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Summary

In the preceding papers ([7], [8] and [9]), one of the authors dis-
cussed about the estimation of variances, covariances and correlation
coefficients of the population based on a stratified random sample. In
this paper we consider more general problem; estimating some func-
tional 4(F') of the population distribution F' based on a stratified random
sample, which include our previous papers as special cases. We propose
an unbiased estimator of #(F') based on a stratified random sample and
give an asymptotic expression of the gain in precision due to stratifica-
tion in the case of proportional allocation. Furthermore, we present
the general form of the optimum stratification in the proportional allo-
cation for the estimation of 4(F).

1. One sample case

1.1 Estimators of population characteristic

Let p-dimensional vectors X,=(X®,..., X®), ¢=1,2,---, N, be a
random sample from the population I7 with p-variate distribution function
F(x), and let 6(F) be a univariate population characteristic of I7. Sup-
pose O(F') is a regular (estimable) functional, that is, there exists a kernel

o(xy,++ +, *,) symmetric in m(=<N) vectors x,=(x>,- -+, &), r=1,-++, m
such that
(L.1) oF)=\ 0@, -, 2n)dF@), -, dF @)
The statistic of the form
(1.2) U=2’¢(Xaly' * %y X”m)/< N ) ’
m
where the sum 3’ is extended over all combinations (ay,-: -, a,) of m

different integers 1<a,<ay<::-<a,<N, is called a U statistic. U is
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easily shown to be an unbiased estimator of #(F).

Now suppose that the population 77 with the distribution function
F' is classified into [ strata {II,,---, II,}, which may be overlapping, in
the following way : the distribution function F(x) corresponds to the ith
stratum 77, and these F, satisfy the relation

(1.3) F(x):é wF(z) forall z,

where w; is a weight of F, such that 0<w;<1, éw,;:l. We shall
i=1

call {Fi(x)} “l-decomposition of F'(x).” If for each i=1,2,-..,[, we have
a sampling plan to take a random sample of size n, from the ith stra-
tum /7;, then as an estimator of #(F) we can apply the following U*.

i
(1.4) U*-———S‘< m r ) T[ w’:k []1?{71)2(7,)"-1(71) ’
s Ty

Ty Tay* k=1

where

< m )_ m!
D |
Ty Toyev sy 1 Tylrgle ey

L
Ny
Ui patrpicrp= EM 0 Xuayy s+ 0y Kiay, 5000y Kiayr o Xz,.,,l)/ ﬂ(r ) ’
= k

the sum 3* is extended over all combinations (r,, 7,,---, 7;) such that
r,=0 r,+7r.+---+r,=m, the sum I* is extended over all combinations
(ail,' ) airi)y 1§ai1< e <air‘§ntv i=19 29 D) l’ and Xta=(X'l(al)9 Sty AYi(ap))y
a=1,2,-.-,n,;, is a random sample drawn from /7,, 1=1, 2,---,1.

Since

l 1
gr=x( ™ )L TT (" T dom— )
Tiyoro,my/ =t =t \m—r,

XZ“¢(XI¢H! Tty Xl"lrl’ ] Xlauv M) Xl"l';)
1
=2'< m ) 1T wis

Tises oy T/ k=1

l
X Z”@,,l...,,-l(Xl,,u ’ Xl’lm’ Tty Xlaua e ’Xla“")/j];l; anm ’

where ¢r1-v-rl(Xlly' ] le!' ) -Xll" ) le)=@(Xllv' "ty ‘Xlr"' ) Xllr' ]
Xi.,) and the sum 3" is extended over all permutations (a;,: -, a;,): 1<
an=n;, u=1,---,n;, t=1,---,1, then U* can be rewritten as a gener-
alized U statistic as follows.

I5
U*=Z"@*(Xlau" M) Xl“lm’. ] )(zauy' ) Xlalm)/;l;l;nkpm ’

where
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m*(xll""r Lymy* s Logy***y xlm)

i
m
=2’<r ’l');l—l;wkrk@rl"'rl(mll” oy Lamy s Ligy xlm) B
l’..., l =

LEMMA 1.1. Suppose the relation (1.3) hold. Then U* is an unbiased
estimator of 6(F).

PrOOF. Substituting (1.3) into (1.1), we can get

!
TT wkr"ourl)u-z(rl)(F) ’

k=1

(1.5) 0(F)=Z"( m )

Tiyeooy 1

where
]
0l(r1)--~l(rl)(F)=S D(Lygye vy Tippyt oty Tuty "y mzr,);[l; ;l:l; dF(x;) -

Since U:,y...rp I8 an unbiased estimator of Oy, ...op(F), from (1.4) and
(1.5) U* is easily shown to be an unbiased estimator of 6(F).

Remark. By putting m=1 and &(x)=wx, we can solve the problem
of estimation of the population mean. Also, by putting m=2 and
Bz, %) = (P —2OR2, (P —2P) (2P —2)2 where z,= (2, 2{7), B.=
(x>, x$P), we can solve the problem of estimation of the population
variance and covariance, respectively.

1.2 Comparison of the estimators

In this section we shall compare two estimators U and U* of &(F)
defined in the preceding section in the case of proportionate allocation,
and demonstrate an effect of stratification.

Suppose the total sample size N is fixed, and it is allocated to each
stratum proportionately to each size, i.e. m;=w;N, (i=1,---,1), where
w, is the weight of F); given in (1.3).

AsSSUMPTION 1.1. E{®¥(X,,---, X,)} <oco.
Under the above assu\mption, the variances of U and U* exist. Let
V.[U] =};_III° Var [VN(U—-6(F)] ,
V.[U*] =11vl_’n: Var [vVN(U*—60(F))]
and
(0@, o) fldF@), it m22,

(1.6) ?y(x)=
@(x) ’ if m=1.
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LEMMA 1.2. Under the Assumption 1.1,

(i) ¥N[U—0(F)] has, as N—oo, a normal limiting distribution with
mean 0 and variance

Vw[U]:mz{S qbz(x)dF(x)—m(F)} .

(i) YN[U*—6&(F)] has, as N— oo, a normal limiting distribution with
mean 0 and variance

V.[U* = mZ{S O(w)dF (z)— ;’; w,[g @,(x)dF,(x)] 2} .

Proor.

(1) It is well known that the U has a normal limiting distribution, its
variance is given by

m? Cov [p(X, Xy, -+, X), o Xy, XY, -+, X)) = m’{s ¢?(x)dF(x)—02(F)} ,

and the variance coincides with V.[U] (see Hoeffding [2]). So we shall
omit the proof of (i).

(ii)) The asymptotic normality of U* is obtained from the fact that U*
can be written as a form of generalized U statistic (see the previous
section). But here we shall give the direct proof. Put a,=w",

b= ™ )T,

Tiye ooy T/ k=1

UN,I(rl)---l(rl)=m[ Uf(krl)-.-z(rl)_01cr1)---z(r,)(F)] ’
and
a.mn F=VN[U*—aF)] .
Then Uy} can be written as
l
U§k=’§_l aiUl\}k,k'l'(g)‘ b(r) UJ;'k,l(rl)n-l(rl) ’
where the sum %’ is extended over all combinations of (ry, 1y -+, 1)
such that 0=r,<m—1, r+r+---+r=m. It is noted that the sta-

tisties {Ugi}i-r,.... are independent of each other but the statistics
{U¥sap.acrp} are not independent. Put
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Ai(xia)=E[§D(Xu" * Xlrly' 0y Liay Xizy' 0y Xiriy' Yy th!'
Bi(xiu)=E[§D(xiu9 XZ!' Sty Xim)] ’ /i’=1v° %y l ’

k

C(”')':-Wé Te. P [A(Xea) —brcrpearcrp(F)]
= % a=1

R
Dk=ma§ [Bi(Xia) = 010>e k=100 £m> E100+e-10> (F)]/’wk‘\/lv

and
(1.8) T=izfl a D+ rC)

The same arguments as Sugiura [4] lead us to get

(1.9) }vl_rg E[Uiltrl)--.zcr,)—c("')P:O

and

(1'10) lim E[Ug’k,k"'Dk]z:O ’ k=1v"°,l .
N

Now from (1.7) and (1.8) we get

(L11)  E[U#—TP=3 aiB[Ufx—DiI
+ %’ %’ b(r)O(S)ELU ¥ 1¢rpvrcrp—C(7)]
X [Usrcp-racp—C(8)]

"ty Xlrl)] ’

l
+2 kgl %* akb('r)E[ U;f,k—Dk] [U]\;ﬁurl)...z(”)—C(T)] '

Since

l E[ U)\t 1(r1)o--l(rl) e C(,r)] [ Uli'k, 1(31)---1(31) - C(s)] |

SHEUX o picrp = COPE U cspeicsp —C@E)r}”,

we get from (1.9)

(1 12) }}_rg E[ Ulilk,l(rl)mt(rl) - C(’r)] [ U;vk, 1Csp)e-108p> —C(S)] =0.

Similarly from (1.9) and (1.10) we get

(1.13) lim E[UFx—De[U icrp-vicrp—=Cr)] =0 .

Thus, substituting (1.10), (1.12) and (1.13) into (1.11), we

get
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(1.14) lim E[U¥—T]=0
N—oo

Hence the statistic U¥ has the same limiting distribution as T (see
Cramér [1], p. 254). Put

(1.15) Qu(®r) = 4, B(@ra) + 3¢ L b(r) Au(®.)
Wy Wy
and
(1-16) Rk-%,:—'akal(m k=100) k(m) k+1C0)++ z<0)+2 b("")alcrl) l(rl)(F)
k k

Then T can be rewritten as the sum of independent random variables
as follows.

(L.17) 3 QX Rl

f
Since E(9*)< oo, we get E[Q(X..)—R.)*<oco. Thus by the central limit
theorem 7T has, as the limiting distribution when N— oo, the normal
whose mean is 0 and whose variance is given as follows.

(1.18) Var (T)= Var [Qu(Xk.)— Ry

inkRi .

1
BlQUX)} - 3

uM,,? "M*

Now since from (1.15)
Qu@)="""0, Bywe.)+ 3¢ 7= b(r) Au(®s.)
Wy, Wy

5 LT AR A S Y
Wy D Wy \Ty,ye 00, T

l
X;l;l;w:iE{w(Xll,' : ':)(lrly" *y Lkay Xer' * 'strky' "9‘Yll" t Ty Xlrl)}

_ ’m( m—1 )
(rer 'rl""ylrk—-lv'rk_lvIrk+1""9’rl

Wit
XIU' M) Xlrly' ) Xkl" ) chrk—lr

1
X
i=1

*y Xllv"'y )(lrl)} y

where the sum (Z' is extended over all combinations (7, r,,- - -, 7;) such
Ter)

that »,+7r,+---+r,=m, 1Zr.<m, 0<r,<m—1, i#k, thus we get

Qu@e)=m S O(Lrar Yo+ Urms) p dF(y,)=md(z.,) .
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Hence

(1.19) 3 31 FlQuX ) =m' 3w, | o@)dFu)=m* | 0i)iF (@)

1
N =1
Similarly we get from (1.6)

e

c 0y Tr-1y rk_'lr Tretr

3 r
XT[ Wit E{¢(Xlly"’yXlrlv°"!Xll;""vxvlrl)}
i=1 w; -

=m S Dy, -, %) ﬁ dF(z)dF(z)
= mS D(x)dF(z) .
Thus

(1.20) Ttr‘ zi: —m? ki; w[g fDI(:v)dFk(x)]z :

Hence substituting (1.19), (1.20) into (1.18) we get

1.21) Var (T)=m’{s O ) F () — ké w,,[s ¢l(x)dF,,(:v)]z} .
Finally we get

(1.22) | Var (T)—Var (U)|=| E(T+ U (T-U7)|
S (E(THUFNET-UZ" .

Since E(9?)< oo, there exists some constant M(< o) independent of N
such that E(T+U}¥)!<M. Thus from (1.14) and (1.22) we get

(1.23) Vw[U*]=llvim Var (UgF)=Var(T) .

Hence combining (1.21) and (1.23) we complete the proof.
THEOREM 1. Under the Assumption 1.1, we get

V.[Ul-V.[U¥=m! iﬁ wi[s ¢,(m)dF,(m)—o(F)]’ .

Hence for any underlying distribution F the limiting variance of the
estimator U* 18 smaller than that of U.

ProOF. From Lemma 1.2,

VU= V.[U*=m? {i}':l w] | @:(w)dFt(w)]z—o’(F)}
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= 3w Ql(x)dFi(x)—0(F)]2 ,

thus we get the theorem.

Remark. From the above theorem, it is seen that the precision of
the estimator of 6(F") is asymptotically higher in the case of proportional
allocation than in the case of simple random sampling.

1.3 Optimum stratification

Let {F(x)} be an [-decomposition of the distribution function F(x).
F(x) is the distribution function and satisfy the relation

(1.24) F@=X wF), foralz.

In this section we shall show the existence of an optimum I-decomposition
{F*}, i.e. l-decomposition which satisfy (1.24) and attains the infimum
value of V_[U*] for fixed F, N and [. Applying the same technique as
Taga [5], and Isii and Taga [6] we can solve the problem of this sec-
tion as follows. It is easily seen from (1.24) that the measure dF, is
absolutely continuous with respect to the measure dF. Then there ex-

ists a measurable function vector X=(%,,---, %,) such that
(1.25) wdF(x)=X(2)dF(x) , i=1,..,1
and

(1.26) i} L@)=1, 0=t@<=l, ae. @F).

Conversely, let us define {F(x)} by (1.25) for a given X=(X;,---, X,
satisfying (1.26). Then it is easily seen that {Fi(x)} satisfies (1.24),
and that {F(x)} becomes an [-decomposition of F(x). Let two meas-
urable function vectors be identified if they coincide elementwise except
on sets of dF-measure zero. Then, there is a one to one correspond-
ence between the set of all measurable function vectors 2 which satisfy
(1.25) and (1.26) (we shall denote it by %) and the set of the all de-
composition of F. Using (1.25) and (1.26), V.(U*) given in the Lemma
1.2 can be rewritten as follows.

. [ o@r@are|

.27 V. [U*x]=V.[U*=m? S DYx)dF(x)— S ,
1(x)dF(x)

i=1

Now we shall show the existence of X ¢ .4 which attains the im-
fimum of V. [U*|X]. Put
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w=w(t)=| L@HF @) ,

w=ut)=| BN @NFE) ,

i
u2

U
VJU*[X]=G(uy,- -+, s, wy,- -+, wk)=S O (x)d F(x)—i=1 —

i

-

cuz{u; u=g¢l(x)x(x)dF(m), xeﬂ(} :

W = {w; w=S XUx)dF(x), X€ ﬁ[}
and
C={(u, w); u'=g 0(2)U(z)dF (x), w=S U2)dF (z), XGJ{} .

We shall state the following lemmas which are given by Taga [5] and
Isii and Taga [6] without proof.

LEMMA 1.3.

(i) H,U,W,C are all convex and compact where the topology is de-
fined by the weak convergence (for example, see Lehmann [3], Appendizx).
(i) Gy, -+, e, Wy, -+, wy) 18 @ continuous and concave mapping from
C into R

From the above Lemma (i) we can easily get the existence of
X e which attains the infimum of V_[U*|x]. It should be noted
that such a X is not always uniquely determined. Let us denote by
J* the set of all X € 4 which attains the infimum of V_[U*|1].

AssUMPTION 1.2. The support of the measure F contains at least
!l points.

LEMMA 1.4. Under the Assumption 1.2, it holds for w* which cor-
responds to X* € H* that w¥>0, i=1,.--,1.

LEMMA 1.5. For any fived X* € 9(*, ¥* attains the minimal point
of the set {S é (¢1(x)—y;*)2x¢(x)dF(x)—Sq)i(x)dF(a:), 1e 3(} where k=

=1

uffwf and uf, wf corresponds to X¥ (j=1,---,1).

ProOF. The proof is easily obtained from the above Lemma 1.3 (ii)
and the Lemma 2.2 of Isii and Taga [6], since G is continuously dif-

ferentiable on C.
From the above lemma we can easily get the X* which attains the
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infimum of V_[U*|x].

THEOREM 2. In the proportional allocation the X* which attains the
nfimum of V.[U*|X] is given by

1 if (D) — ) <(Py(w) — )’ for any j#1,
(1.28) ¥ x)=
0 if  (@y() — 1) > (D) — 15 ) for some j#1 .

2. Two-sample case

2.1 Estimators of a population characteristic

Let p-dimensional vectors X,=(X®,-.-, X?), 1=1,2,---, N, be a
random sample from the population /7* with p-variate distribution func-
tion F(x), and Y,=(Y{®,---,Y/), j=1,2,---, N;, be a random sample
from the population I7*¥ w1th p-variate dlstrlbutlon function G(y). Let
8(F; G) be a real valued population characteristic of both populations.
Suppose (F; G) is a regular (estimable) functional. Then there exists a
kernel &(x;y) such that

@.1) oF; G)=| O(a; y)AF@)C() -

As an unbiased estimator of &(F;G) we shall apply the following
U-statistic

Ny Ng
2.2) U=3 5 0X; Y) /Ni:

Suppose that the population /7% with distribution function F(x) and
the population IIY with G(y) are classified into [, and I, strata {/If,---,
It} and {II7,---, I}, respectively, in such a way that the distribution
function F; and G, respectlvely corresponds to the ith stratum /I¥ and
jth stratum 777 satisfy the relations

h
F(x)zg viFi(x) ’ Oévzgl y 2 vi':l ’
(2.3) i
Gw)=x2w,G, O=w=l, Zw=1,

for all  and y.

If for each i=1,2,---,l, and j=1,2,---,1;,, we have a sampling
plan to take a random samples of size m, and =, from the ith stratum
IT¥ and jth stratum I77, respectively, then as an estimator of 6(F';G)
we can apply the following statistic U*.

(2.4) 21 S wv,UJ

i=1j=1
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where

m; nj
Uﬂ;———z 2 ¢(Xia; Yjﬂ)/minj
p=1

a=1

and X,,=(X®, -+, XP), a=1,2,.-+,m, is a random sample drawn from
mnx, i=1,2,--.,1l, and Y,,=(YP,---, YP), 8=1,2,-.-,n, is one from
,!179 j=1! 29"')120
Substituting (2.3) into (2.1) we can get

0F; G)=3) 3} wo, | Oa; YAF ()G )

Thus U* defined in (2.4) is easily shown to be an unbiased estimator of
6(F'; G). We shall compare two unbiased estimators U and U* of (F; G)
in the next section.

Remark. By putting @(z, y)=1 if x<y and 0 otherwise, we can
solve the problem of estimation of the probability P[X<Y].

2.2 Comparison of the estimators

Suppose that the total sample sizes N; and N, of both populations
are fixed, and they are allocated to each stratum proportionately to
each size, i.e. m,=vN;, (1=1,2,.--,1), and m,=w,N,, (7=1,2,---,1,),
where v; and w; are weights of F, and G, respectively, given in (2.3).

ASSUMPTION 2.1. E[®(X;Y)]< .

Under the Assumption 2.1 the variances of both estimators U and
U* exist. Let N be such that N,=p,N, 0<p,<1, p+p;=1, (1=1, 2),
and let

Vm[U]=)1vim Var [VN(U—6(F; G))],
and
Vw[U*]z}vim Var [VN(U*—6(F; Q)] .
LEMMA 2.1. Under the Assumption 2.1,

(i) YN(U—-6F;Q) has, as N—oo, a mnormal limiting distribution
with mean zero and variance

VolUl=pi" S D(x; y,)P(x; yz)d F(x)dG(y)dG(y)
+pi S D(x,; Y)D(y; Y)AF (@ )dF (2)dG(y) — (0,000 F; G) .

(i) VN(U*—0(F;G)) has, as N—oo, a normal limiting distribution
with mean zero and variance
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(2.5)

PROOF.
(ii) Put

and
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V.[U*=pi | 0 1)0(@; v)aF @G G

+o5* | Dai; 90(@; YIF@MF @)ACW)
_é pr‘vk[g O(x; y)cll"k(ac)le(y)]2
— 3w 0w DAF@dGW)|

(i) is immediately obtained from the theory of U-statistics.

A(@)=E(0(@; Y} — | 0; aF ()G, )

By, =E(0(Xa 4,5)) - | 0@; F(@)G )

my ny
Co=YN S 4, x)+ YN S B(Y,)
m; a=1 ’n, p=1

i Ly
Ty= 21 jEl vi'chmj ’
==

Udii= vN ( Us— S O(x, y)dF, i(f”)de(y)> ,

F=VN(U*—0(F;G)) .

Then the proof is given through the following steps.
(a) I].v:lm E[U]\ﬁj—CN”P:O y

(b) lim E[U¥ — T#1=0,

N—oo

(¢) Uy has the same asymptotic distribution as Ty, and

(d) Ty has, as N—oo, a normal limiting distribution with mean zero
and whose variance is given by (2.5). Since each step (a), (b), (c), and
(d) is shown similarly as the corresponding one in the proof of Lemma
1.2, so we shall omit the details.

From Lemma 2.1 we can get the theorem which shows an effect
of stratification.

THEOREM 3. Suppose the Assumption 2.1. Then we get

VAU1-VIUA=3] o0 | 0(0; aF(MIGE)—0F; 6)|
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lg .
txe ‘wf[S O(=; y)dF (x)dG,(y)—O(F; G)] :

Hence the limiting variance of U* is smaller than that of U for any
underlying distribution F.

ProoOF. From Lemma 2.1 we get
VoUI-VoUA=3 o' | 0; PG|
+33 0w, | 0@ DAF@HG,W)| (o0 #(F; 6)

=3 oo | 0w; R @G —0F; )]

2

+3) 65w, | 0 9)AF @G, W)~ 0F; G)]
2.3 Optimum stratification

Let {Fi(x)} and {G,(y)} be an [, and l,-decomposition of the distribution
function F(x) and G(y), respectively. F(x) and G,(y) are the distribu-
tions which satisfy the relations

I
F(w)=§ vFyz), 029,51, Xov=1,
(2.6) )
G(y)=12=leGJ(y) ) O=sw,=1, >Zw,=1.

In this section we shall consider the existence and its concrete form of
optimum decomposition {F*(x)} and {G}(y)}; i.e. I, and l,- decomposition
which satisfy (2.6) and attain the infimum of V_[U¥*] for fixed F, G,
N;, N,, |, and [,.

@n VU= || 0@ 1)0(; ) F@)GwGEH)

l 2

30| o(a; )R @6 ||
i=1
+or ] 0@i; 9)0(:; YAF@)IF@IGE)
iy 2

3w | 0@ nar@cw]] -
The first { } of the right-hand side of (2.7) depends only on l,-decom-
position {F(x)} and the second { } depends on l,-decomposition {G,(y)}
alone. Thus without loss of generality, our problem is reduced to showing

the existence and its form of l,-decomposition {F,(x)} which satisfy (2.6)
and attains the infimum of the first { } of the right-hand side of (2.7).
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Hence we can also apply the same arguments stated in Section 1.3 to
this problem and get the following theorem.

THEOREM 4. Let measurable function vectors X,=(X,+ -+, %) and
%=y, +, Xy,), be respectively, such that

(2.8) vdFy(x)=21,(x)dF (x) , 1=1,---,1,
ly
2_3lxn(x)=1 ) 0=x,(x)=1, a.e. (dF),
and
(2'9) wjde(y)zxyj(y)dG(y) ’ j=1’ ct lz ’
2}
Exu(y)=1 ’ 0=x,(y)=1, ae.(dG).
Let 9(,(9,) be the set of all X(X,) which satisfy (2.8) ((2.9)) and
let 9(% and (¥, be respectively, the set of all X, € H, and X, €I,
which attain the infimum of V.[U*]. For any X} € I} and XF € 9§ let

= o rNF @ /| tr@aF@) =10,

and

vy=\ 0,15M6w) /| 15 @HGW) . (=11,
where

2,(0)= 0(z; Y)IGW)
and

0,4)=| (w3 YIF () ,

Then, in the two-sample proportionate allocation, Xf € H¥ and Xf € H¥
are given by
v (2) { 1 if @ux)—pf) <@, x)—pf)  for any j*1i,
7\%)= .
0 if (Px)—pf)>@H(x)—p})  Sfor some j#i,

and
if (@,(0)—15)<@(y)—p)'  for any k+j,

1
1Y) = { .
0 if (D,(¥)—p)>(P,(y)—pH)  Sfor some k+j .



(3]
[4]

[5]
(61
[7]
[8]
[91]
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