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We have presented the method of quantification based on the
measure of similarity between two elements, which we call e, -type
quantification [1]. This e;-type quantification is found to be closely
related to Guttman’s SSA or POSA and Hayashi’s MDA [2], [3], [4], [5],
in the sense that this type of quantification is applied in these methods.

In the e,-type quantification, e, means similarity. Even if e
means dissimilarity, we can apply the same formula by using (—e;,)
instead of e;;. Here, as a generalization of e;,-type quantification, we
consider two dimensional quantification based on the measure of dis-
similarity e;;,=0 among three elements 4, 7, k, where ¢, 5, k=1,2,---, R,
R being the size of the elements. We assume that e;,’s are repre-
sented by numerical values for all combinations of ¢, 7, k, <, 7, k=1, 2,
-+, R, and the value of e;, is independent of the order of 1, 7, k, i.e.
uniquely determined for the combination of three elements 7, 7, k. And
furthermore we assume that, if e, >e,.,, the degree of dissimilarity
for <, 7, k is higher than that for I, m, n.

This problem arises from the following essential examples; con-
struction of the color space from the information of color harmony
data among (more than) three colors, finding of the spatial configura-
tion of persons from the productivity data among (more than) three
persons, ete., these data being not essentially derived from the rela-
tions between the two.

Based on this information, we consider the problem of finding the
configuration of the R elements in two dimensional space, which pre-
serves the dissimilarity information with respect to e;.’s (¢, 7, k=1, 2,
---,R) as much as we can. This is a generalization of the e,-type
quantification.
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Model of e -type quantification

We take two dimensional Euclidean space and summarize the in-
formation with respect to the relations e,’s (3, j, k=1,2,---, R) as the
configuration of R elements in that space. We reduce this process to
the one of finding a correspondence of e;;, to a dispersion measure
among points 4, 7,k in two dimensional Euclidean space, i.e. a repre-
sentation of e, by a dispersion measure among 4, j, k. It is natural
that we define the dispersion measure among 1, 7,k as square of the
area of triangle (4, 7, k). Let (z, %), (z,, ¥,) and (z, ¥:) be the coordi-
nates of points 4, 7,k in the two dimensional Euclidean space. Thus
we take the corresponding measure ¢(t, 7, k) among ¢4, j, k instead of
the corresponding measure (x;—x;)* between ¢ and j in the e -type
quantification, where

z. ¥ 1)
o, 5, k)= =z, y; 1
T Y 1

and this is equal to the square of the area of the triangle except a
constant multiplier. Let us require that the above-mentioned configu-
ration of R elements should be determined so that ¢(1, 5, k) becomes a
monotone increasing function of e;;, as far as possible. As an analogy
with the e;,-type quantification, we take

Q=555 sl i)
Tk a5}
where ¢3(s}) is the variance of z(y) and we may take o3(¢})=1 without
loss of generality. Of course, @=0 holds.
We want to require (x;, %) ¢=1,2,..., R to maximize Q. For
simplicity, we take (¥, y) as the origin where Z(¥) is the mean value
of xz(y).

Quantification of the elements

From aQ/dx,=0, u=1,2,---, R and oQ/dy,=0, v=1,2,--., R, we
obtain

(1'1) Auu(y)xu+§‘ Aui(y)xizzzxu ’ u=1’ 27 ] R
(12) Auv(m)yv‘i‘jgo Avj(x)yj'_—lzyu ’ v =1v 2, R
where

CuijtCisteiju=Eyu; (=3864,;=3e,;=3€;;.)
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A=Q/R and of course 2*=0.

We require the maximum characteristic root 2* (2#0) and the cor-
responding characteristic vector.

(1.1) is symmetric and a characteristic equation with respect to z
if y’s are fixed. (1.2) is symmetric and a characteristic equation with
respect to y if «’s are fixed. The mean value of x’s which satisfy (1.1)
is always equal to zero, because A,m(y)+i§, A, (=0, A.(y)=A.(y), and

A2#0. The mean value of %’s which satisfy (1.2) is always equal to
zero, because A,,(x)+3) A,,(x)=0, A,;(x)=A4;,(x) and 2+0.
Jxv

From the above relations, formally speaking, 1=0 is a characteris-
tic root and constant vector is a solution in (1.1) and (1.2). However,
the form of @ does not admit it.

In the e,;,-type quantification, the solution is to be found invariant
except the constant multiplier under the transformation ae;;+8 (a, B
are constants). However, in the present quantification, the solution is
not generally invariant under the transformation e;;,+8, though the
solution is invariant except the constant multiplier under the condition

R
that the vector x and y are to be orthogonal i.e. 31 2,4,=0. Of course
i

we can solve the equations adding this condition.
We must solve (1). To solve (1), we use successive approxima-
tion method.

[First Step] We take the first approximation of %’s and then we solve
the characteristic equation with respect to # and require the character-
istic vector corresponding to the maximum -characteristic root. We
normalize the vector x (as Z=0 holds, we take the variance of x equal
to 1).

[Second Step] Using the obtained normalized x’s and calculating A,.(x)
and A,(x), v=1,2,---,R, j=1,2,.---, R, we solve the characteristic
equation with respect to y and require the characteristic vector corre-
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sponding to the maximum characteristic root. We normalize the vector
y (as y=0 holds, we take the variance of y equal to 1).

[Third Step] Using the obtained normalized %’s and calculating A,.(y)
and A.(y), »v=1,2,---,R, ©1=1,2,.-.--, R, we solve the characteristic
equation with respect to x and determine the characteristic vector
corresponding to the maximum characteristic root. We normalize the
vector z.

[Repeat this process] We generally confirm the convergence from the
forms of (1) by finding a good first approximation. We can judge the
convergence by the followings.

a. The maximum characteristic root to satisfy (1.1) is approxi-
mately equal to the maximum characteristic root to satisfy (1.2).

b. The obtained vectors x and y are the approximately equal to
the vectors x and y obtained previously.

Goodness of fit
The goodness of fit is given by the measure 77 defined as follows:

753:1— rEl
e

where ¢} is the variance of e’s (e, %, j,k=1,2,---, R) and
S'=min 3 3 3} [euk—P(9D)]2 y
P i Jj k

where P(p) is a monotone increasing function. Conventionally we take
polynomial as P(p) and, in the simplest case, we take P(p)=ap+b, a
and b being constants. Occasionally we take P(p)=a¢’+bp+c, where
a, b and ¢ are constants.

S%/6; means how much the variance of e reduces by using the
model ¢ mentioned above, comparing with the variance of e. 727 is
considered to represent the effectiveness of the model. We have 1=
78 =20.

First approximation
We find the first approximation of y by the e,;-type quantification.

R
Now let us define b,;= Zje,,k (¢#7) and quantify the elements using
kxi,

b,;. As the first approximation vector y, take the vector correspond-
ing to the maximum characteristic root p of the following characteris-
tic equation,
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R R
<2 awl)yw—gawlyl':‘uyw: w=1,2,---, R
tew taw
Whel‘e akl—_-bkl+blk .

Example

Let e;;; be the unproductivity (dissimilarity) measure (0~10) in -
J-k-cooperation team, i.e. 10—e,;, be the productivity (similarity) meas-
ure in t-j-k-cooperation team. This example was calculated by Fumi
Hayashi, using C-F-Hayashi-EQCP computer program.

R=6

e15=1.0 €3,=8.0
€="7.0 €yu;="17.0
€1:=6.0 €3:=9.0
€12=9.0 €u;—=6.0
eu="1.0 €6=28.0
e;55=6.0 ex="1.0
€153=9.0 e;=3.0
e;=4.0 €5=5.0
es=9.0 €5s=3.0
€55=6.0 es=1.0

We take the following as the conditions which are to be used to
judge the convergence :

1) Let the maximum characteristic root 2 satisfy (1.1) and the maxi-
mum characteristic root 2, satisfy (1.2). ]4,/2,—1|<0.0001. We
neglect the absolute value of the ratio minus 1 smaller than 0.0001
and regard 2,(1,) as being equal to 2,(1,).

2) We solve the equations (1.1) and (1.2) by Jacobi-method. We take
0.005 as the convergence condition in Jacobi-method.

Thus we have

x,=—0.1342 %,=0.6230
2,=0.6403 Y= —0.5256
x;=0.1437 ¥,=0.25679
2,=0.0915 %,=0.0830
x=—0.0041 ¥;=0.0691
2s=—10.7369 Y= —0.5074 .

See Fig. 1 (with scale of 10 times), where 1 - A, 25 B, 3—C, 4—D,
5—E, 6-F,
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Fig. 1. Configuration of the elements (last solution)

3) Pseudo-Correlation ratio

? ; zk] (e,,,,—P(gp))’

a;

7p=1—

(i) When P(p) is linear ap+b, 7 is 0.2579 (P=L).
(ii) When P(p) is quadratic ap’*+bp+c, 75 is 0.3649 (P =Q).

Computer program

The computer program for this quantification is called C-F-Hayashi-
E3QCP designed by Fumi Hayashi in our Institute which will be publish-
ed in Proceedings of the Institute of Statistical Mathematics Vol. 20,
No. 1. The communications relating to this program should be address-
ed to the author.
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