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Summary

Direct methods for computing the Moore-Penrose inverse of a ma-
trix are surveyed, classified and tested. It is observed that the algo-
rithms using matrix decompositions or bordered matrices are numerically
more stable.

1. Introduction

The purpose of this paper is to survey and classify the published
algorithms for obtaining the Moore-Penrose inverse of a possibly rec-
tangular real matrix and to report on tests of their performances using
a type of test matrices. The algorithms may be applied for complex
matrices but we shall treat only real ones.

Throughout the paper A is an m Xn matrix of rank » which is pos-
sibly less than min (m, n). An nXm matrix G which satisfies

(i) AGA=A (i) (AG)"=AG

(1.1)
| (i) (GA)T=GA (iv) GAG=G

and is uniquely determined by A is called the Moore-Penrose (general-
ized) inverse of A and denoted by A'. Any matrix which satisfies (i)
is denoted by A-, that which satisfies (i) and (ii) by A; and that which
satisfies (i) and (iii) by A;.

We shall denote the transpose of A by A7, its range space by R(A),
the orthogonal projection on R(A) by I7,, and the orthogonal comple-
ment of a subspace S by S*.

The role of A' in the theory of linear statistical model is well known.
For the minimization problem of [|Az—b||, x=A' gives the solution of
the minimum norm. The solution is said to be numerically more stable
among least squares solutions A;d, but this point is not well formulated
yet so far as the authors know.
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2. A classification and preliminaries

Direct methods for computing A' can be classified as follows.
A. Methods based on matrix decompositions.
Al. Matrix decomposition into a product of two matrices of full
rank.
A2. Singular value decomposition.
B. Methods using bordered matrices.
C. Others.
Cl. Greville’s recursive method.
C2. Methods based on the formula A'=(ATA),A".
C3. Pyle’s gradient projection method.
Discussions in Sections 3-6 follow in this order.
We state some simple facts as preliminaries.

ProPoSITION 2.1. If P and Q are orthogonal matrices, then
(PAQ)'=QTAIPT .
PROPOSITION 2.2. (AT)'=(AN".

PROPOSITION 2.3. Let A be a matrix defined in Section 1 and A=
BC where B and C are mXxr and rXn matrices respectively. Then,

A'=C'Bt.
PROPOSITION 2.4. If B and C are of full rank as above,
B'=(B"B)"'B” and Ct=C7"(CC™)™.

PROPOSITION 2.5. If O’s are zero matrices of switable size

[A,O]'f=[‘g] and [3]’=[A*,0].

3. Decomposition into matrices of full rank

In order to decompose a matrix A into a product of the form in
Proposition 2.3, the following three algorithms may be used. Pivoting
is necessary in these algorithms, however we shall not discuss its rule
and assume that the rows and columns of A are permuted so that the
algorithms proceed straightforward. The permutations are justified by
Proposition 2.1.

Procedure .1. Gaussian elimination (LU decomposition).
By Gaussian elimination A can be represented as
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3.1) A=LU,

where L is lower echelon (I,;=0 if 1<) and U is upper echelon (u;;=
0 if 7>7) both with nonzero “diagonal” elements. When the complete
pivoting rule is used, the further decomposition

(3.2) A=LDU ,
where D=diag (u;), makes [l;|<1 and |%;|<1.

Procedure .2. Houseﬁolder transformation.
Premultiplying an orthogonal matrix Q to A, we can have

(3.3) Qa=[7].

where U is upper echelon. Denoting the first » rows of @ by @Q,, we
have

(3.4) A=QFU
and
(3.5) A=U1Q, .

The orthogonal transformation (8.3) can also be obtained by Givens’
method. Since it needs more operations than Householder’s method, we
leave it out of consideration.

Procedure .3. Gram-Schmidt of orthogonalization.

Let @ be an m X7 matrix whose columns form an orthonormal basis
of R(A). The orthonormalization of the column vectors of A is equi-
valent to the decomposition

(3.6) A=QU ,
where U is an r»xXn upper echelon matrix. Then,
3.7 AT=U1Q" .

By these three procedures the problem is reduced to obtaining the
Moore-Penrose inverse of matrices of echelon form with full rank. We
shall consider an rXn upper echelon matrix U.

Procedure .01. Inversion of a non-singular matrix.

From Proposition 2.4 we get Ut by inverting UU”. An appropriate
method for inversion is to get the Cholesky decomposition of UUT=
FF?, Then (UUT)'=(FY)"F.

Procedure .02. Householder transformation.
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If we apply the Householder transformation to U?, then we have

3.8) PUT=[g] ,

where R is upper triangular and non-singular. Thus denoting the first
r rows of P by P,,

(3.9) UT=P/R
( and
(3.10) U=PF (R .

Procedure .03. Gram-Schmidt orthogonalization.

Let N be an nXr matrix whose r columns form an orthonormal
basis of R(UT). We obtain

(3.11) U*=NR,
where R is an rXr upper triangular non-singular matrix, and
(3.12) Ut=N(R™MHT.

Using these Procedures .01-.03 and .1-.3 the problem for obtaining
At is solved. Variations of .01-.03, however, may be considered as fol-
lows. We may write

(3.13) U=I[S, T1=S[1I, G],
where S is upper triangular and non-singular and G=S"!T. Thus
(3.14) Ur=[I, GI'S™.

The computation of S~! and G is a backward substitution and this
additional small work will be compensated by the reduction of operations
in computing [I, G]' rather than U'. Corresponding to Procedures .01-
.03 we get the following .04-.06.

Procedure .04. Inversion of non-singular matrix.
We use the formula

(3.15) [, G]'= [ éT ](I+GGT)“ ,

where (I+GG™)™! is computed from the Cholesky decomposition I+GG*
=FF7T as Procedure .01.

Procedure .05. Householder transformation.
As Procedure .02, using an orthogonal matrix P
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I R
3.16 [ L1=[E].
(3.16) G 0
where R is an rXr upper triangular non-singular matrix. So we have

[, G]f:PT[ (Rg)r ] .

Denoting the first » rows of P by P,, the first r columns of P, by P,,,
we get

(3.17) [, GI'=P/P,,
since PZR=1I from (3.16).

Procedure .06. Gram-Schmidt orthogonalization.
Similarly to Procedure .03,

(3.18) | & |=nE.

where R is an »Xr upper triangular non-singular matrix. Then we have
[, GI'=N(R™)" .

Denoting the first » rows of N by N, we have

(3.19) [, G]'=NN/] .

Now comparing Procedures .02 and .03 with Procedures .05 and .06
respectively we see that the difference between them is just the order
of decomposition and elimination (backward substitution). Combining
Procedures .1-.3 and Procedures .01-.06 we get 18 possible variations,
from which we should select some considering number of operations,
necessary memory space and accuracy.

According to our classification the published papers are summarized
as Table 1. Peters and Wilkinson [14] mentioned of Procedures .1-.3
but not of detailed variations.

Tewarson [17] suggested to compute (I+GGT)™! by the formula

(3.20) (I+GG*)*=(R*R)'=N,N/ ,
where R and N, are defined in (3.18) and (3.19), and compute
i 6r=[ 5 [Nz

This is, however, equivalent to (3.19). Rust, Burrus and Schneeberger
[16] published a slight modification of .36.
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Table 1

.1 11 Kublanovskaya (1966)
.14  Noble (1966)
.15 Tewarson (1968)
.16 Tewarson (1967)

.2 .21 Kublanovskaya (1966)
.25  Tewarson (1969)

.3 .36  Rust, Burrus and Schneeberger (1966)
Goldstein (1968)

4. Singular value decomposition

Let

4.1) A=UT| . V.
0
be a singular value decomposition of A, where U and V are orthogonal
matrices, then
1/a, 0
4.2) At=vr| Yo, |U-
0

To obtain a decomposition of (4.1) Golub and others (Golub and Kahan
[5], Golub and Businger [6], and Golub and Reinsch [7]) proposed the
following algorithms.

By premultiplications and postmultiplications of reflexion matrices
A is transformed to bi-diagonal form: (we assume m =% for convenience)

ay ﬁl 0.-.0 0

PAQ:[ ] J=|

J
0]

The problem is to find a singular value decomposition

J=X73Y.
Now if write
o J
x=[9. o]
JT O

and
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7 ollgl==l5]

then an eigenvalue ¢ is a singular value of J, and = and y are column
vectors of X and Y respectively. If we permute the rows and columns

of K so that the vector [:] is changed to a vector z with components

2y =0 and 24-1=Y¢ »

then
-0 a -
ay 0 ﬁ[
B 0 a z=+to2
) 0 a,
L a, 0 J

So the problem is reduced to the complete eigenvalue problem of a sym-
metric tri-diagonal matrix, which can be solved appropriately by the
Q@R method.

5. Bordered matrices

Let V be an m X (m—1r) matrix whose columns form a basis of R(A)*
and U be an nX(n—r) matrix whose columns form a basis of R(A")*.
Define

AV
1 =[ ] ’
(5.1) B Ur o
which is non-singular, and
_[AT (U™
t—
(5.2) B [VY g ] .
Or considering the first n columns of B,
UT
5.3 =
(5.3) =[]

which has full rank, and
(5.4) Ct=[AY, (UT)].

A method for obtaining V is as follows. U is obtained similarly.
If we premultiply a non-singular matrix @ to get the form
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oa-[&la-[5].

where A, is an rXm upper-echelon matrix, then we may take Q7 as V.
Bordering was proposed by Hestenes [9] and Germain-Bonne [2].

6. Other methods

6.1. Greville [8] proposed a recursive algorithm, which starting
from a column vector computes the Moore-Penrose inverse of a matrix
with one more column successively. If

(6'1) Ak=[Ak—l9 ak] ’
then decomposing

s=a’+a,  a’ € R(A)) and  af’ € R(4Apy)*,

we have

Al_ —d,b?
6.2 Ap=| A @]
(6.2) ”
where
® 3) dk=A£-1ak=A£—1a§cl) ’

., adr, if a®+0,
’ :{ (+dfd)dFAL,,  if a®=0.
The decomposition of @, can be computed by the orthogonal projection:
(6.4) aP’=A,_Al_.a.,=A,_d, , aP=a,—ad .
6.2. Ben-Israel and Wersan [1] proposed the use of the formula
(6.5) A'=(ATA) AT .
Let LU be a decomposition of ATA by Procedure .1 and

(6.6) L=[§ ]

where R is a lower triangular non-singular matrix. We may take as
(AT A);,, which is not unique in general,

(6.7) (ATA),=U'L-=U' R, 0] .

Glassey [3] proposed to construct a matrix B whose columns form
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an orthogonal basis of R(A”) and simultaneously C” = BTAZ”. Thus,
substituting

(ATA)'=B(BTATAB)"'BT
into (A7A), in (6.5), we have
(6.8) A'=B(C*C)'C™ .

Penrose ([12], [13]) suggested methods along the same line.

6.3. Pyle [15] called the following method “gradient projection.”
Let

AT=QU=qIR, S]

be the Gram-Schmidt orthogonalization of Procedure .3, and
Az=QI(R™)", 0] .

If A=PV is also the Gram-Schmidt orthogonalization, then
I1,=PPT

is the orthogonal projection on R(4), and
A=A 1, .

7. Test matrices and test results

For numerical examination of the algorithms we have used matrices
of the following type. They can be generated by computer for a given
set of singular values. Their elements are integers so rounding errors
in machine generation can be avoided. Their Moore-Penrose inverse are
easily computed. The magnitude of the elements are of the same or-
der so the effect of equilibration can be studied separately.

Let

A=UDV

where U is an mXm (m=2% Hadamard’s orthogonal matrix with +1
elements, D is an mXn matrix with zero elements except for given

integer parameters d,; (¢=1,---,7), and V is an nXn row-orthogonal
matrix ;
(1 1 1...- 1 17
1 1 1... 1 —n+1
v=|1 1 1 —n+2 0
1 1 -2. 0 0
(1 -1 0 0 0]
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The singular values of A are d,vmn, duyvm(n—1)n,
dyv m(n—2)(n—1),--.

Table 2 shows a part of the test results. The computation was
done by IBM-7040 WATFOR, with 27 bit mantissa, the accuracy is
measured by the number of exact digits: —log,, (relative error). The
other results showed similar tendency. The elimination, the Gram-
Schmidt and the bordering methods seem preferable. In the singular
value decomposition method, the QR method gives the eigenvalues with
reasonable “absolute” errors, so that the relative error is large in ill-
conditioned cases. The algorithms described in Section 6 are more com-
plicated than others, need more operations and consequently accumulate
more rounding errors.

Table 2. Accuracy of some solutions
m=n=8, r=6

Case 1 2 3 4
104 105 107 108
108 10¢ 106 106
Positive 102 108 104 108
singular | o 10 100 108 1
10 10 10 1
1 1 1 1
E 4.94 4.00 1.84 © 1.53
H 3.85 3.18 1.18 0.82
G 4.50 4.07 1.44 1.45
S 3.18 2.77 0.86 1.05
B 4.65 3.83 2.19 1.15
P 2.49 1.21 —_ —
E: Elimination (.11)
H: Householder (.25)
G : Gram-Schmidt (.36)
S : Singular value decomposition
B: Bordering
P: Pyle’s method

Singular values are approximate values. Accuracy
is —logio(max (|§is—gss1/|91s))}, where gus is a computed
value of the element g;j.

KEIO UNIVERSITY, FACULTY OF ENGINEERING
IBM JAPAN, SCIENTIFIC CENTER, TOKYO
INSTITUTE OF STATISTICAL MATHEMATICS
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