \omega) \) takes only finite distinct values. From the above facts and (17), \(a_n(x, \omega) \) is bounded on \(x < x_0 - \varepsilon \) and \(n = 1, 2, \cdots \). The boundedness of \(a_n(x, \omega) \) on \(x > x_0 + \varepsilon \) is proved in an entirely similar way and then this completes the proof.

Before stating the next lemma we need two notations. \(B'_n(x_0, \omega) \) and \(N'_n(x_0, \omega) \) are defined as \(B_n(x_0 - \varepsilon, \omega) \) and \(N_n(x_0 - \varepsilon, \omega) \) for sufficiently small \(\varepsilon > 0 \). Since for every \(x' \) \(B_n(x, \omega) \) and \(N_n(x, \omega) \) are constant on some interval containing \(x' \), the above notations are well defined. Note that \(B'_n(x_0, \omega) \neq B_n(x_0, \omega) \) implies that \(x_0 \) can be written as \(x_0 = q/2^p \) for some integers \(p \) and \(q \).

Lemma 3. Under the same assumptions as in Lemma 2, \(N'_n(x_0, \omega) \) or \(N'_n'(x_0, \omega) \) diverges to infinity as \(n \to \infty \) with probability one.

Proof. Let \(E \) be an open neighbourhood of \(x_0 \) and let
\[B_i = \{ \omega; X_i(\omega) \in E \} \quad i = 1, 2, \cdots. \]

We denote \(\mathcal{B}_n \) the sub-\(\sigma \)-field of \(\mathcal{A} \) generated by \(B_1, B_2, \cdots, B_n \). Then by extended Borel’s zero-one law (e.g. Loève [5]) the two sets \(\{ \omega; \sum_{n=1}^{\infty} P_{\mathcal{B}_n} B_n < \infty \} \) and \(\{ \omega; \sum_{n=1}^{\infty} I_{\mathcal{B}_n} < \infty \} \) are equivalent, where \(I_{\mathcal{B}_n} \) is an indicator function of \(B_n \). Thus for every positive \(c \)
\[\omega \in \Omega_c = \{ \omega; \lim_{n \to \infty} \int_E \beta_n(x, \omega) dx > \frac{1}{c} \} \]
implies \(\sum_{n=1}^{\infty} I_{\mathcal{B}_n}(\omega) = \infty \) with probability one. Otherwise from Lemma 2 we see that if \(\omega \notin \bigcup_{\varepsilon=1}^{\infty} \Omega_c \) there are infinite \(X_i(\omega) \in E \) with probability one. Hence Lemma 3 follows.

Lemma 4. In addition to the assumptions of Lemma 2 we further impose the following conditions:

(21) \[2^{-n} h(k(m)) \to \infty \quad \text{as } m \to \infty, \]
(22) \[\{ k(m) 2^{-hm}; \ m = 1, 2, \cdots \} \quad \text{is bounded,} \]
(23) \[\lim_{x \to x_0} \left| \frac{M(x) - a}{x-x_0} \right| < A < \infty \quad \text{for some positive } A. \]
Then

\[\int \alpha_n(x, \omega) dx \to \infty \quad \text{as } n \to \infty \text{ w.p. 1}. \]

PROOF. By Lemma 3 \(N_n(x_0, \omega) \) or \(N'_n(x_0, \omega) \) diverges to infinity with probability one, but we shall prove this lemma in only the case when \(N_n(x_0, \omega) \to \infty \) as its proof is similar in other case. Now it holds that \(\alpha_n(x, \omega) = \alpha_n(x_0, \omega) \) for any \(x \) belonging to one of the two sub-intervals of \(B_n(x_0, \omega) \) of half size which contains \(x_0 \). Let

\[B_n(x_0, \omega) = B_m. \]

Then

\[\int_0^1 \alpha_n(x, \omega) dx \]

\[\geq \int_{B_m} \alpha_n(x, \omega) dx \]

\[\geq 2^{-1-n} h(k(m)) \exp \left\{ -k(m) | M_n(x_0, \omega) - a |^b \right\} \]

\[\geq 2^{-1-n} h(k(m)) \exp \left\{ -k(m) 2^{b-1} \left| \sum_{x_j(\omega) \cap C_n(x_0, \omega)} M(X_j(\omega) - a) \right| \right\} \]

\[\cdot \exp \left\{ -k(m) 2^{b-1} \left| \sum_{x_j(\omega) \cap C_n(x_0, \omega)} Z_j(\omega) \right| \right\}. \]

The first factor in the last member of this chain of inequalities diverges to infinity by (21) since \(N_n(x_0, \omega) \to \infty \) implies \(m \to \infty \). The second and the third are bounded away from zero by (22), (23) and Lemma 1. Then Lemma 4 follows.

Finally we show an example of \(k(m) \) and \(h(m) \) satisfying the conditions (3), (10), (17), (21) and (22) when \(b > 3 \). Let \(k'(m) = (2^{m^b})^{1/b} - 2^m \) and \(h(m) = m^c \), where \(c > 1 - 2/b \). Then \(2^m k'(m) \) \(1 + 3/b = m^{-1} \) implies (10) with \(k(m) \) replaced by \(k'(m) \). It is easy to verify (17) and (22). And

\[2^{-m} h(k'(m)) = 2^{-m (b - b + 2)/b + 3(b - 1)} m^{2bc/(b - 1)} \]

implies (21). Now let \(k(0) = 1 \) and let \(k(m) \) be the integer part of \(k'(m) \) for \(m = 1, 2, \ldots \). Then it is easily seen that \(k(m) \) and \(h(m) \) satisfy all the required conditions.

4. Main theorems

THEOREM 1. Let the probability space \((\Omega, \mathfrak{F}, P) \) have the properties (8) and (9). And let \(k(m) \) and \(h(m) \) satisfy the conditions (3), (10), (17), (21) and (22). If \(F_x \) and \(M(x) \) satisfy (11), (18) and (23), then
\begin{align}
\lim_{n \to \infty} \int_E \beta_n(x, \omega) \, dx &= 1 \quad \text{with probability one}
\end{align}

for every open interval \(E\) containing \(x_0\).

Proof. Let \(E\) be an open interval containing \(x_0\). By definition of \(\beta_n(x, \omega)\)

\begin{align}
\int_{E^c} \beta_n(x, \omega) \, dx &= \frac{\int_{E^c} \alpha_n(x, \omega) \, dx}{\int_0^1 \alpha_n(x, \omega) \, dx}.
\end{align}

As \(n \to \infty\) the numerator of the right hand-side is bounded with probability one by Lemma 2 and the denominator diverges to infinity with probability one by Lemma 4. The above two facts imply Theorem 1.

To generalize the theorem to the case when \(M(x) = a\) has many roots we postulate the following conditions (28) and (29):

\begin{align}
\inf \{|M(x) - a|; \min_{i=1, \ldots, p} |x - x_i| > \varepsilon\} > 0 \text{ for every } \varepsilon > 0 \text{ and }
\end{align}

the signature of \(M(x) - a\) keeps the same on each interval \((x_i, x_{i+1})\) for every \(i = 0, 1, \ldots, p\), where \(x_0 = 0\) and \(x_{p+1} = 1\).

\begin{align}
\lim_{x \to x_i} \frac{|M(x) - a|}{|x - x_i|} < A < \infty \quad \text{for some } A \ i = 1, \ldots, p.
\end{align}

Theorem 2. In the assumptions in Theorem 1, replace (18) and (23) by (28) and (29). Then

\begin{align}
\lim_{n \to \infty} \int_E \beta_n(x, \omega) \, dx &= 1 \quad \text{with probability one}
\end{align}

for every \(E = \{x; \min_{i=1, \ldots, p} |x - x_i| < \varepsilon\} \text{ with } \varepsilon > 0\).

Proof. Under the new assumptions all that has to be done is to prove the following two lemmas:

Lemma 2'. For every \(\varepsilon > 0\) \(\{\alpha_n(x, \omega); n = 1, 2, \ldots, |x - x_i| > \varepsilon, i = 1, \ldots, p\}\) are bounded with probability one.

Lemma 3'. Some of the set \(\{N_n(x_i, \omega), N_n(x_i, \omega)\}; i = 1, \ldots, p\) diverge to infinity with probability one.

They can be proved similarly as the corresponding lemmas stated before and details are omitted.

Remark 1. The theorems can be extended to the case when a stat-
istician takes several levels at one time which are decided according to the distribution \(P_{i,n} \) and gets an observation for each level.

Remark 2. The expression (6) for the function \(\alpha_i(x) \) is not essential. There may exist alternative forms for which Lemma 2 and Lemma 4 hold true.

Remark 3. The results in this paper are valid even if the parameter space of \(F_x \) is \((0, 1), [0, 1]\) or \((0, 1]\).

Acknowledgement

I wish to thank Professor M. Okamoto for his help and encouragement in the preparation of this paper.

NARA MEDICAL COLLEGE

REFERENCES

[8] Yamazoe, S. On random observation processes for stochastic approximation. (To be submitted.)