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1. Introduction and summary

Consider a family of probability distributions {F,} with a controll-
able parameter (level) x and finite means M(x). As is well known, the
stochastic approximation method may be used to find the location x, at
which the function M has a certain property. In fact Robbins and
Monro [6] proposed the following procedure to estimate the root x, of
the equation M(x)=a, assuming that M is an increasing function :

( 1 ) xn+l=wn+a’n(a‘_yn) ’

where {a,} is a fixed sequence of positive constants and y, is a random
variable with the conditional distribution F,, given &, -+, @, Y1, -,
Yn-1. It is proved that z, converges to x, with probability one under
some conditions; see Blum [1], Dvoretzky [3] and Schmetterer [7]. In
case M(x) is strictly increasing for xz<x, and decreasing for x>, a
procedure to estimate z, given by Kiefer and Wolfowitz [4] is as fol-
lows:

(2) xn+1=w,.+%(ym—yz,._1) :
where {a,} and {c,} are sequences of positive numbers and where y,,
and y;,_; are random variables which are conditionally independently
distributed according to F. ., and F, _. , respectively, given z,,---, z,,
Y1,***» Ym-z. The convergence of x, to x, with probability one under
some conditions is proved by Blum [1], Dvoretzky [3], Burkholder [2]
and et al. As is shown in (1) and (2), the characteristic of M(x) is made
the best use of and then the above methods are thought not to be
robust to the condition of M. It means that the stochastic approxima-
tion method is used seldom, if ever, in other cases.

From this point of view, a random observation process is proposed
to estimate the location z,. The estimation procedure is defined suc-
cessively as follows, beginning with an initial value z, € [0, 1). For any
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positive integer n let z,,---, 2, be the levels of observation chosen up
to the mth stage and let %, ---, ¥, be the observed values at the re-
spective levels. Using the 2’s and ¥’s, we first construct an estimate
M, of the function M and then a probability distribution g, over the
interval [0,1). A subsequent level z,,, is chosen by a chance mecha-
nism with the distribution g, and a corresponding value y,,; is observed
according to the distribution F, , . A reasonable criterion for the pro-
cedure may be that the distribution B, converges to x, in law with
probability one. The convergence is proved in Section 4 in case that
the root of the equation M(x)=a is to be estimated, while it will be
discussed in the forthcoming paper [8] for the problem of estimating
the maximum point of M(x).

2. Notations and formulation

Let {F,; 0<x<1} be a family of probability distributions on R!
with finite means, say M(x), such that for any Borel set B of R' F(B)
is measurable. For every non-negative integer m we define a half-open
interval B,,; as

Bmt=l:'£2_—m;l—"'2%) i=1’ 2,-..,2",
Let {k(m); m=0,1,---} be a sequence of integers satisfying the follow-
ing condition :

(3) k(m) is strictly increasing and k(0)=1.

Let 2 be the Cartesian product ﬁ (X, Y,), where X,;=[0,1) and ;=

R!. Let U be its Borel o-field. For any xz€[0,1), o=(x, ¥1; %2, Y2;-**)
€ and n=1,2,--- we define X,(0)==2,, Y.(0)=y. and N,(x, 0)=Fk(m,),
where

my=max {m; §[7; X;(®) € Bp;, € By, j=1,---, n]=k(m)},

the symbol #[A] denoting the number of the elements of the set A.
The number m, is determined uniquely. We denote B.(x, ®)=B,,
where N,(x, ®)=Fk(m,) and z € B, and let C(z, ») be the set of X,(w)
belonging to B,(r, w) with the smallest subscript, k(m, in number.
Define a random function on [0, 1)

1

4 (@, 0) =———r
(4) M@, o) N,(z, ») xjc«o%,.(z,u)

YJ ((0) ’

which may serve as an approximation of M(x) and put
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(5) Z(0)=Y (o) — M(X(w))

1

d M!(z, 0)=———
an (@ @) N, (z, 0) X,-(u)«zc},,mo)

Z(o) .

It follows from the measurability of F,(B) for every Borel set B of R!
that M(x) and hence Z,(w) are measurable. Furthermore let

(6) (%, w)=h{N(z, )} exp {—Ny(x, o) | M\(x, 0)—al’} ,
where b is a positive constant and h(m)>0 for every m=1,2,---.

Finally define a density function on [0, 1) by

(7) fulw, ) =— 2@ 0)
. a,(t, w)dt

and the corresponding probability distribution P; ., on [0, 1).

Since it can be easily proved from the measurability of F,(B) that
P, ., (A) is measurable for every Borel set A of [0, 1), we can consider
the probability measure P on (£, ) having the following properties (i)
and (ii) for every n=1,2,---.

(i) For every Borel set A of [0, 1)
(8) PA'| X(w)=w;, Yw)=y;, 1=1, -, n)=Py 0 (4),
where A'=X\(A4).
(i) For every Borel set B of R
(9) P@B|X(0)=2:, Yi0)=y;, i=1,--+,n, j=1,--+,n—1)=F, (B),
where B'=Y,(B).

3. Lemmas

The arguments in this section are based on the probability space
(2, A, P) introduced in Section 2.

LEMMA 1. Under the following two conditions:

K

(10) o"k(m)**<co  and = b>2,

0

3
il

(11)  the variances of random variables with the distribution
F, are uniformly bounded by V< oo,

we have
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12) lim sup | M/(, ®)|’N,(2, ®)<ocow.p. 1.

n—oo 0S2r<1

Proor. By the definition of M,(x, ) we have

(13) P.= P{a); Tim sup | M/ (z, o) ["N.(z, ©)=oco

n—oo 05r<1

=lim P{w; There exist some m, ¢, » and = such that

B,.=B.(z, v) and that |M/(z, )| N.(z, 0)*> K}

o 2™

élim ZZPmi’

K—oo m=0 i=1
where

P,.=P{w; There exist some z and n such that
B,;=B,(x,0) and |M/(z, 0)|N,(x, ®)*>K} .

Now we fix 7 and m and for every w € 2 and for every positive integer
l, let {(l, ») be the Ilth smallest index j that X;(w)€ B,;. When such
index does not exist we denote #(l, ®)=c0. We define

Zya,(®) if t(l, w)#
(1, w):{
0 if 41, @)=oo .
Then
14) Pm=P{w; 47 ; X,(0) € Bp]=k(m) and

)z,(w)l > Kk(m)l-l/b}

.=
Xj(u) € Cn(::,a
k(m)
gP{w; |; zq, w)) >Kk(m)1-1/°} .
=1
Moreover by Markov’s inequality we have
k(m) 2
(15) P,MgK—Zk(m)-M/bE{ > 7, w)}
=1
=K ¥(m)~2+® {k:zm) EZ'*(l, w)+2 lZl Z'l, 0) Z'l, w)} .
=1 <
But (9) and (11) imply
EZ'Y(l, 0)=E{E(Z'Y(l, 0)|tl, 0)=t, X(0)=2)}<V

and for every I<Il

EZ'(1l, 0)Z'(l, 0)=E{E(Z'(, ®)Z'(V, 0) |21, w)=t, U, )=V,
Xg(ﬂ))——'xu 7r=1y M) t’r Yj(w)zy.f’
j=1" cty t’_l)} =0.
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Then
(16) P,. <K k(m) 1V .
Thus from (13) and (16) we have

P.<lim 3} 3! K-%(m)~*"V=lim K- 3 2"k(m)-*"V=0
K—oo m=0

K—00 m=0 i=1

where the last equality follows from (10). Hence Lemma 1.

LEMMA 2. Suppose that the conditions (10) and (11) are satisfied
and further that h(m) and M(x) satisfy the following conditions:

A7)  for every a>0 the sequence {h(m)exp(—am), m=1,2,..-}

18 bounded ,
a8) (M(x)—a)(x—x)>0  for any x+zx,, and
18
1 inil? |M(x)—a|#0 Jor any >0 .
I—Iu >€
Then for every ¢>0 the set {a (%, w); n=1,2,---, |x—x,|>c} 18 bounded

with probability one.
PROOF. We fix w € 2 which satisfies (12) and let C=C(w) satisfy
| M!(x, w)|°N,(x, 0)<C for any n=1, 2,-.., 0=2<1.

From the definition of B,(x, w) it follows that for every ¢>0 only finite
many of the sets B,(x, w) with n=1,2,--- and x<x,—¢ satisfy that
2,—(e/2) € B,(x, ). Then we can choose positive integers n, and p and
the half open intervals E|, E;,- - -, E, such that
(i) au(x, w) is constant with respect to n>n, and to z ¢ E, j=1,
2,---,p and

(ii) for every z € ( LpJ E,)CO[O, x,—e¢) and for every n>mn, the set
ji=1

C.(z, ) does not contain any X,(w)>x,—(¢/2).
Hence we have only to prove that a,(x, ») is bounded with respect to

xE€ (16 E,)cn[O, xz,—e) and to n>m,. From the assumption (18) there
=1

exists some ¢>0 such that

19 M(x)—a< —¢ for any x<xz,—(¢/2) .
And we can choose an N, such that for any N,(x, 0)>N,
(20) | M!(z, 0) | <C (N, 0))*<e'[2.
From (19) and (20) it follows
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Nl
N, (x, ®) (x)cCptz,m

<—¢/2 for N,(x, w)>N, .

On the other hand for N,(x, w)<N,, a,(%, ») takes only finite distinct
values. From the above facts and (17), a,(x, w) is bounded on z<x,—¢
and n=1,2,-.-. The boundedness of a,(x, w) on x>x,+¢ is proved in
an entirely similar way and then this completes the proof.

M@, 0)—a= M(X,(w»—a} +M(@, )

Before stating the next lemma we need two notations. Bi(z,, w)
and N/(x,, w) are defined as B,(x,—¢, w) and N,(x,—¢, w) for sufficiently
small ¢>0. Since for every z' B,(x, ) and N,(z, ») are constant on
some interval containing z’, the above notations are well defined. Note
that Bi(x,, »)#B,(x,, ») implies that xz, can be written as x,=¢q/2? for
some integers p and gq.

LEMMA 3. Under the same assumptions as in Lemma 2, N,(x,, ®)
or N/(z,, o) diverges to infinity as n— oo with probability one.

PrROOF. Let E be an open neighbourhood of z, and let
B, ={w; X(o)¢ E} 1=1,2,---.
We denote B, the sub-o-field of A generated by B,, B;, -+, B,. Then
by extended Borel’s zero-one law (e.g. Loéve [5]) the two sets {w;
f‘_. P81 B, < oo} and {w; gIBn< oo} are equivalent, where I, is an in-

n=1

dicator function of B,. Thus for every positive ¢

we0,=o; lim| g, a)ds>L]

n—oco

implies ﬁ‘, Iy (w)=oc with probability one. Otherwise from Lemma 2
n=1
we see that if w¢ G Q. there are infinite X,(w) € E with probability one.
e=1

Hence Lemma 3 follows.

LEMMA 4. In addition to the assumptions of Lemma 2 we further
vmpose the following conditions :

(21) 2 "h(k(m))— oo as m— oo,

(22) {k(m)2->™; m=1,2,---} 18 bounded,

(23) Tim _M;c(_@;_"' <A<oo  for some positive A.
Ty — ¥
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Then

(24) Sa,,(x, w)dg—oo  as n—oo wp. 1.

PROOF. By Lemma 3 N,(z,, ) or N/(x,, ») diverges to infinity
with probability one, but we shall prove this lemma in only the case
when N,(2,, ®)— oo as its proof is similar in other case. Now it holds
that a.(x, ®)=a.(%,, ®) for any x belonging to one of the two sub-inter-
vals of B,(x,, ) of half size which contains z,. Let

B, (%, ®)=B; .
Then

(25) So (e, 0)dz
> SB (%, w)da

227 h(k(m)) exp {—k(m)| M@, »)—a]’}

227 h(e(m) exp {—k(m)2 |5 MX(@)—a Uif((;:)))—“

)

. exp{—-k(m)2°‘1| > Z(®) b} .
Xj(@) < Onlage) Je(m)
The first factor in the last member of this chain of inequalities diverges
to infinity by (21) since N,(«,, w)— oo implies m—oo. The second and
the third are bounded away from zero by (22), (23) and Lemma 1.
Then Lemma 4 follows.

Finally we show an example of k(m) and h(m) satisfying the con-
ditions (3), (10), (17), (21) and (22) when b>3. Let k'(m)=(2"m*)*"*~*
and h(m)=m°, where ¢>1—2/b. Then 2"k'(m)****=m™" implies (10)
with k(m) replaced by k'(m). It is easy to verify (17) and (22). And

2”"h(k'(m)) — QmMe=b+D /(b= 20e/(B—2)

implies (21). Now let k(0)=1 and let k(m) be the integer part of k'(m)
for m=1,2,--.. Then it is easily seen that k(m) and h(m) satisfy all
the required conditions.

4. Main theorems

THEOREM 1. Let the probability space (2,2, P) have the properties
8) and (9). And let k(m) and h(m) satisfy the conditions (3), (10), (17),
21) and (22). If F, and M(z) satisfy (11), (18) and (23), then
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(26) lim SE B, @)dz=1  with probability one

Jor every open interval E containing x,.
PrRoOF. Let E be an open interval containing x,. By definition of
.Bn(x’ w)
S a,(2, w)dz
EC

@ (b, oo ois

As n— oo the numerator of the right hand-side is bounded with prob-
ability one by Lemma 2 and the denominator diverges to infinity with
probability one by Lemma 4. The above two facts imply Theorem 1.

To generalize the theorem to the case when M(x)=ae has many
roots we postulate the following conditions (28) and (29):

28) inf{|M(zx)—al; {min |z—2;|>e} >0 for every ¢>0 and
=1,e00,D

the signature of M(x)—a keeps the same on each inter-

val (z;, 2,,,) for every ¢=0,1,.---,p, where z,=0 and
w,,+1=1.
(29) lim Mx(.'cia; <A<oo  for some A i=1,---,p.
LTy —xi

THEOREM 2. In the assumptions in Theorem 1, replace (18) and
(23) by (28) and (29). Then

lim SE B, o)dz=1  with probability one

for every E={zx; imin |e—2x;|<e} with ¢>0.
=1, P

vee,

PrRoOF. Under the new assumptions all that has to be done is to
prove the following two lemmas:

LEMMA 2. For every ¢>0 {a,(x, 0); n=1,2,---. |z—2;|>¢ =1,
«++, p} are bounded with probability one.

LEMMA 3. Some of the set {N,(x,, w), N;/(x;, )} 1=1,---, p diverge
to infinity with probability one.

They can be proved similarly as the corresponding lemmas stated
before and details are omitted.

Remark 1. The theorems can be extended to the case when a stat-
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istician takes several levels at one time which are decided according
to the distribution P, and gets an observation for each level.

Remark 2. The expression (6) for the function a,(x) is not essen-
tial. There may exist alternative forms for which Lemma 2 and Lem-
ma 4 hold true.

Remark 3. The results in this paper are valid even if the param-
eter space of F, is (0, 1), [0,1] or (0, 1].
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