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1. Introduction

Let F={F(x, 0) : 8 € ®} be a stochastically increasing family of dis-
tributions such that the parameter space 6 is a subset of the real line,
for every 6 €O F(x, ) is absolutely continuous w.r.t. a fixed (Lebesgue
or counting) measure, and F'(x, ) depends on & only through its func-
tional form. Let ¢: R,— R, be the distance function considered by
Bechhofer, Kiefer and Sobel ([3], p. 37) satisfying the following condi-
tions : (i) d(a, b)=0, (ii) d(a, b)=0 iff a=b, (iii) é(a, b)=4(b, @) and d(a, b)
is strictly increasing (decreasing) in a for fixed b when a=b (a<ZD).
Then for any two members F'(z, 6,) and F(x, ;) in &, the distance be-
tween them can be reasonably measured by &(6,, ¢;). In particular
d(a, b)=|a—>b| can be used for the location parameter family and d(a, b)
=|log (a/b)| can be used for the scale parameter family. We note that
in general § is not a metric because the triangle inequality is not as-
sumed. However, the triangle inequality is satisfied in most applica-
tions, including the location and scale parameter families and the ex-
ponential family.

We first formulate the following ranking and selection problem in
the usual way: Let =, m, -, m, (k=2) be k populations with distribu-
tions F(z,0)e% (t=1,2,---, k), and let 6,;<6,,<-- =<6, denote the
ordered parameter values. For arbitrary but preassigned 6*>0 let 2
be a subset of the product parameter space such that

(1.1) Q=20%) = {¢=(01, 05, -, Or) : 301, Ore—17) =0*} .

Then for every ¢ € 2 the small parameters 64, -, f_,; are sufficiently
distinct from the large parameter 6,,;. The statistical problem concerned
is to find a procedure R for the selection of the “greatest” population
associated with parameter 6,,. Since there is no knowledge about ¢,
it is desired to have the probability of correct selection (CS) under R
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uniformly controlled in 2 such that

(1.2) inf P,[CS| Rl

where 7y € (1/k, 1) is arbitrary but preassigned. .

Throughout this paper we shall consider only single-stage ranking
procedures with an equal number of observations from each one of the
k populations. For fixed n let {X;} and {X,;} (=1,2,---,7n) be in-
dependent random variables with distributions F(z, 8) and F(zx, 8,) (1=
1,2,---, k), respectively. Let T=T : R,— R, be a real-valued statis-
tic and

t=t™ :T(XI! XZ" ) Xn) ’
tf.:tg"):T(Xil!Xiz""’ Xin) for 1'=1; 2!"°’k1

and denote G,(y, 6), g.(y, 8) to be the corresponding c.d.f. and density
function of ¢. It is well-known ([1] and [14]) that under reasonable
assumptions about g,(y, ) the natural decision rule “always select the
population corresponding to the maximum of (¢, ¢, -, t)” uniformly
minimizes the risk among a class of invariant decision rules based on
(ty, ts,- -+, t). Hence if the ranking procedure R depends on {X;;} only
through (¢,, t,,-- -, t:), then R is completely specified by 7. We say that

DEFINITION 1. T is consistent w.r.t. (g, d) if for every 6*>0 and
every 7y € (1/k, 1) there exists an N=N(§g, %, 7) such that (1.2) holds for
every n>N.

An equivalent statement to Definition 1 is that the lh.s. of (1.2)
converges to 1 uniformly in ¢ for ¢p€ 2; i.e.,

1.3) lim 1,n£ P,CS|R]=1.

Under most circumstances the ranking statistic T is chosen to be a
consistent estimator of #. In particular the means procedure (under
which T is the sample mean) has been widely accepted for a large num-
ber of families of distributions. But in general a consistent estimator
of ¢ is not always consistent for the ranking and selection problem.
Moreover, the consistency of a ranking statistic for a certain family of
distributions also depends on the distance function 6. The following are
some typical examples:

(A) If & is the Poisson family with parameter ¢, then the means pro-
cedure is not consistent w.r.t. 8(6p-1;, Ox)) =01 — Ok O 0(Ore-1y, Oxy) =
log (Orer/Ore—17) ([17]).

(B) If ¥ is the Cauchy family with location parameter ¢, then the
means procedure is not consistent but the procedure based on the sam-
ple medians is consistent.
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(C) If ¢ is the family of uniform distributions on [0, 8] for € (0, o),
then the means procedure is consistent w.r.t. 6(6uc—;, 0u1;) =10g (Fpr/Ope—17)s
but it is not consistent w.r.t. (611, 0rs1) =0y — Oy -

In Section 2 we consider the conditions for the consistency of single-
stage ranking procedures in general. It is first shown that the consist-
ency of a ranking procedure does not depend on the number of popu-
lations involved; and that the consistency of a ranking procedure is
related to the uniform consistency of a testing hypothesis problem (The-
orem 1). Sufficient conditions for the consistency of ranking procedures
are also given in terms of convergence in distributions uniformly in @
to a degenerate distribution (Theorem 2) or to the standard normal
distribution (Theorem 3). The conditions on uniform convergence in 8
can be found in a paper of Parzen [16].

In Section 3 the general conditions are applied to investigate the
consistency of individual ranking procedures which include the means
procedure, the procedure based on the maximum likelihood estimator
and the procedure based on linear combinations of order statisties for
location parameter family. Consistency of ranking procedures for the
exponential family is investigated in Section 4.

2. Some general results

We shall follow the notations developed in Section 1 and we shall
assume that G,(y, #) is continuous in y for fixed #eB. If G, (y,0) is
discrete, randomized decision rules should be considered and most of
the following results can be modified easily. We shall also assume that
S ={G,.(y, 0) : 0 € B} is a stochastically increasing (SI) family of distri-
butions. However, the relationship between the SI property of ¥ and
the SI property of & is studied in the Appendix of this paper. It is
shown that if ¢™ satisfies the condition given in (A.l), then § is SI
will imply @ is SI and the above assumption is not required.

We first show that the consistency of a ranking statistic T' does
not depend on the number of populations involved.

LEMMA 1. T is consistent w.r.t. (§, 0) for any k iff T is consistent
w.r.t. (¥, 0) for k=2.

ProoF. To consider the probability of correct selection under the
procedure R based on T we can, without any loss, assume that 6,=6,;.
For 1=1,2,-..,(k—1) let 2,={(,,6,) : 6(6;, 0,)=0*} and A,=[t;<t.].
Then for every k and every ¢ in the product parameter space the prob-
ability of correct selection is

P,[CS|R]=P,[’:§ A,.] .
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It suffices to show that if o xan)f . Py 0(A)—1 as n—oo for every i=
i Uit}

1,2,---, (k—1), then in‘tJ‘P,[kﬁlAt]——»I as n— oo,
pe i=1

Let ¢>0 be arbitrarily small but fixed. Then for every % there
exists an N; such that for every n>N,; we have
(ai,lor,‘l)fc o P <v¢,ok)(A¢)21_5
hence
sup P (vt,lk)(gi)és .
(a‘,ok)en,
Since ¢, t;,- -, t, are independent it is easy to see that for every ¢ in

the product parameter space P,(A4;) depends on ¢ only through (6,, 6,).

Therefore for every n>N= max N, we have
15is(k—1)

k-1 k-1 _ k-1 —
inf P,[ Ql A,] = 1—s'1}£) P,[ tl=Jl A,:| 21— sup 3 Pg,0(4)

$ec0 (6,0,) €2 i=1

k-1 —_ —_
=1-3] sup Py o (A)=1—(k—1)e
1=1 (0,0 €0,
which completes the proof.

Following from this lemma we shall, without loss of generality,
restrict our attention to the case k=2 for the remainder of this paper.
We first observe a relationship between the consistency of ranking pro-
cedures and the uniform consistency of hypothesis-testing procedures.
Consider a two-sample testing hypothesis problem H, : ,<6, v.s. H,: 6,
>0, where the test ¢ depends on {X,}, 7=1,2,---,n; 2=1,2 only
through (¢, t,) and

1 if t,<t,
(2.1) p=¢(ts, t:)=

otherwise ,

and H, is accepted iff ¢=1. Then for every ¢ in the product param-
eter space the expected value of ¢ is E,¢=P,[t1§tz]=r G.(t, 6)dG.(t, ;).
Denote

| QP ={(6y, 6,) : 6,<8,, 5(8,, 6,)=06*},
2.2
29 = {(01, 02) . 01>02, 5(011 02)_2_5*} .

The test ¢ is said to be uniformly consistent on Q®VUQR® if inf E,é
Pe 0(1)
converges to one and sxi(p E, converges to zero as n— oo,
#eo®
THEOREM 1. T s comsistent w.r.t. (&, ) wff the test ¢ defined in
(2.1) is uniformly consistent on QU U2 for every o*>0.
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Proor. We first note that =, is selected iff ¢=1. For arbitrary but
fixed 6*>0, since 2=020UR?® the probability of correct selection of the

ranking procedure based on T is at least (1—¢) iff ir;(f) E,p=1—¢ and
#ead

sug) E,p<e. This completes the proof.
P XX

The necessary and sufficient conditions for the existence of uniformly
consistent tests have been studied by Berger [4], Kraft [10] and others.
Some of those conditions require the compactness of the parameter
space ©. In many applications it is not easy in general to justify
whether a certain test is uniformly consistent even if it is known that
a uniformly consistent test exists. However, if the power of the test
depends on (4,, 6;) only through (4, 6;) and it has the desired monotone
property, then a consistent test will be uniformlyc onsistent. In partic-
ular, if the test is consistent and has certain invariant property, then
it is uniformly consistent.

COROLLARY. Let there exist a group N of transformations on X=

{(t;, )} and let A be the induced group of tramsformations on the pro-
duct parameter space. If the test ¢ defined in (2.1) is invariant and
if the distance fumction & is a maximal invariant w.r.t. A, then T is
consistent w.r.t. (F, 0) iff (1) the test ¢ is comsistent, (2) the power of
the test ¢ is monotonically increasing (decreasing) in 3(6,, 6,) for (6, ;) €
QD).

PROOF. Let U be a maximal invariant w.r.t. A. If ¢ is invariant

and 6 is a maximal invariant w.r.t. %, then ¢ depends on (¢,t,) only
through U and the distribution of U depends on (4, &) only through
0(6,, 6;). Hence the power of ¢ depends on (4, 6,) only through é(6,, ;)
and ¢ is uniformly consistent on Q®VUQR® iff ¢ is consistent and the
power function of ¢ has the desired monotone property.

We note that in particular the above corollary applies to location
and scale parameter families.

We now observe a nature of the ranking and selection problems.
If a ranking statistic T is consistent, then any linear transformation
T'=aT+b (a>0) of T is also consistent. We say

DEFINITION 2. Two ranking statistics 7' and 7" are equivalent if
(2-3) P, Q[tlétz]-"-'P f[tfétﬂ

holds for every » and every ¢ in the product parameter space. Clearly
if T" is a strictly monotonically increasing function of 7, then T and T"
are equivalent and 7" is consistent w.r.t. (§, 6) iff T is. Hence to con-
sider the consistency of different ranking procedures we need to con-
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sider only those statistics which are not equivalent. In most cases T
is such that ¢ converges to z(#) in probability as n— oo where 7 is a
continuous, strictly increaing function of 4. Let 7'=z"%T). Since con-
vergence in probability is preserved by continuous mappings, it follows
that ¢’ converges to ¢ in probability as n— . Hence without any
loss of generality we can consider T to be a consistent estimator of @
in the following theorem.

THEOREM 2. Assume that 5 is a metric, i.e., in addition to condi-
tions (i)-(iv) on & the triangle inequality is also satisfied. If, as n— oo,
o(t™, 6) converges to 0 in probability uniformly in 6, then T is consistent
w.r.t. (§,9).

Proor. Let (6, 8;) be a point in the product parameter space. For
arbitrary but fixed *>0 denote

A ={x: oz, 0,)<*/2} and A, ={x : o(x, 0:)<0*/2} .

Then by conditions (i)-(iv) on & both A, and A; are intervals on the
real line and 6, (6;) is an interior point of A, (4;). Following from the
triangle inequality if there is an s€ A;N A,, then we must have

3(6,, 0:) < 6(s, 6,)+0(s, 6;) <0* .

Therefore ¢=(6,, 6;) € 2 implies A;NA,=¢. For arbitrary but fixed ¢>0
since there exists an N such that

(2.4) Po(t™, )< 8%/2]=1—-

for every 6 € & whenever n>N, it follows that for every ¢ e 2 we
have

P¢[CS|R]:P¢[t1étz]§P¢[t1 €At ¢ A2]=(1—e)z

whenever n>N. Similar argument holds for ¢ e 2®.
An equivalent statement of (2.4) is that the sequences of distribu-
tions of 4(¢”, §) converges to the distribution function

0 for <0
(2.5) K(x)=
1 for x=0

uniformly in . Some general conditions on the convergence of a family
of sequence of distributions to a limiting distribution H(x) uniformly in
a parameter # have been studied by Parzen [16] and others. In partic-
ular if H(z)=K(x), then the conditions for the convergence of 3(t™, 6)
to 0 in probability uniformly in # can be found in Parzen’s paper.
Another interesting case is to take H(x)=®(x) where @ is the stand-



CONSISTENCY OF SINGLE-STAGE RANKING PROCEDURES 277 -

ard normal distribution, because in many ranking problems the distribu-
tions of the ranking statistics are asymptotically normal. It is well-
known that for fixed ¢ if the sequence of distributions H,(x, §), n=1,
2,-+- converges to @(x), then the convergence is uniform in x. However,
for fixed x the convergence may not be uniform in ¢ for § in 6. We first
observe in the following lemma that if for fixed x the convergence is
uniform in @, then the convergence is uniform both in 2 and in 6 (in
fact, we need only the continuity of &(x) in the proof of the lemma).

LEMMA 2. Let {H,(x,0):0€80}, n=1,2,--- be a family of sequences
of distributions and let @(x) denote the standard mnormal distribution.
If for every x there exists an N'=N'(x, ¢) such that

(2.6) | Hy(z, )—9(x)|<e/5  for every 6
whenever n>N', then there exists an N=N{(e) such that
2.7 [Hy(x, O)—D(x)|<e  for every x and every 0
whenever n>N.

PRrROOF. For arbitrary but fixed ¢>0 let C be large enough so that
O(—C)<e/2 and #(C)>1—¢/2. Let M be large enough so that for every
2, " in [—C, C]l|z'—«"|<2C/M implies |@(x')—D(x")|<e/5 (this is ob-
viously possible because @(x) is uniformly continuous in [—C, C]). Con-
sider the partition —C=xz,<x,<---<xy,=C where z,.,—x,=2C/M, and
denote N/=N/(x;,¢) such that (2.6) is satisfied whenever n>N/ for
1=0,1,---, M. Let N=max N/. Then for every 6 and every x¢c[—C,

0sisM
C] there is an 4 such that x,;<x<=z,,, and

I Hn(m’ 0) _¢(w) | é [Hn(wi+1 ’ 0) _Hn(xi ’ 0)]
+| Hy(;, 6)— (%) |+ D(x;) — P() |
2e

<[fo@a+ 3} -{owr -]+ <
whenever n>N. The cases that x<—C and x>C can easily be taken
care of. Hence the lemma is proved.

We now proceed to investigate the consistency of a class of ranking
statistics which have asymptotically normal distributions. Let T be the
ranking statistic under consideration and denoté <, (f)=Eit™, ¢2(6)=
E[t™ —,(0)F, H(x, 0)=P,[(t™ —1,(0))/0.(0)<x]. Since by assumption the
family of distributions {G.(y,6) : 6 € ®} is a stochastically increasing
family, we have 7,(0,) <(>)r.(8) if 6,<(>)b;.

THEOREM 3. Assume H,(x, 8)— &(x) uniformly in 0. Then T 1is
consistent w.r.t. (%, 6) iff the absolute value of
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— [Tn(az)_fn(ol)]
@9 CO= 10+ 0017

approaches to oo uniformly in ¢ for ¢ € 2. In particular, if t™ is an
unbiased estimator of 0 and 8(6y, 6;)=|6,—6;|, then the above condition
reduces to

2.9) a(0)—0 untformly in 6.

PrOOF. Let ¢p=(6,, 6;) be any point in the product parameter space.
Without any loss assume 6,<#,. Then the probability of correct selec-
tion at ¢ is

P¢[CS] = P¢[t1 = tz] = Pf[ZI = ”'nZz+ Sn]
= S“’ H(r@+8,, 0.)dH,(z, 0y)

where Z,=(t;—1.(0))/0.(8;) for 1=1,2; r,=r.(p)=0.0))/0.(6) and S,=
Su(¢) = (t(02) —7.(61))/0,(6;) >0. By Lemma 2 there exists an N; (which
does not depend on x and 6) so that (2.7) holds whenever n>N,. Thus
for every n>N, we have

@10) ||” H(rw+S,, 00dH, (@, 0)— (" 0(ra+S)aH@, 0)| <2 .

Now we claim that there exists an N, (which does not depend on ¢)
such that for every » >N, we have

2.11) ‘ Sl O(r5+S,)dH,(w, 05)— S: D(r,z+ S,,)d(b(x)‘ <e.

This is not an immediate consequence of the well-known Helly-Bray
Theorem or the uniform version of the Helly-Bray Theorem given by
Parzen ([16], p. 30), because H,(x, 6;) depends on ¢ through 6, and the
integrand @(r,x+S,) depends on both ¢ and n. However, since @(x)
is uniformly continuous on the real line and H,(z, §) converges to &(x)
uniformly in « and in 8, the proof of (2.11) is similar to the proof of
the Helly-Bray Theorem ; so the detail is omitted here.
Since for every fixed ¢ and n

|- 0r+5)d0@)=0(C.(9)) .
combining (2.10) and (2.11) for every n>N=max {N;, N,} we have

(2.12) O(C,()) —83e < P,[CS] < D(Co(¢h)) + 3¢
where N does not depend on ¢¢. Hence lim 1n£ P,[CS]—1 iff lim 1'n£ C.(¢)

=oco and the proof of the theorem is completed.
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Remark. We make the following remark which can easily be justi-
fied from the way we prove the above theorem: Let there be k pop-
ulations involved in a ranking problem for any k=2. If the ranking
statistic T is such that H,(x, )—®(x) uniformly in 6, then for every
¢=(0,, 0;,---,06,) in the product parameter space the probability of cor-
rect selection P,[CS] satisfies

|Pics1={"_[ Ti 0trua+ 8.0 d0 ()| -0

uniformly in ¢, where

- _ :(0x) ,=s, (P)=T w(00e7) — 7al01i7)
'rn,i ’rn,i(¢) 0',,(0[,;]) ’ sn, sn. (¢) a,.(ﬂm)

and ;< ---<0y; is the ordered # values; the limiting probability is a
multivariate normal probability.

3. Consistency of some commonly-used ranking procedures

In this section we apply the results developed in Section 2 to in-
vestigate the consistency of some individual ranking statistics which have
been used or can be used in most cases.

A. The means procedure

It appears that the means procedure (under which the ranking sta-
tistic is the sample mean) has been the most important ranking pro-
cedure considered among the literature of ranking and selection problems.
Individual applications of this procedure have been made to normal [2],
Binomial [18], Poisson [17], Gamma [7] and location parameter family
[18]. Applications to other families of distributions have also been con-
sidered.

Perhaps the importance of the means procedure can be partially
justified by the Weak Law of Large Numbers. If the family of dis-
tributions § = {F(x, §) : 6 € ©} is a stochastically increasing family and
if E,X=1() exists for O, then X™ converges to z(f) in probability
as n— oo and z(6) is a monotonically increasing function of 4. Following
from the argument in Section 2 again we can assume, without loss of
generality, that «(6)=60. If ¥ is a location (or scale) parameter family,
then 6(X™, §)=|X™—0| (or (X, 8)=|log (X/6)|) converges to 0 in
probability uniformly in 8. It follows from Theorem 2 and the Weak
Law of Large Numbers that if the first moment exists, then the means
procedure is consistent w.r.t. location and scale parameter families.

Another important case of the means procedure is a consequence
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of the Uniform Central Limit Theorem. If the second moment also
exists, then P[(v7(X™—0))/o(0)<x]—P(x) as n— oo for every 6c@
when E,X=60 and E(X—60)=d*6). It follows from Theorem 3 that if
the convergence is uniform in ¢, then the means procedure is consistent
iff ¢%6) is bounded in 6. If &*(§) is continuous in @, then the means
procedure is consistent if the parameter space © is bounded. We note
that the conditions for the Uniform Central Limit Theorem given in
[16] can be easily verified in many applications.

B. The procedure based on the maximum likelihood estimator of @

The maximum likelihood principle plays an important role in sta-
tistical estimation theory and the asymptotic behavior of the maxi-
mum likelihood estimator has been fully studied. But the role of the
procedure based on the maximum likelihood estimator in ranking and
selection problems has not been clarified yet because among most of the
ranking problems considered this procedure is identical to the means
procedure. It was shown in [16] that under certain conditions the maxi-
mum likelihood estimator converges to # in probability uniformly in 6,
and the c.d.f. of the standardized maximum likelihood estimator (with
mean 0 and variance 1) converges to @(x) uniformly in #. Hence if
those conditions in [16] are satisfied, then the ranking procedure based
on the maximum likelihood estimator is consistent when the distance
function &(6,, 8;)=|6,—8,| is used.

C. The procedure based on linear combination of order statistics for
location parameter family

We first look at the estimators for # for the location parameter
family F={F(x,0)=F(x—0):60c6}. If the first moment exists and

E,X=6, then certainly the sample mean X™ can serve as an estimator
of 4. However, in several occasions either the first moment does not

exist or the estimator X™ is inefficient, other estimators have been
considered. The estimator of # based on linear combinations of order
statistics and its asymptotic behavior has been studied recently by
Chernoff, Gastwirth and Johns [5] and others. Following their nota-
tions let Y,£Y,<---<Y, be the order statistics of n random samples

from a population with c.d.f. F(x—6) and let t‘“’=1/nic,Y, where
j=1

c=(c, ¢, +, ¢;,) can be found in [5]. Then it is easy to check that (1)
*=E,[6/60 log f(x—0)] does not depend on # and (2) for every ¢ H,(x, 6)
=Pj[(t™ —1(0))/Je<x] does not depend on 6 where z(f)=E;™. Results
in [5] assert that if the regularity conditions are statisfied, then H,(x, 6)
—@(x) for every #€6. This implies that H,(x, §)— &(x) uniformly in
# and (by Theorem 3) the ranking procedure based on this linear com-



CONSISTENCY OF SINGLE-STAGE RANKING PROCEDURES 281

bination of order statistics is consistent for location parameter family.

4. Remarks on the exponential family

Consider a family of distributions ¥ with density functions {f(zx, 6) :
#eB}. §issaid to be in the exponential family if f(x, §) has the form

Flz, 6)=A(x)B(8)e? ™

where A, B, Q, R are real-valued functions. Let {X,;}, j=1,2,---,m;
©=1,2 be random samples taken from two populations with densities
f(x, 8) and f(z, 8,), respectively and let (62, 6}) be any constant vector
such that #<#. Then in the testing hypothesis problem

IIII : (019 02)2(0}! 0g) vs. HS, : (017 02)‘:(02’ 0?)
H! is accepted iff
[f (@, 8) f (s, 63)]
[f (@i, &) f (2, O]

=[Q(02)—Q(oz)1[ 2 RX)-35 RXG)|>C

4.1) 2,=log £

Gt

where C is a real number. If Q(f) is monotonically increasing in ¢ the
test

1 if SIRX,)<3 R(X)
(4.2) = = -

0 otherwise
is uniformly most powerful for the hypothesis
H, : 60,56, vs. H,: 6,>6,

where H, is accepted iff ¢=1: and ¢ is uniformly consistent on £ iff

inf P,[ §‘_, R(le)él é R(Xz;)]“*l )
n j=t n j=t

Py

(4.3)

sup P,[—l- PN R(Xu)él b3 R(ij)]—>0
14 j=1 n =t

as n—oo, where 2, and £, are defined in (2.2).

In many ranking and selection problems for families of distributions
in the exponential family the distance function

4.4 a(0,, 0:)=|Q(6,) —Q(62) |
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has been used when Q is monotonically increasing in 4. It follows from
Theorem 1 that the ranking procedure for the exponential family based
on %‘, R(X,) is consistent iff (4.3) holds when |Q(8,)—@Q(8,)|>d* for arbi-

trary but fixed 6*>0.

We note that Bechhofer, Kiefer and Sobel have defined a “Rank-
ability Condition” in their book ([3], p. 41) for sequential ranking pro-
cedures. It can be seen that under their rankability condition the O.C.
curve of the Sequential Probability Ratio Test for our hypothesis H/
vs. H; defined by 4, depends on (&, #3) only through 4(6:, 63); hence a
solution for the identification problem will lead to a solution for the
ranking problem. In particular they have proved that the rankability
condition is satisfied for all the families of distributions in the exponen-
tial family. But we do not have this advantage when single-stage rank-
ing procedures are used. Because under the single-stage sampling rule
the power of the test ¢ defined in (4.2) does not always depend on (6, 6y)
only through 4(4,, ;). In fact, for some families of distributions (4.3)
can not be satisfied and the single-stage ranking procedure is not con-
sistent (the Poisson family is one of the examples).

Appendix
On a Property of Stochastically Increasing Families

Let §={F(x,0) : 6O} be a family of distribution functions such
that for every €6 F(x,6) is absolutely continuous with respect to a
fixed (Lebesgue or counting) measure g, and F'(x, #) depends on ¢ only
through its functional form (@ is referred as the parameter space and
is usually an interval on the real line). % is said to be a stochastically
increasing (SI) family of distributions if 4,, 6, € © and 6,< @, implies F'(x, 6,)
<F(z, 6,) for every x. It is well-known that the class of SI families
contains most of the familiar distributions; also, in most cases the dis-
tribution of a statistic with random samples from an SI family also be-
longs to an SI family. Hence it is a natural thing to ask: under what
condition(s) this SI property will be preserved?

In this appendix we apply some results of Lehmann in [11], [12] to
give a solution to this problem. It is shown that a certain monotone
property of the statistic serves as a sufficient condition. For n=1 let
t=t" : R,— R, be a Borel measurable function such that for every i=
1,2,---,m,

(A'l) t(n)(x)=t(xlv Loy vy wn) T Z;

for every fixed (z;,---, %i_y, %i11,- - -, %,) (Where 1 means non-decreasing).
Let X, X;,---, X, be independent, identically distributed random vari-
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ables with distribution function F(x, 6) € ¥, and let G.(y, 8) denote the
distribution function of t™(X)=t(X;, X, -+, X5).

THEOREM. If ¥ s a SI family and t, satisfies (A.l), then &=
{G.(y,0) : 66} s a SI family.

PrROOF. We need to show that if ¥ is SI, then for every 4,,8,€¢6
such that 6,<6, and every real number ¢ the inequality

(A.2) Pﬂz[t(le X29 Tty Xn)éclépol[t(le Xzy Tty Xn)éc]

holds.

By a lemma of ([12], p. 73), there exist two non-decreasing, real-
valued functions %, and %, and independent identically distributed ran-
dom variables Z,, Z,,---, Z, such that

h(2) =< hy(z) for every z,
and for ¢=1,2,---,n
F(z, 0)=PF,[X.sx]=Ps[M(Z)=2] ,
F(z, 0)=P,[X,<z]=P, [h(Z)<2]
for every . Hence by taking ¢;=¢,=---=g,=h;! and ¢/=gi=-.--=g,

=h;! the Condition (A) in [11] is satisfied. For arbitrary but fixed real
number ¢ let the Borel measurable set S in R, be

(A.3) S={x:tx, x5, -, 2,)>c} .

Then by the condition imposed on ¢™ in (A.1l) the set S is an increas-
ing set. Hence by Theorem 1 of [11] we have '

P,(S)SP,(S),

or equivalently, (A.2) holds. This completes the proof of the theorem.

We observe that a large class of statistics including the mean (or
any linear combination of the observations with non-negative coeffici-
ents), the median, the maximum or minimum or any other order statis-
tics do satisfy (A.1). We also observe a property of the distribu-

tions of the maximum likelihood estimators 4, which play an important

role in estimation theory. Assume the regularity conditions are satisfied

so that 6 is the solution of the equation é 9/06 log f(x;, )=0; where
i=1

f(x, ) denotes the corresponding density function. If f(x, 6) depends

on z and 4 only through u=wu(x, 6) and if ((3/06)u(zx, 8))((3/ox)u(z, 8))<0,

then 4 satisfies (A.1) and the distribution of 4 belongs to a SI family.

In particular, this applies to location and scale (of non-negative random
variables) parameter families.
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