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Summary

Srivastava [5] proposed a class of rank score tests for testing the
hypothesis that g,=-:-=p8,=0 in the linear regression model y,=gx,+
Baai+ - - - +Byx,+e; under weaker conditions than Hajek [2]. In this
paper, under the same weak conditions, a class of rank score tests is
proposed for testing §,=-.-=8,=0 in the multivariate linear regression
model y;=px,;+ - +B,2,+e, ¢<p, where B’s are k-vectors. The
limiting distribution of the test statistic is shown to be central 2}, un-
der H and non-central X, under a sequence of alternatives tending to
the hypothesis at a suitable rate.

1. Introduction
Let yi, y3,- ¢+, Yy, =D, be n independent random k-vector with
(1.1) yi=px“+e,,

B an unknown kX p matrix, x® a known p-vector and e; a random k-
vector obeying an unknown distribution function F' such that

Pyy.<y)=Pye;=y—px*)=F(y—px*),

where P, denotes that the probability is being computed for the param-
eter value 5. We note that the specification (1.1) can be rewritten in
the matrix notation as

(1.1a) Y,=BX,+e.,

where Y,=(y,, -+, y,) is a kXn matrix of observations, and X,=(x,
<.+, X™), a pXn, p<mn, matrix of known constants (design matrix); we
assume that X, is of full rank, i.e., x®,..-, x” are linearly independ-
ent vectors. e¢,=(e;,---, e,) where the random vector ¢ obeys an un-
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known distribution function F' with density function f(x); let f; denote
the marginal density function of ¢;, 1=1,2,.--, k, and f,, the joint den-
sity function of (e, ¢;), 1#7. The form of F is not known but we shall
assume that F e & where

(C) F = [absolutely continuous F:
(i) |7 #r@dz=0, i=1,2.,1,
(@) " [#@Ii@] fads<o, =12,k
@) |" |7 [#@r@if@sw]fie nasdy<co, ixd) .

The condition (i) can be dropped if we modify the function ¢(u) defined
in Section 3 so as to have Sl¢(u)du=0. We will refer in the sequel
[

to the above conditions on the class & of distribution functions as con-
dition (C1). Let

(1.2) ‘32(‘81, 132) ’ ﬁl—_"(ﬂl""’ ﬂq) ’ 132=(ﬁq+l""’ ﬂp)
Xn=((xij))=(xu)! ] x(n))
XP, 000, P\ (X
=< oo x§"’>=(X,E”)
where x{”’s are g-vectors and x{"’s are (p—gq)-vectors. We wish to test
the hypothesis H: 3,;=0. For the univariate case (k=1) and for p=2,

g=1, Hajek [2] proposed a class of rank score tests for testing the
hypothesis H : 8,=0 under the following conditions :

(1) =zy=1 for all j=1,2,--., %

(1.8) (ii) lim {max (4 —El,.)’/;:_,‘1 (@1,— 51,.)’} =0

n—oo (15j<n

(iii) lim {'n—l g (x”— Eln)z} < oo

N—c0

where
(1.4) F=n! jz: @, .
=1

That the requirements in (1.8) are too restrictive can be seen from
the following example which shows that an important class of problems
do not meet the above requirements in (1.3).

Example. Consider the problem of polynomial regression. For con-
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venience of computation, we will consider the case
yt=a+,3t+ &

t=1,2,---,n; where ¢, are independently distributed with distribution
function F. Identifying it with the specification in (1.1a), we have

p=2, and
1 2...n
X, = .
(1 1...1)

n(n+1)(2n+1)/6 n(n+1)/2
n(n+1)/2 n ) ’

Hence

XX, = (

Fn=(n+1)/2, ; (@ — By =n(n+1)(n—1)/12

and the condition (iii) of (1.3) is not satisfied. In this paper, we pro-
pose a class of rank score tests for the multivariate (k=1) regression
model for any p and ¢<p, under a weaker condition (C2): that the
maximum (in magnitude) of the elements in T, 'X,—0 as n— oo, where
T. is the unique pXp upper triangular matrix, such that

T,fl) Tn(lz) Tn(l)l 0
(1.5) X, X! = T,,T,,'=|: 0 T ] I:Tn(m' Tn(z)r:l *

T® and T® are triangular matrices of order ¢xq and (p—q)X(p—q)
respectively. It can easily be shown that the condition (C2) is satisfied
for the above example.

We now show that the condition (C2) is in fact weaker than the
condition (1.3), i.e., the condition (C2) holds whenever the condition
(1.8) is satisfied. We proceed as follows:

From (1.5), it follows that

(1.6) X,=T,L,
where
1.7) L,=P, -, I)=(l;(n) =T'X,

is a pxm, p<n, semi-orthogonal matrix, L,L,=1I,. Consequently the
condition (C2) is equivalent to

(C2) lim max I$MI9=0 .
n—oo 1SiSn

From (1.7), it follows that
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(1.8) l;i)’l%i)zx(l'ﬂ( Tn Tnl)—lx(i)
=MCR of [(T”Tn/)—lx(i)x(w]
=<[MCR of (T.T/)'][MCR of x®x®]
<tr (T,.T,.’)"(x“)'x“’) ,

where ‘MCR’ denotes the maximum characteristic root. Considering
the case p=2, we have from (i) of (1.3),

tr (T.T) ' =14+n"' 2 o)/ (@1, — 1)
and
XPxD =142, .

Hence

9 110s(14n7 S, )| {33 @-a] ot/ £ -5 -
J=1 j=1 Jj=1

It follows from (1.3) that

lim [ j}j xi’,,,] <oo; lim ,2 (@, —F)t=c0m), ¢>0;
n—00 =1 n—oo j=1
(1.10) ,
lim max % / ,2 (1, —%1,)' =0,
=1

n—oo 15in

where O(n) means that O(n)/n—1 as n—oco. Consequently under con-
ditions (1.3) the right side of (1.9) tends to zero as n— co.

2. Test based on least square estimator

We recall in this section about the test based on the least square
estimator. It is known that the semi-orthogonal matrix L, can be com-
pleted by an arbitrary n—pxn matrix M, such that I'/=(L,, M!) is an
orthogonal matrix; I/ =I/,=L,L,+M!M,=I,. The theory of least
squares suggests to minimize with respect to

2.1) (Y.—BX)(Y,—BX,) =(Y,L,—BT) (L. Y, — T!p)+ Y. M/ MY, .
Hence, the least square estimate of g is

2.2) Fm) =T VLY, =(XX) "X, Y/ .

When B,=0, the least square estimator of B, is

2.8) Bim) = T® VLYY,

where
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Xél) Tél) Trslﬁ) LS'I)
o xS E]E)

X® 0 T® L®
and L$° and L{ are semi-orthogonal matrices orthogonal to each other;
LPLP'=1,, LPLY'=1I, ,, LPLP'=0, LPLP'=0. If we assume that
the random vector &> obeying an unknown distribution function Fe &

has

E(e®)=0,
(C3) v
Cov. (9)=1I, without loss of generality,

then a test statistic based on the least square estimator for the hypo-
thesis H depends upon the characteristic roots of the matrix

(2.5) A, =[B(n) (X, X)B (1) — Bym) (XL XP")Bim)]
=[Y,L.L,Y; - Y, L®' LYY,
=Y, LY LYY,

and hence several test criterion are available. One such criterion could
be taken as

(2.6) C,=tr 4, .

In order to find the the distribution of C, under H, and under a
sequence of alternatives K, (defined in 2.8) tending to the hypothesis
at a suitable rate, we need the following lemma and corollary :

LEMMA 2.1. Let u;, %y, --- be independent identically distributed
random wvariables with mean 0 and variance 1; let a,,as,--- be a se-
quence of mumbers such that as n— oo

ai+a;+---+a,—1 and max|a;|—0.
1sisn

Then
lim (; a,mq) —=NQ©, 1),

n—oo

where N(0, 1) denotes the standard normal random variable with mean
0 and variance 1.

For proof, refer to Gnedenko, B. V. and Kolmogorov, A. N.* ([1954],
p. 103).

COROLLARY 2.1. Let
(2°7) Ynz(yikv ct yi:k),=((ytj)) .

* Limit distributions for seems of independent random variables (translated from
the Russian) Addison-Wesley Publishing Co. Inc.
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Under conditions (C2) and (C3)
lim (LPy#' | P)=N(0, 1)
where P, denotes that the probability is being computed under H : 5,=0.
For proof; refer to Srivastava [4].

From Corollary 2.1, it follows that the test statistic C, has a cen-
tral X}, (chi-square with ¢k degrees of freedom) and has a non-central
X;, under the sequence of alternatives

(2.8) K, : Bu=n""*(n""b,,- -, n""b,)
=n"13b{M,. -+, b)),  say
=n VM |

where the elements of b, are real constants and mjax |2 |=0(n), a;=0.
1sjsn

Héajek [2] considered the case when a;=0. The non-centrality parameter
is

2.9) s=lim tr B (TOTON) B

=lim n~! tr (TP TO ™! .

n—oo

3. Proposed tests
Let
(3.1 gu)=—[glG:'(w))/gG'(w)]) ,  0<u<l,

where G;! is the inverse of G;, and G, is the marginal distribution funec-
tion of G € F corresponding to the ith character; G is known. The
(8.1)-function that corresponds to F' is

3.2) ¢w)=—[f/(FW[f(FTW)], 0<u<ll.

Observe that unlike ¢(u) of (8.1), ¢(u) is not known since it is defined
through the unknown F. We will consider only those F' for which ¢(u)
and ¢(u) are non-decreasing functions of u. We will refer to this con-
dition in the sequel as condition (C4). From (C1) it follows that

(3.3) 0={ gwdu={ g

and

(3.4) S Pu)du< oo , S:¢?(u)du<oo.
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As in (2.4), let Y/=(y},- -+, yH)=(y:;)Y. Let R,; be the rank of y;; in

the ordered sample O,<---<0,,, i.e., y¢,=ORij, 1<j<mn. Consider a
kxmn matrix of statistics defined by

3.5) Z,=(Z,- -+, ZIY =(¢u(Riy/m+1)))
where '
(3.6) duu)=9¢(Gm+1), (G-L/n<usj/n.

From Hajek [1], and condition (C4) we have
3 lim || [9.(0)—g()Pdu=0.
Define
(3.8) Cu)=tr 3-Z,LO'LOZ) ,
(3.9) T=(e), ou=| s00t,

_{* (= [gU=)giy)
= S—w S-w [gf(x)g;(y) ]g”(x’ vty -

We propose C,(¢) as one of the class of rank score test statistics
for testing H: 8,=0. While several other tests criterion could be pro-

posed we will consider only C,(¢) in this paper.

4. Limiting distribution of C, under the hypothesis

We note that under H, the distribution of the random matrix Z,
defined by (8.5) is not independent of F and depends on the function ¢ and
hence on G, through which ¢ is defined. The following theorem gives
the limiting null distribution of C,., which however, does not depend
upon F.

THEOREM 4.1. Under conditions (C1), (C2) and (C4)
(4.1) lim P,{C,<y} = P{X, <y}
where P, denotes that the probability is being computed under H : §,=0.

PrROOF. The idea of the proof is as in Hajek [2] of replacing the
random vector Z{ by another random vector W whose components
are independent and identically distributed and then apply Corollary 2.1
to LOW™. The result will then follow from the multivariate central
limit theorem. We achieve this goal in two stages. First we introduce a
kxn random matrix V, defined by
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(4'2) Vn=(‘fl(n), ctty k(n))’:(gbn(F(yij))) .
We will now show that as n—
4.3) LPZ®—LOV™—0 in Pyrprobability, i=1,2,---,k,

i.e., as n— oo, for ¢1=1,2,-.-,k, and 5=1,2,---,¢q
(4.4) é () (Z5P—VE)—0 in Py-probability ,
=1

i.e., as n—oo, for 1=1,2,---,k, and j=1,2,---,q,

n

(4.5) 157(m) [¢u(Ryy/n+1)— (U, )] >0  in Pr-probability

r=1

where U,,=F(y,,) are independent random variables uniformly distributed
over [0,1]. Under condition (C4), (4.5) follows from Lemma 3.1 of
Hajek [1].

Now, we introduce another kxn random matrix W, defined by

(4.6) Wo=(W®,-- -, WY =(($(Uy))) ,
where U,;=F(y,;). We will now show that as n— oo
4.7 LPVm—LPW™—0 in Py,-probability, 1=1,2,---,k,
i.e., as n— oo, for 1=1,2,---,k, and j=1,2,---, q,
(4.8) i IPn) (VP —-W)—0 in P-probability .
r=1
This follows from (8.7) and Chebycheff’s inequality. Combining (4.5)
and (4.8), we obtain that
4.9) LPZ,—LPW,—0 in Pp-probability .

Note that ¢(U;,), 7=1,2,---, n, are independent and identically distrib-
uted random variables. Since

(4.10) E(U,)=0
and
(4.11) Var §(U,)=0u=| giwidu

we get W, , Wy, -+, W,, as independent identically distributed random
variables with mean 0 and variance 7?. Also,

@12) CovWe, W=\ " 0iGueG woutwe, v)dudy, .

)
—oo
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Hence from Corollary (2.1) and multivariate central limit theorem we
get

(4.13) lim P{C,<y}= P{x,<y} .

5. Limiting distribution of C, under near alternatives

In order to determine the efficiency of the class C,(¢) of test sta-
tistics, it is necessary to find its distribution under a sequence of alter-
natives tending to the hypothesis at a suitable rate. In this section,
we discuss the distribution of C, for alternatives K, (defined by 2.8)
tending to H at the rate of m~“**, 4=1,2,-.-,¢q, and for this, we
shall follow the method based on LeCam’s contiguity lemma (see Hajek
[2] and LeCam [3]).

First we recall the definition of contiguity.

DEFINITION 5.1. Let P, and P, be two probability measures on a
measurable space (X, A). If for any A, € A, Py(A,)— 0 entails P,(4,)—0,
we say that the probability measure P, is contiguous to the probability
measure P,.

Now we give the set-up under which the contiguity principle is
applicable.

Let P,,i=;ﬁ P,; be the distribution of (Y, -, Y,,) under a sequence
=1
K, of alternatives defined by (2.8), and let
(6.1) 7 =0i;(Yi))[00(Y3;) for pu(Y)>0,

where p;;, j=1,2,---, n, are densities corresponding to P;; and p, cor-
responds to the distribution P,;, under the hypothesis.
Define

(5.2) Q=23 (rif-1).

Let
ﬁZz(ﬂqH" *ty ﬂp)':(ﬁ;';’ ) ﬁ;’;c)' ’
bgn)=(b§n), ] bgn))=(bﬁl) *, 0y bgct) *), ’

where g% is a p—gx1 and b{’* is a ¢x1 vector. With the above nota-
tion, and following the method of Hajek [2], we shall prove the follow-
ing

LEMMA 5.1. Under conditions (Cl), (C2) and (C4) the distributions
P,; are contiguous to P,.
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ProoF. The lemma will be proved if we show that
(i) hmmax Py(|ri;—1]|>e)=0 for every ¢>0, and

n—oco

(ll) -E(QntIPM)_’N( 1/4 i )
For (i), write

(5.3) ry=Fi(Vyy—hP)fi(Vey)
where
(5.4) V=9, —B%'xs", h§P=n12p* D

It may be noted that
(6.5) hP—0 as m—oo  and 121 B = b* ' X, X B*
We may take A{+0. Then

rrsljax Py] 'r,,—1|>e)§max e 'Ey |7y —1]|

1sjsn

<max e—1|h<n>|§ | { Filo—h$P) — Filw)} | dw

1sjsn

Now

L O R O L (NN FACTEE
and

71|71 A=k @) dvs ("1 fiw)ldv,

for all 7=1,2,..-,n

Hence, from (5.5) we have

(5.6) max Py{|7:y—1]>¢} < max A} ’S | f{(v) |dv—0 .
To prove (ii), define

(6.7 D= V)l (Vi) -+ s (Vi [ F(Vin)]

(5.8) =070 XOD, =0 0P* (TOLYP + TP LP)D,,,
(5.9) 8(@)=f(x) .

We can rewrite @Q,; in the form

(5.10) Qu= ; [{8Viy—R$P)3(Viy)} — 11 .

It has been shown by Hajek [2] that
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(5.11) EQu)~—( B0 )ou=—F ok, say,

j=1 4
where o, has been defined in (3.9) and the sign ~ denotes that the
ratio of both sides tends to 1 as n—oc. We will now show that the
variance of n'%S,; is ¢;;

(B:12)  VnS,)=n-bpr XOXO bp¥o=( 31 )ou=ol

Hence, under condition (C2)

(5.13) L(n2S,,| Py)— N(0, ¢2) as n—oo ,
where
(5.14) sgi=limg, .

n—oo

Following as in Hajek [2] it can be shown that

(5.15) Ey(Qu—EQu—n'28,)'—0 .
Hence, from (5.11) and (5.15)
(5-16) —E(QnthM)'—’N(—1/4‘0':, 0‘2) as n—oo ,

and the proof of the lemma is therefore complete. We shall now apply
the contiguity principle to obtain the limit distribution of L{®Z™ under
the sequence of alternatives K, defined by (2.8). In this connection we
first state a lemma which can be obtained as a corollary of Lemma 4.2
of Hajek [2] given by LeCam [3].

LEMMA 5.2. If P,, is contiguous to P, and
(i) L(SL|Py)— N(0, i),
(ii) L(n'*S¥%|Py)— N(ay, b)),
(i) L(n2S%, n'*S,,)— Bivariate normal with correlation coefficient p;.
Then

LS| P)— N(ai+bisfPp,, b) -
THEOREM 5.1. Under conditions (Cl), (C2) and (C4),

LLOZP| P,,J——»N(lim no T,S"’b&;')*[sl ¢i(u)¢v¢(u)du], a“Iq) .
0

Proor. Let
(5.17) S =n"0P*' TOLPD,, .
Under condition (C2) it follows from (5.8) and (5.13) that
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(5.18) L (8P| P,)— N(0, 6,

where

(5.19) o' =lim @’ =lim n~bP* TO T bP*a,, .
Let

(5.20) Sx=n"P* TOLO Wy

where W,;, has been defined in (4.6). The covariance between n!S{
and n'’S% is given by

(5.21) Cov. (n'?S$?, n'2AS}k)
=n1HP* '(T DT r) b [Sl ¢i(u)¢vi(u)du] .
0
It can be seen that under condition (C2), the bivariate central limit

theorem applies to (n'2SY, n'2S%). Consequently, from (4.9) and Lem-
ma 5.2,

(5.22) L b TOLOZ™| P,y)
SN (lim NP (TOTO BP0,

n—sco

lim n-b* (TOT ')bspaﬂ) :

n—oo

where

(5.23) pi= S: pi(w)pi(u)du .

Hence,

(5.24) LILPZ™] P,,g-»N(}iT nRTO ¥ p,, aﬁlq) .

COROLLARY 5.1. Under conditions (Cl), (C2) and (C4)
L(C.| P)— 13,(0%)
where
(5.25) o¥*=n"'tr D, XD b (TP TSN, D,=diag (o1, -+, p&) »

Hence the Pitman efficiency of C, tests relative to the classical test
C, is the ratio of the two non-centrality parameters (5.25) and (2.9).

UNIVERSITY OF TORONTO
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CORRECTION TO

“ASYMPTOTICALLY MOST POWERFUL RANK TESTS FOR
REGRESSION PARAMETERS IN MANOVA”

M. S. SRIVASTAVA

In the above entitled paper in Vol. 24 (1972), pp. 285-297 which is
a multivariate generalization of the results in paper “Asymptotically
most powerful rank tests”, J. Statist. Res., Vol. 7 (1973), pp. 1-11,
the results of Section 4 (in both the papers) holds under the assump-
tion that 8,=0 and B8,=0. To obtain the results when B,=0 but §,#0,
we proceed as follows. For simplicity of presentation, we consider the
univariate regression model, that is when k=1.

Let

E'=B’Tn=(§h ) l§p) .
We shall assume that either

B;=0Q1), i=1,---,p or lim max x©'x©=0. (C5)
Let P, and P, denote the distributions under 8,=0 and S=0 respec-
tively. Then it is shown in Section 4 that _L(L®Z,|Py)— N(0, 6il)),
not under P, as claimed there. However, under conditions (C2) and
(C5) it can easily be shown that P, is centigious to P,. Thus, follow-
ing as in the paper, we get

L(BiX:Z,| P) — N(lim vy, 0y lim 73,) ,

where
vu=BXOXPB | pupwdu
and
h=BXPXP B,
Hence

L(LOZ,| P — N(nm LOXB, S: S (w)du, auI,,> .

515
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But
LOX® By = LOLO T B, =0 .
Hence
_C(LS.I)ZAPO) — N(0, Ulqu) .
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