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Summary

Definitions of different strengths are given to the notion of ‘a
stochastically larger component of a two-dimensional random vector.’
Some of them reduce to the known definitions of stochastic order re-
lationship when the components are stochastically independent. The
definitions and the approach are related to nonparametric problems.

1. Introduction

The notion of stochastic order relationship is fundamental in statis-
tical inferences and especially in the nonparametric theory. The notion
for one-dimensional case was established in the publications [1], [2] and
[3]. It is related to other notions like monotone likelihood ratio, posi-
tive (or negative) dependence, test of symmetry, increasing hazard rate,
ete.

In this paper we extend the notion to two-dimensional case using
a systematic way for defining what is meant by saying that ‘a com-
ponent X of a random vector (X,Y) is stochastically larger than the
other component Y’. The formulation is stated later in this section.
Some series of definitions are introduced and their characteristics are
discussed in Sections 2 and 3. It is shown that a series of definitions
covers the known definitions in one-dimensional case as a special case
where X and Y are stochastically independent. Other possible approaches
are also stated in Section 4.

For any measurable subset S in R* we denote by S* its symmetric
image about the line x=y, namely S*={(x, ¥); (¥, ) € S}. We also use
the notation R, = {(z, ¥); =y} C R* and R,=R}.

DEFINITION 1. Let R be a class of measurable subsets of R,, then
we say that a component X of a random vector (X, Y) is stochastically
larger than Y with respect to R iff

PU(X,Y)eS}Z P{(X,Y)eS*} forall SeR,
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and we shall write this fact simply as X»>Y (R).

Choosing a larger class of R we get stronger definition of ordering.
There may be many principles for choosing a class R. A choice is
justified by its usefulness in applications, which will be discussed in
forthcoming papers [4] and [5].

2. Definitions

Throughout the paper (X, Y) is a random vector with the distribu-
tion function F'(x, y). Its marginal distributions are written as G(z)=
F(z, ) and H(y)=F(oo, y).

We denote a two-dimensional (finite or infinite) interval by S(s,, s;;
b, t) ={(z, ¥); 8,<x<s;, t,<y=<t;} and introduce classes of intervals:

DEFINITION 2.
Riu={S(as, as; by, by); bish=a=as},
Ry ={S(ai, as; by, by); b=b,=a,=a,},
Ria=1{S(a:, ; by, by); bisb=ai},
= {(S(@:, a5 —o0, by); bsaSas} ,
Rea=RiURY,
Ri={S(a,, ; by, b); bisb:=ai},
Ry ={S(ay, as; —, by); b=a:=<a,},
R:=RURY,
Ria={S(ay, 005 —o0, by); b=ai},
Ry ={S(a;, ©0; —o0, by); by=ay} .
We introduce also classes of band regions:
DEFINITION 8.
Ru={{(=, y); a<z—y=b}; 0=<a=xb},
Ri={{(x, y); a<z—y<oo}; 0=a}, Ri={R.}.

Notice that in Definitions 2 and 3, the suffix of R corresponds almost
to the number of parameters which appear in the definition. In Fig. 1
the typical members of these classes are illustrated with the slant x=y.

In the framework of Definitions 2 and 3 R,, is the strongest since
X>Y (R;,) means that P{(X,Y)eS}=P{(X,Y)eS*} for any meas-
urable set S in R,, or that if f(x,y) is a density with respect to a
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*, R a,
=
Ry % »
RIA.
=z
2,

Fig. 1 Typical elements of the classes R;’s.

dominating symmetric measure, then f(x, ¥)=f(y, x) for any z>y. R,
is the weakest in Definition 2 and in terms of the marginal distribution
functions it is equivalent to G(t)<H(t), —oo<t<oo. In Definition 3
the weakest R) means P(X>Y)=P(Y > X).

PROPOSITION 2.1. For the probability distributions on R?! the im-
plications in Fig. 2 (shown by arrows) and only these are valid.

Proor. If R,CR; then the g-algebra generated by R, is a sub-

[ 14X

.CR,

Ry ——— .‘R,

Fig. 2 Implication scheme among the definitions, the general case.
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algebra of that by R;, and X»>Y (R,) implies X>Y (R,). The if-part
can be shown straightly or by considering limits and integrations. The
only-if-part is shown by counter examples in Appendices A and B. Re-
fer also to Propositions 2.2 and 2.3.

Now we consider the special case where the components of (X,Y)
are stochastically independent.

ProPOSITION 2.2. If X and Y are stochastically independent then
the stochastic order R;,, R4, Ris, Riy and R,, are equivalent to R,,
Ry, RL, RY and R,, respectively.

PrOOF. To prove the equivalence of R;, and R; put
p1=G(b:)—G(by) , 2.=G(a,)—G(by) , 2:=G(a,)—G(ay) ,
¢=H(b)—H(b), @;=H(a,)—H(b), ¢:=H(a;)—H(a,) .

Then X»>Y (R;) means p:q1=p,g. and p,g:=p:qs, and these imply pyg=
pgs or P{S(a,, as; b, b))} = P{S*(a,, a,; b,, b;)}. The other equivalence
can be proved similarly.

ProPOSITION 2.3. In the independent case the implications scheme
of Fig. 2 reduces to Fig. 3 and only these implications are possible.

/3?4‘
Ry R

N~

I R ¥4 QD

Fig. 3 Implication scheme among the definitions, the independent case.
ProoF. Firstly we prove R, —R;. For any a>0
P(XzY+a)=| H—a)dG()
> S G —a)dG(x)

S dG(s)dG(t)

s2i+ae

- S (1—G(t+a—0))dG(t)

gs (1—H(t+a—0))dG()
=P(Y=zX+a).
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Other implications follow immediately from Propositions 2.1 and 2.2.
The impossibility of other implications are shown by counter examples
in Appendix B. They are also counter examples for Proposition 2.1.
The increasing strictness of R,, R, and R; was proved by Pfanzagl
[3] but we add some comments.

3. Some properties and examples

3.1. Some comparisons

Example 1. Consider the family of two-dimensional exponential-
type distributions with the density

Sz, y; 0)=h(z, y; 0) exp {6,9(x)+0:9(y)} ,

where 6=(0y,- -, 0,), h(x, y; 6) is a symmetric function of x and y, and
g(+) is nondecreasing. Then X»>Y (R,,) iff 6,=6,. The trinomial dis-
tribution, the negative trinomial distribution (or the bivariate negative
binomial distribution) and the bivariate beta distribution (or the Dirichlet
distribution) are of this type.

Example 2. For the two-dimensional normal distribution with the
mean vector (g, 0) and the variance-covariance matrix

J p«f] f@,y) __a—y {( __1_) 2¢ }
[W L g LM BV (15 e+ @)
Then X»>Y (Rs,) iff =1 and £>0. In general X»Y (R, iff F(t, o)
<F(oo,t) and in this case F(t, 0)=0((t—p)/sc) and F(oo, t)=®(t), the
distribution function of N(0, 1), so X>Y (R,) iff =1 and p£>0. These
two facts show that in the sense of all R;,, Rus, Risy Riuy Ria; Ry, Rs,
r RY and R;, X and Y are comparable iff ¢=1 and then the stoch-
astic order relation does not depend on the correlation coefficient p.

The difference Z=X—Y has distribution function @((z— x)/v*—2p5+1)
so that X>Y (Ryu, R; and R) if x>0, irrespective of the values of ¢
and p.

Example 8. If X, <.--<X,, are ordered observations from any
distribution then trivially X ,» X« (Rss) for any j>i.

Let (X;,Y;), i=1,---,m, be a sample from the distribution F(z, y)
and consider the joint distribution of X,..,=max X; and Y_,,=maxY;.
A question is whether X;>Y; (R,) implies X,z p>Y e (Ri). The answer
is affirmative for R;, R}, RY, R, R, Ry, and R;,. For other cases
X;>Y, (Rs and RY,) implies X, >Yox (Rs), and X, >Y,; (R, and RY)
implies Xoux>Yiax (Rid)-
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3.2. Transitivity and asymmetry

In the independent case it was shown by Pfanzagl [3] that the or-
der relations in the sense of R;, R, RY and R, are transitive. The
order relation in the sense of R, is not transitive even in the inde-
pendent case. In the general case, however, the relations are not tran-
sitive, that is there exists a three-dimensional random vector (X, Y, Z)
whose marginals satisfy X>Y and Y»>Z (R,) but not X>Z (R,).

Example 4. Let (X,Y, Z) have equal probabilities at three points
2,1,0), (0,2,1) and (1,0,2), then X>Y and Y>Z (R; and R,), but
not even X»>7 (R; or R,). So the transitivity does not hold for R,
R, R}, RY, R, and R,.

Example 5. Let (X,Y, Z) have equal probabilities at 15 points of
the following table:

z y z z y z z v z
1 2 1 1 3 2 1 2 3
1 3 1 2 1 2 2 1 3
2 1 1 2 3 2 3 1 3
2 2z 1 3 1 2 3 2 3
2 3 1 3 2 2

3 3 2

Then X>Y and Y>Z (R;,) but not even X>Z (R,, or R,). So the
transitivity does not hold for R;., Res, Ris, R, Ris, Ru and R;.

It is easy to see that (X, Y) is symmetric iff X>Y (R,,) and Y >»X
(R1s), and that X and Y are identically distributed iff X»>Y (R,) and
Y>X (Ry).

3.3. Comparison by the marginal distributions

Even if X and Y are not independent we may compare their mar-
ginal distributions, that is to determine the order of (X,Y) we may
apply the previous definitions to G(x)H(y) instead of F'(x, y). We denote
this type of comparison by X>Y (R, mrg). Compared in the sense of
Ry X»>Y (R;, mrg) is equivalent to X>Y (R;). Consider the situation
where we compare two statisties s(Z) and ¢Z) of a random sample Z.
Generally two statistics are not independent, so if we treat analysis by
s(+) and #(-) of the same data we should study the sampling distribution
of (s(Z), t(Z)). If we apply each of s(-) and ¢(-) to different data, how-
ever, we can do with its marginal distributions.

Example 6. In a finite Markov chain with stochastic matrix P,
assume that states are numbered in an ascending order of magnitudes.
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Let Y denote the state in a step with probability distribution (q,,- -, q,)
and X the state in the next step, then

X>'Y (92'84) iff q,-Piqu,Pﬂ for ’l:<j ,

while

X>Y (Rs, mrg) iff (%‘. quk,> / <§k} quki)gq,/qi for i<j .

4. Other approaches

A common measure to compare two random variables is the differ-
ence of their mean values. For general use we extend it by Defini-
tion 4. Let the (marginal) distribution functions of X and Y be G(x)
and H(y), respectively.

DEFINITION 4. We call S(H(t)—G(t))dt the generalized mean differ-
ence of X and Y. We write X>Y (Rj) iff the generalized mean dif-
ference is nonnegative or positive infinite.

PROPOSITION 4.1. (1) If X and Y have finite mean values, then
the difference of them is the generalized mean difference.
(2) If G(t)=H(t—6) then the generalized mean difference is 4.

(3) If S 2dG(x)=+ oo and the mean value of Y is finite or if the mean

value X is finite and Sde(y):—oo then X>Y (R,).

PROPOSITION 4.2. X»Y (R;, mrg) implies X>Y (Rz). And X >
Y (R, mrg) implies X>Y (Rjy), if r [H(t)—G(t))dt exists.

PROOF. The former statement is obvious. X>Y (R;, mrg) means
that for any =0

S [1—G(t+a)ldH(?) _z_g [1—H(t+a)]dG(t)=S G(t—a—O0)dH(?) .
After some arrangements and integration

I [{ e+ —ce+anme

—o0

—S [G(t—a—O)——H(t—a—O)]dH(t)]dagO .

As the integrands are integrable, applying Fubini’s theorem
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S [S:o [H(a)—G(a)lda— S: [Ga)—H (a)]da] dH(®)=0

which means the generalized mean difference to be nonnegative.
Finally we introduce another class of sets Rs of middle strength.
The meaning of its introduction is shown by Propositions 4.4 and 4.5.

DEFINITION 5. Let R be the class of all measurable subsets of
R, such that if (x,y)€ S then any (2',%), ¥’ =x=y=v', belongs to it
also.

PROPOSITION 4.3. X»Y (R}, or RY,) implies XY (Rs), and the
latter implies X>Y (R, and R,). Even in the independent case the
inverse statements of these are not valid.

PROPOSITION 4.4. Let 7(x, y) be a function which is nondecreasing
in 2 and nonincreasing in y. If S€ R then

{(, 9); (r(z, y), r(y, x)) € S} € Ry .

From this 7(X, Y)>r(Y, X) (Rs) if X>Y (Rs). Conversely if a func-
tion 7(x, y) satisfies the condition »(X, Y)»>r(Y, X) (Rs) for any (X,Y)
such that X>Y (Rs), then r(z, ¥) is nondecreasing in 2 and nonincreas-
ing in .

ProprosITION 4.5. If (X,Y) has a symmetric distribution and f£(¢t)
and g¢g(t) are real valued functions such that f(£)=g(t) for all ¢, then

F(X)>9(Y) (Rs).
APPENDIX A. Counter examples in the dependent variables case.

Example A.1. To show that X»>Y (R;) does not imply X>Y (R,
nor R;), so that none of (R;, R,, R, RY and R,) implies any of (Rs,,
Rouy, Rhay RYy, Ria or Ry), probabilities on 83X 3 points:

] ? 3

3 1/13 2/13 0
2/13 0 4/13
1 0 4/13 0

Example A.2. To show that X»Y (R,,) does not imply X>Y (R,).
Probabilities on 4 x4 points.
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Iy 1 2 3 4
4 1/11 1/11 1/11 0
3 /11 111 0 0
2 /11 0 1/11 0
1 0 0 0 411

Example A.3. To show that X>Y (R,,) does not imply X>Y (Ru).
Probabilities on 4 x4 points:

X
y\ 1 2 3 4
4 0 0 0 0
3 0 1/4 0 0
2 0 0 0 1/4
1 0 0 1/4 1/4

APPENDIX B. Counter examples in the independent case.

Notice that counter examples in a restricted case play their role in
general case.

Example B.1. To show that X»>Y (Ry) does not imply X>Y (R,),
so that none of (Ry, R; and R,) implies any of (R;, R, R}, Ry or
R,; further R;,, R.i, Ris, RY, or R, in general case). Probabilities
on 3xX3 points:

x
y\ 1 2 3 sum
3 3/24 3/24 3/24 3/8
1/24 1/24 1/24 1/8
1 4/24 4/24 4/24 4/8
sum 1/3 1/3 1/3 1

Example B.2. To show that X»>Y (R,) does not imply X»>Y (R}
nor Ry ; further R}, nor RY, in general case), consider the location-
parameter family F(x—6). It is ordered in the sense of R,, and fur-
thermore it is ordered in the sense of R} (or RY) iff —log (1—F(x))
(or —log (F'(x))) is convex. Put

/(1+2%) , =0,
F(x)=
0, z<0,

then —log F(x) is convex but —log(1—F(x)) is not. The example
shows that X>Y (RY) does not imply X»>Y (R; therefore R,), and
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also that X>Y (R,) does not imply X>Y (R}). Since XY (Rj)) iff
—Y>—X (R}), the dual statements like that X»>Y (R}) does not im-
ply X>Y (R%) are valid.

For the location-parameter family of a discrete distribution like the
two-point distribution a positively shifted distribution is not stochasti-
cally larger than the original in the sense of R} nor RY.

Exmple B.3. To show that X»>Y (R,) does not imply X>Y (R)).
Probabilities on 3 X3 points :

x
N 1 2 3 sum
3 4/25 0 6/25 2/5
4/25 0 6/25 2/5
1 2/25 (] 3/25 3/5
sum 2/5 0 3/5 1

Example B.4. To show that X>Y (R,) does not imply X>Y (Ry),
which X>Y (R}, RY, R, or R,) does not imply a fortiori. Probabili-
ties on 8 X8 points (multiplied by 58 x27): Notice that

P(X—Y =3)=86/(58x 2T) < P(X—Y = —3)=106/(58 x 27) .

N 1 2 3 4 5 6 7 8 sum
8 1 110 2 1 10 1 32 | 127
7 1 110 2 110 1 32 | 127
6 0 10 100 2 10 100 10 320 |10/27
5 1 1 10 2 110 1 32 | 127
4 2 2 2 4 2 20 2 64 | 2/27
3 4 4 40 8 4 4 4 128 | 4/27
2 4 4 40 8 4 40 4 128 | 427
1 4 4 40 8 4 40 4 128 | 4/27
sum | 1/58 1/58 10/58 2/58 1/58 10/58 4/58 32/58 | 1
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