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1. Introduction

Let N,, X;, X;,--- be independent random variables, N, having a
Poisson distribution with mean 1 and each X, having the same continu-
ous distribution function F(y). Let ¢,(x) be 0 or 1 according as x>y
or x<y. The modified empirical distribution function was defined by
M. Kac [10] as '

By FU)=1" 2 4(X),  —ee<y<oeo,

where the sum is taken to be zero if N,=0. Analogous one and two
sided Kac statistics of the original one and two sided Kolmogorov sta-
tistics are L.u.b. ., «[F(¥)— Fi*(%)] and L.u.b. ooy F(y)—F;*(y)| respec-
tively. The exact and limiting distribution of the first one of these
random variables was studied recently by J. L. Allen and J. A. Beekman
in [1], and they also studied the exact distribution of the two sided
Kac statistic in [2] whose asymptotic distribution was found by M. Kac
in [10] to be

1.2) lim P{L.w.b. —wcycu | F@)— FX(¥)| <a/1"} = P¥a) ,
where

%g (=1)*/(2k+1) exp [—(2k+1)!2*/8] , a>0,

P*a)=
0, a<0.

Let y, be a real number with F(y,)=b. We, in [4], derived an
explicit form for

(1.3) Pye, b)=P{l.u.b._wcysy, | F(y)—Fi*(y) | =¢}
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and for

_ F(y)—Fi*y) }

(1.4) M, b)_P{Lu.b._ws,,b Nt <ef.
In Section 2 of this paper we derive various limiting distributions for
some functions of the random variable involved in the probability state-
ment of (1.3). Distribution results are proved for two sample versions
of the one and two sided Kac statistics in Section 3.

Let » be a positive integer and Y,<Y;<-.--<Y, be the order sta-
tistics corresponding to X, X;,---, X,. Define

0, y<Y,
(1.5) F, (y)=4{ K/, Y. <y<Yip, k=1,2,---,n—1
nf, y=Y, .

Thus F, (y)=(n/A)F.(y), where F,(y) is the ordinary empirical distribu-
tion function. F, ,(y) as defined in (1.5) will be used in the sequel.

As long as F(y) is continuous, the distribution of the Kac statistics
is independent of F(y) and we can therefore confine our attention to
the single case F(x)=z, 0<x<1.

2. The asymptotic distribution of some Kac statistics

THEOREM 1. For N,, X, X;, - subject to the previous conditions,
and 0<b=1, with F(y,)=b

2.1) lim P{Lu.b._cy<y, (F @) — F*(¥)) Sa/2}

A—00

e du a>0

a/b1/2
0

@ |

0’ az=0.

THEOREM 2. For N,, X, X;,--- subject to the previous conditions,
and 0<a<bgl, with F(y,)=a and F(y,)=b

(2.2) lim P{L.u.b.y,sy50,(F (%)~ F*(¥))=e/2"} = B.(a, b) ,

where

1 Sa/a.l/z ' - (a/al/2—u)(a/(b—a)i/?

R.a, b)=—- e"zﬂdt>du ,
T

—oo

—ooLaLl+oo .

THEOREM 3. For N,, X,, X, -+ subject to the previous conditions,
and 0<b<1,
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(2.3) 11112 P{l.ub. ey, | F(y)— Fi*(y)|Sa/2} = PX(a, ) ,

where

4 S (—1/@k+1) exp [—k+172b/8c],  a>0
P*(a, b)={ T i

0’ a§0.

THEOREM 4. For N,, X,, X,,--- subject to the previous conditions,
and 0=a<bsl,

@4)  lim P{Lub.y, e, FO)— FX@) | <a/2?) = PXa, HG(@ 0) ,

where P*(a, b) is as in Theorem 3 and
—1_ 12 \" 2
Gla, a)=1—(2/) Smm exp (—a*/2)de

+ 20" exp (—o?/2a) S(Zlﬁ-l)xlz
(2n)"2a

exp (ax*/2a?) sin xdx .

From (2.1) it follows that
(2.5) lim P{l.u.b. ey« F(y)—F*(y)) <0} =0,

A—00 .

that is the probability of the event that the theoretical distribution
function F'(y) does not exceed Kac’s modified empirical distribution func-
tion F*(y) all along the interval —oco<y< oo, tends to zero as 1— oo,
It also follows from Theorem 1 that the same is true for the interval
—oo<Yy<¥,, with F(y,)=b, that is we have

COROLLARY 1.
(2.6) llim P{l.u.b._w<,,<,,b(F(y)—F,*(y))§0} =0.

On the other hand Theorem 2 implies the following interesting result.

COROLLARY 2.

(2.7 im P{l.u.b., <y, (F(y)— F¥() <0}

A—00

o (a/(d—anl/?

=ls e S" YOI gy,
T Jo 0

_ 2arc tan (a/(b—a))"”
2r

=1 arc sin (a/b)"* .
T
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Thus, the probability of the event that the theoretical distribution func-
tion F(y) does not exceed Kac’s modified empirical distribution function

*(y) all along the interval y,<y<y, remains positive in the limit as
A—oco. A similar statement was proved by Rényi [12] and Gihman [8]
concerning the asymptotic behaviour of an ordinary empirical and the-
oretical distribution function as follows:

lim P{l.u.b., <<, (F(y)— Fu(y)) <0} =1 arc sin {a(1—b)/b(1 —a)}"*.
n—o0 T

Comparing (2.7) and this result we see that on a finite interval the
ordinary and Kac’s randomized empirical distribution function behave
essentially the same way in relation to a theoretical distribution func-
tion as » and i1— oo respectively.

PROOF OF THEOREMS 1, 2, 3 AND 4. Theorems 1, 2, 3 and 4 can
be proved very easily via the results of [5] and a slightly modified ver-
sion of Kac’s method [10] as follows. Using the earlier mentioned dis-
tribution free property of the Kac statistic let F(y)=y, 0=y=<1, and
consider the process

IIA

2.8) n)=2"ly—1" 5 ¢,X)} . 0sasysbs1,

with independent increments. It follows then from the analysis of Kac
[10] that

(2.9) lim P{l.u.b.y, <y, (F'(4) = Fi*(y)) a/2"}

IA

=lim P{lim Lub.cperr 7, <a+ b—a k)

200 700 2'

|

—lim lim P{l.u.b.lgkgzrxx <a+ b;a k>ga}

A—00 7—00

=P{l.ub.,wov(®)<a} ,

where {x(u), 0<u<1} is the Wiener process. Similarly, in case of the
two sided Kac statistic one gets

(2.10) %1_’1'2 P{l-u-b'vasvsh‘F(y)_Fl*(y)léallllz}

=P{l.ub..suss| 2(w)|=a} ,
where, again, {x(u), 0<u <1} is the Wiener process. The actual state-
ments of Theorems 1, 2, 3 and 4 follow from known results and some
calculations. Specifically we refer to (2.3), (3.2), (2.5) and (8.4) of [5]

in case of Theorems 1, 2, 3 and 4 respectively.
Now we define
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K (0)=1.0b. ey, (F(y) — F())

K (0)=—g.1b._ccysy,(F(y) — Fy)) »
where 0<b<1 and F(y,)=b in both cases, and put
(2.12) R,(b)=K;"(b)+ K (b),

(2.11)

called the range of the two random variables of (2.11).

The distribution of the range of the original Kolmogorov-Smirnov
statistic was derived by Kuiper [11]. Here we prove two theorems con-
cerning the random variables of (2.11) and (2.12).

THEOREM 5. For N,, X,, X,,--- subject to the previous conditions,
and 0<b<1,

(2.13) lim P{2"K;(b)<v, 2K (b)=<z)

42 1 _ (k41 o [ (2k+1)xz
T 2 x [ 2(v+2) ] s1n{ (v+2) ]
v>0, 2>0.

THEOREM 6. For N,, X,, X;,--- subject to the previous conditions,
and 0<b<1,

(2.14) lim P{2R,(b)<v} = S sb; tydt,  ©>0,
where
3(b; £)=8 3 (— 1)K g(ktb"7)
k=1

is the asymptotic density of the range A?R(b) as 2— oo, and where ¢(-)
stands for the normal density funmction with zero mean and unit variance.

PRoOOF OF THEOREMS 5 AND 6. From the analysis of Kac [10] as
used in (2.9) it follows that

(2.15) lim P{A"2K;(b)<w, 2* K} (b) <z}
=P{—g.1b.ocus: (W) <0, L.U.b.ocus () <2}
=P{—v=2(u)<z, 02usbs1}, >0, 2>0,

where {x(u), 0=<u=<1} is the Wiener process. For the evaluation of this
last statement we refer to (2.5) of [5] and this completes the proof of
Theorem 5. Having established (2.15), the statement of Theorem 6 fol-
lows from (4.1), (4.2), (4.3) and (4.4) of [5].
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3. Two sample versions of the one and two sided Kac statistic

Let N, X, Xiz,-+- and X,, Xy, -+ be mutually independent ran-
dom variables, N, having a Poisson distribution with mean 1 and assume
that the random variables X;; and X,, have continuous distribution funec-
tions F(y) and G(y) respectively. Consider random samples of the form
Ny Xy Xigy + o0y Xiwys Xoy Xogy o0, X,v, and the statistical hypothesis
F(y)=G(y). Let F}¥(y) and G¥(y) be the modified empirical distribution
functions of X;, X5,-- -, Xin, and Xy, Xp,- -, Xuv, respectively.

THEOREM 7. FOT M, Xu, Xl!! b a’nd le, X.zz, e subject to the
above conditions and F(y)=G(y) 0<a, c=[a(22)/*]+1,

(3.1) Bi(@)=P{(3/2)"* L.0.b. _ocycoul FF(y) —GF(y)) =}
=13} e=2r/nl) (nzfc) / (3:‘) .

PROOF. By the independence of N,, X, X;;,--- and X, Xp, -,
3.2) B;(a):é P(N,=n)P{(4/2) L.u.b. _wcyce F il(y)— G, (Y))<Za} .

For N,=n let us pool the random samples X,,,.---, X;, and X, -, X;.
and let Y,,Y,,--.,Y,, be the order statistics of this pooled sample. Let
B.=+1 if Y, is one of the values of X,---, X, and 8,=—1 if Y, is
one of the values of Xy, -+, X;,. Put S;=8+p+---+5:. We have

3.3) Lub. e cycal B i(¥) — G (¥)) = (MaX; 54<2485)/2 .

This can be seen immediately, for

Lub. wcycalFn y) = Gn d®)) =1 0D oy a2 (Foy) — Goly))

where F,(y) and G,(y) are the ordinary sample distribution functions of
Xy, -+, X1, and X,,,- -+, X,, respectively. Gnedenko and Koroljuk showed
in [9] that Lu.b._ o yce(Fr(¥)—Go(y))=(max<,<:Sy)/n and (3.3) follows.
Slightly changing the analysis in [9] one obtains

0, aZ<0
P{max;<x<:.S
(3.4) <a(22)1) = 1—(an c) / <2;:'> . 0<a<n/@A)"
1 ’ n/(22)1/2<a ’

where c¢=[a(24)'?]+1, and this, through (3.3) and (8.2), implies (8.1).

THEOREM 8. FO’r M, Xn, X12, AR aﬂ@d Xu, Xzz, A Subject tO the
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above conditions and F(y)=G(y), 1/(2)*<a, c=[a(24)"]+1,

(3.5) D(a)=P{(3/2)21.u.b. _cpee| F¥(y)—G¥(y) | Z a}
A O\ -t el o 2m
=3 Z/n!)<n> 3 - <n ,w) .

ProOOF. By the independence of N,, X,;, X3, and X;, Xp,,- - -,
(3.6) D,(a)=n% P(N,=n)P{(2/2)"* L.u.b. _ccyce| Fo s(¥)— G (¥) | =} .

For N,=n and S, as in proof of Theorem 7 we have here
(3.7) l.u.b._m<v<wl Fn,‘(y)_Gn’j(y) I =max15k52,,| Sk I/l .
Slightly changing the analysis in [9] one obtains

(3.8) P{max;<<u|Si|Sa(22)'%}
{ 0, a<1/(22)"

-1 [n/c]
= (27?> k=§,c](‘1)”<n3nkc), 1/@0)" <a<nj2a)"

1, n/(22)"*<a ,

where ¢=[a(22)"?]+1, and this, through (3.7) and (3.6), implies (3.5).

Our next problem is to derive asymptotic versions of Theorems 7
and 8. This can be done in a slightly more general context. Let N,
Xy, Xiz,-++ and N,, X5, Xy, -+ be mutually independent random vari-
ables, N, and N, having Poisson distribution with mean 2 and g respec-
tively and assume that the random variables X;; and X;, have continu-
ous distribution functions F(y) and G(y) respectively. We consider ran-
dom samples of the form N;, Xy, X, ++, Xiw,3 Nuy Xty Xig,++, Xow, and
the statistical hypothesis F(y)=G(y). Let F*(y) and G*(y) be the re-
spective modified empirical distribution functions of these two random
samples. Let F(y)=y and define the following two processes

N

(3.9) s =2ly—1 S g(X)l . 0<asysbs1,
j=1

and
N

(3.10) x,(y)=py —pt ;3 o(X,), O<a<y<b=l.

Let I'=2g/(A+p) and consider the following combination of the processes
of (8.9) and (8.10)

(8.11)  I'MFXy)—G¥®)=Q@/QA+m) x,(y)— (p/(A+p)) *2:y) ,
with 0<a<y<b<l. Let I'—>oco mean that g, 2—co in such a way that
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¢/2—p, where p is a constant. Then, repeating the argument of (2.9)
and (2.10) we get

(3.12) lim P{lw.b.,, <z, (F¥(y) — GHy) <o/}
=P{l.u.b.,cucox(u)Za} ,

and

(3.13) lim P{L.b.y,pe, | F0) ~ G ) | <af 1)

=P{l.u.b.,gus| x(u)|Za} ,

where, in both cases, {®(u), 0<u<1} is the Wiener process and F(y,)
=a, F(y,)=b.

If a=0 and b=1 then (3.13) implies the two sample versions of (1.2)
with distribution function as given there. Similarly, with ¢ and b as
in Theorems 1, 2, 3 and 4, (3.12) and (3.13) imply two sample versions
of these theorems with respective distribution functions as given in
(2.1), (2.2), (2.3) and (2.4). Two sample versions of (2.6) and (2.7) fol-
low then immediately. Specifically, from the two sample versions of
Theorem 2 of Section 2 we get the following dual of (2.7).

COROLLARY 3.

(8.14) lim P{l.u.b., <,<,,(F7*(y)—G(y))<0}

I'>oo

=1 arc sin (a/b)* .
T

That is, the probability of the event that one randomized sample
distribution function of Kac does not exceed another one all along the
interval y,<y=<y, remains positive in the limit as I'— oo.

A similar statement was proved in [6] concerning the asymptotic
behaviour of two ordinary sample distribution functions.

Now if we define

sz—y(b) =Lu.b. -w<u§vb(ﬂ*(y) - G:‘(y))

(8.15)
K (0)=—g.Lb. ccys,, (F¥y)—GE(y))

and

(3.16) R, (0)=K;.(b)+ K, (),

then two sample versions of Theorems 5 and 6 can be written down
very easily with respective distribution functions as given in (2.13) and
©(2.14). v
Also, the asymptotic version of Theorems 7 and 8 follows from con-
sideration similar to those of the paragraph of this section which pre-
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ceeds Corollary 3. In fact we have

[2/(27)] S"e- Pgu,  a>0
(3.17) lim B ()= 0

0, a=0,
and

(3.18) lim Da)=P*a) ,

where P*(a) is as given under (1.2).
We go back for a moment to the one sample version of Kac’s sta-
tistic, that is to the process of (2.8)

N,
() =2 {y—r‘ 5 ¢,(X,)} . 0=ysl,

with independent increments and E{x(y)} =0, E{xi(y)}=y. Since the
variance of this process is y, the most natural weight function of this
process, in the spirit of Anderson and Darling’s paper [3], would be
1/4/y and then, in terms of stochastic processes, we would have the
following statement

(3.19) lim P{Lu.b.y, sys0,(F (W) — FF@)/IVF (y)<a/2"}
=P{l'u'b-a§u§bx(u)§a\/;’_‘—} ’

where {x(u), 0<u<1} is the Wiener process. A similar statement holds
for the two sided Kac statistic with weight function 1/¥F(y). Using
Doob’s transformation [7]

w(u)=+/u z(log u/2B) ,

the process z(u)/+/% can be transformed into the Uhlenbeck process 2(u)
with correlation parameter g, that is to a process z(u) which is station-
ary Gaussian and Markovian with E{z(u)2(t)} =exp (—pB|t—u|) and the
statement of (3.19) is further equal to

(3.20) P{l.u.b.aspiogasesanp g 2(w) Sal .

A similar statement can be written down for the two sided Kac statis-
tic with weight function 1/¥F(y) in terms of the Uhlenbeck process z(u).
Unfortunately it is not easy to evaluate this statement. The Laplace
transform of the two sided version of (3.20) is given in [3]. In theory,
the two sample version of Kac’s original statistic with weight function
1/#F(y) can be handled the same way but we would, of course, have
the same problem of evaluation as above.

One has similar difficulties when trying to derive the asymptotic
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version of (1.4). In terms of Wiener process we have there

(3.21) lim Mi(a/2%, b)=P{l.u.b.ozuss(@)<a(l—w)} ,

where My(-,b) is defined as in (1.4), and whose exact form was derived
in [4].
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