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Summary

Uniform (or type (B),) asymptotic normality of the joint distribu-
tion of an increasing number of sample quantiles as the sample size
increases is investigated in both cases where the basic distributions are
equal and are unequal. Under fairly general assumptions, sufficient
conditions are derived for the asymptotic normality of sample quantiles.

Type (B), asymptotic normality is a strictly stronger notion than
the usual one which is based on the convergence in law, and the results
obtained in this article will be helpful to widen the applicability of re-
sults on asymptotic normality of sample quantiles to related statistical
inferences.

1. Introduction

Let, for each positive integer n, X, <X,.<---<X,, be order sta-
tistics of a random sample of size » drawn from a continuous distribu-
tion on the real line, whose pdf and cdf being given by f.(x) and F(x),
respectively. If f,(x)=f(x) and hence F,(x)=F(x) for all », we shall
call it the case of equal basic distributions, and the case of umequal basic
distributions otherwise.

Most of the works in literature on asymptotic normality of sample
quantiles have treated the case of equal basic distributions. Let 0<2,<
«++<2;<1 be any given set of positive numbers, and put F(g;)=4; and
oty =2(1=2)[f(e)f(e;), 1<7; 4, 5=1,---, k. Let further X,, <X, <---
<X, be the corresponding sample quantiles with n,=[n2]+1 (some-
times n;=[n4;]), t=1,---, k. Under this situation, Mosteller [5] showed
that the joint distribution of k variables, vn (X, —p), 1=1,---, k, con-
verges in law to a k-dimensional normal distribution N(0, X,) as n— oo,
where 3,=|d%,|, provided that f(g)>0, i=1,---, k. A mathematically
regorous treatment of this result has been given by Walker [7]. From
this result, we can say, in our terminology [2], that the joint distribution
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of X.., 1=1,---, k, is asymptotically equivalent (M), to a k-dimensional
normal distribution N(gw,, (1/n)24) as n— oo, if f(u)>0, i=1,---, k,
where poo=(u, ft2,+ ) ).

Type (M), asymptotic equivalence sometimes appears to be not
strong enough for practical applications, for it only assures us the uni-
form coincidence of corresponding quantiles of both distributions under
consideration. Indeed, there are some cases where type (M), asympto-
tic equivalence does not guarantee the coincidence in the limit of the
Shannon-Wiener information measures of both distributions. It should
also be noted that Mosteller’s result requires k and 1,’s to be fixed in-
dependently of «.

Recently, Weiss [8] considered the asymptotic joint normality of an
increasing number of sample quantiles in a special case of unequal basic
distributions, where the basic distributions are all defined over the in-
terval [0, 1] such that F,(1)—F,(0)=1, 0<D,Sf(x)SD,<oo, |fl(x)|<
D;<oo for all z in (0,1) for some positive numbers D,, D, and D, in-
dependent of », and f.(x), f/(x) and f!/(x) are all right-continuous at
=0 and left-continuous at x=1. Let 6 be any given number such
that 3/4<d<1, and put k=n'""—1 and n,=’, i=1 , k. TFurther,
let U);=n,/n and s)=F;'(%), i=1,---, k. Weiss [8] then showed that
the joint distribution of k sample quantiles, X, , i=1,---, k, is asymp-
totically equivalent to a k-dimensional normal distribution N(s\u,, SSw)
as n— oo, with definitions sy, =(8%, -, sh) and Sy, =(1/n)||8usll, 8uis=
BB )ful(s2) (%)), 1<5; 1, §=1,--, k, in the sense that

lim

n—o0

S ho(Zao)dza — S hi(zaw)dza, | =0
Ex)

E k)

for any measurable subset E, of the k-dimensional Euclidean space,
where h, and A% denote the pdf’s of the distributions under considera-
tion. It should be remarked that this notion of asymptotic equivalence
is of type (B); (see Lemma 1.3.2 of [1]).

In the present article, the authors set forth the problem in more
general situation, and derive conditions under which X,,’s are jointly
asymptotically (B), normally distributed as n—oco. For this, in the fol-
lowing section, we give some results on type (B), asymptotic equivalence
which are necessary for discussions in later sections.

In Section 3, we treat a special case of equal basic distributions,
where the sample are taken from a uniform distribution over (0, 1), and
give an interesting result (Theorem 3.1) which is fundamental to the
studies in subsequent sections. General case of equal basic distributions
is considered in Section 4, and finally in Section 5 the case of unequal
basic distributions is handled, where the Weiss result [8] is improved.
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2. Some results on type (B), asymptotic equivalence

Let {X,} (s=1,2,---) and {Y,} (s=1,2,---) be two sequences of
random variables, where for each s X, and Y, are distributed over a
measurable space (R,, B,), B, being a o-field of subsets of any given
abstract space R,. Type (B), or uniform asymptotic equivalence of
these two sequences, denoted simply by X,~Y, (B),, as s— oo, has been
defined [1, 2] by the condition

2.1) sup |P*(E)—P*«(F)|—0, (s— ),
EeB;
where P*s and PY: designate the probability measures corresponding to
the random variables X, and Y, respectively.
If for each s both X, and Y, are absolutely continuous with respect
to p,, a o-finite measure over (R,, B,), then the condition (2.1) is equiv-
alent to

(2.2) VX, Y)=| Ifi-aldn—0, (s—e),
where f, and g, denote the gpdf (z,) of X, and Y,, respectively. In such
a case, it has been shown [1] that the condition

@3) X, V)= VFgdp—l, (=),
is necessary and sufficient, and any one of the conditions
24 IX,:Y)=|_filog (£lo)dp—0, (=),
and

(2.4 17, X)=_g.log @lf)dp—0, (o),

is sufficient, for the condition (2.2).

In the following two lemmas, we shall extend these two criteria
for type (B), asymptotic equivalence to a more general situation: Sup-
pose that X, and Y, are dominated by g, over some measurable subset
A, of R,, and let f,* and gF be the density functions of X, and Y, with
respect to g, such that £*>0 and g¥>0 over A,, and

P“’s(E,):S f¥dp,  and P”s(E,):S grdp,
Eg Eg
for any measurable subset E, of A,. Outside the set A,, the variables

X, and Y, are allowable to be or not to be dominated by g,.
Under this situation, we first prove the following
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LEMMA 2.1. The condition
2.5) (X, Y«>=SA VIFgFdp—1,  (s—oc0),

implies that X,~Y, (B); as s— oo,

ProOF. Let us put
(2.6) $,=P"c(A,)=SA *dy,  and 1],,=P"s(A,)=S grdp,
8 Ag

for each s. Then, by using the Schwarz inequality, we get

@7 [, 17 —gf a2V G A IR =7 (K., YT .
Since 0<¢,, 7,<1 for each s, the condition (2.5) implies that
(28 &—1 71 and VXX, Y)=| 1ff—gfldu—0, (s—).

Since

2 sup Px'(E)—PY'(E)I SVHX,, Y)+2—¢&—29),
EeB;

it follows that (2.8) implies (2.1), which completes the proof of the
lemma.

The criterion (2.4) or (2.4) works only when the carrier of f, is
contained in that of g, or vice versa, up to the measure p,. The fol-
lowing lemma requires no such assumptions.

LEMMA 2.2. Under the same situation as in the preceding lemma,
the simultaneous conditions

(2.9) P*(A)—1, (8— o),
and
(2.10) I*(X,: Y,)=SA f¥ log (f*¥/g¥)dp,—0, (s— ),

imply that X,~Y, (B), as s— oo,

PROOF. Since the function f*/¢,, & being defined by (2.6), gives
a gpdf () over the set A,, Jensen’s inequality can be applied to get

I*(X,:Y,)=—2¢ log pX(X,, Y,)+2¢, log &, ,
or equivalently,

(2.11) I*(X, : Y.)—2¢, log &= —2¢, log pX(X,, Y)) 20,
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for each s.

Hence, the conditions (2.9) and (2.10) simultaneously imply that
*(X,,Y,)>1 as s— oo, from which it follows by the preceding lemma
that X,~Y, (B), as s— 0.

This completes the proof of the lemma.

In the next place, we shall state a result on type (B), asymptotic
equivalence of induced probability measures: Let, for each s, ¢, be a
measurable transformation from a certain measurable subset A4, of R,

into another measurable space (R,, B,), and let X, and Y, be any given
random variables defined over (R,, B,) such that

PXE)=P*(t;(E)) and  P'(E)=P*(t;(E)

for every measurable subset E, of A,=t(A4,). Then, we can see the
following

LEMMA 2.3. Suppose that the condition

(2.12) P*(4,)—1, (s—>0),

18 satisfied. Then, X,~Y, (B); implies that

(2.13) P*(A,)—1, P's(A)—1 and X,~Y, (B)., (s—00).
The proof of this lemma is easy and will be omitted.

In the final place, we shall consider the case of real probability
distributions, and derive conditions under which two given sequences
of multi-dimensional normal random variables are asymptotically equiv-
alent (B);, where in general the dimension increases under the limiting
process.

Let, for each positive integer s, X, and Y., be non-degenerate,
n,-dimensional random variables distributed as N(aew,, Awy) and N(ba,,
B..,), respectively. The dispersion matrices A, and B, are therefore
positive definite.

We now prove the following

LEMMA 2.4. In order that
(2.14) Xop~Yap (B)y,  (83—00), .
it 1s mecessary and sufficient that the simultaneous conditions
(2.15)  tr (AGpBap—Iup) +tr (AwpBap—Iuy)—0, (s> ),
and
(2.16)  (@np—bawp) (Amp+ Banp) (Cnp—bnp) >0, (s> 00),
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are satisfied, where I, stands for the unit matriz of order n,.

ProoF. For the sake of notational simplicity, we shall delete the
suffix (n,) from vectors and matrices in the proof below.
As is seen in [4], the affinity defined by (2.3) is calculated as
I A—lB—lll/&
A+ B)2[”

—(A“a+B“‘b)'(A“+B“)“(A"a,—l—B"b)}] .

(X, Y)=

exp[ —41 {a’A~'a+b'B™'b

Since (A"'+B!)'=A—A(A+B)"'A=B— B(A+ B)™'B, the above quantity
becomes

| A~B|
(A7 +B2]

By the inequality |[AH+(1—2A)K|=|H)*|K|'~* for any positive definite
matrices H and K and any 1 (0<1<1), the first factor of the right-hand
side of (2.17) does not exceed unity, and the same is seen with the
second factor, too. Hence, the condition

@.17) o(X,Y)= [ ]”‘ exp [_Tl(a,—b)’(A-I-B)"(a-—b)] .

(2.18) pX,Y)-1, (s—00),

is equivalent to the simultaneous conditions

(2.19) [(A7'+B™Y2[|A"'B! -1,  (s—oe0),
and

(2.20) (@a—b)(A+B)(a—b)—0, (s— ),

the latter of which is the same as (2.16).
We now show that the condition (2.19) is equivalent to (2.15).
Since A and B are positive definite, there exist non-singular matrices
C and D such that A'=C'C and B'=D'D. By using these, it is easily
verified that

(A" -+ B/2IY| 4B~ | =| (H+ H*+2D)/4]

where we have put H=CB(C'. Let a;,---, a, be the characteristic roots
of H. Then, there exists an orthogonal matrix P such that

P(H+H™+2I)P'=Diag (& +a;i'+2,- -+, ap,+a;'+2) ,
from which it follows that the left-hand member of (2.19) is equal to
;ﬁx {1+(a;+a;'—2)/4}. But, since ;>0 and a;+a;'—2>0, i=1,---, n,,
the condition (2.19) is satisfied if and only if
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(2.21) 2 (+ai'—2)—0, (s—oo),

which is the same condition as (2.15).
This completes the proof of the lemma.

We conclude this section by stating that each of the conditions

(2.22) (@mp— b(n,))’A(_nt)(a(ns) —bap)—0, (s—o0),
and
(2.23) (@enp— b(ns)),B(—nls)(a(ns) - b(ns)) -0, (8—0),

implies (2.16), because the matrices Ag),—(Awmy+ Bmp)™ and Bg,— (A,
+B,,)"" are non-negative definite.

3. The case of uniform distribution

Let U,<Uy,<:-+<U,, be order statistics of a random sample of size
n from a uniform distribution over (0,1), and let us choose k=Fk(n)
variables, Uy, <Upp,<:*+ <Upmy, whose joint variable is denoted by U,
=Umnys* "+ Unm,)' Then, mean vector and dispersion matrix U,y are
given respectively by

(3.1) ln(lc):(lﬂl! an’ ] lnk)'
and

lnl(l—lnl) lﬂl(l_ln2) vt lnl(l—lnk)
62 Luoe | Ll L=l - - ll—])
n+2

...............................

where l;=n;/(n+1), i=1,---, k. It is known that the inverse matrix
of L, 1s given by

b=l 1 ... .. 0]
(lnz - lnl) (lnl - ln(!) lnz - lnl
. » —1 ln3 _ lnl —1 0- -
(3.3) Lin=(n+2) Lo—lut Cs—lad) Una—lnt) lus—lns

------------------------------------

O _1 lnk-l—l_lnk—l

.....

. lnk—lnk—l (lnk+1—lnk) (lnk_lk—l) -

(see, for example, [6]), where [,=0 and l,;,,=1.

Now, let Z,o=(Zu, -+, Zy) be a k-dimensional normal random
variable whose mean vector and dispersion matrix are l,., and L,y de-
fined by (3.1) and (3.2), respectively.
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Under this situation, the following theorem gives us a sufficient

condition for U,,, and Z,,, to be asymptotically equivalent (B),.

THEOREM 3.1. If the condition

3.4) k/ min (n;—n,_))—0, (n—o0),
15isk+1

18 satisfied, then
(3.5) Unir~ Zny (B)a (n—o00) .

Proor. It is sufficient for (3.5) to hold that the K-L information
I(U,w ¢ Znay) tends to zero as n— oo,
The pdf’s of U, and Z,,, are given by

k41 k+1
(3:6) ha(za)={n! /T @D} TT Gz,
i=1 i=1
(0=20<zl< et <zk<zk+1=1) s
and

(3.7 9n(200) = (2r) ™| Ly, |~/* exp [ _21 (Z(k)—ln(k))’LvT(lk)(zm—ln(m)]

(_°°<zi<°°) i=19"'9 k) ’

respectively, where d,=n;—n,_,—1, t=1,.-., k+1, with the convention
ny=0 and n.,,=n+1, and 24,=(z, -+, 2,). Hence the K-L information
is given by

(3'8) I(Un(lc) . Zn(k))=8[10g {h’n(Un(k))/gn(Un(k))}]
=log | @)l Lo / T1 @)
. n(k) P2 i
k+1
+z>=:"1 di 8[10g (Ufmi_ Ufmi_l)]
+ 3 ElWatr—law) Lo Unio—aco)] -
From (3.2) we have

[ Ly | = (n+2)7* ‘Ul Uni—lniz) »
and also
ElUniy —law) Liiiey(Unir —lacr)1 =k .

It is also seen that

n—dy 1
l nn;~ Yang = N
Ellog (Upn,—Upn,_))] E‘ it
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Td) , T(n)
=logd,—1 1 1 _T@) ,
og di—logn+ 2d, 2n d; n

where T'(m) is defined, for any integer m=2, by

@ity
T =2 G D) )

with
a,——;—s 21—2)2—2)--(r—1—2)dz, (r=2)

(see Lemma 1.1 of [3]).
Using Stirling’s formula and the above results, we can get

(3.9  I(Uye: nm)——log(1 ﬁ’z“) ’f'zFll (1__%)

LYt (1-2) 7m)
d; n
—3i 1)+ 42l 51 o)
d,
where ¢(n)=0(1) and max {c,(n); t=1,---,k+1}=0(1) as n— . But,
since the K-L information is always non-negative, non-positive terms
can be deleted from the right-hand side of (3.9), which gives us

+ Z log<1+

(B10) U Zuw) STy m (L4 B

2d d
where we have put d=min {d;; 1=1,---, k+1}, and c is a positive con-
stant.

As is easily verified, it holds that T(m)—0 as m—oo. Thus, by
(3.10), it is seen that the condition (3.4) implies the vanishing of I(U,q, :
Znw) a8 m— oo, which guarantees the validity of (3.5).

This completes the proof of the theorem.

This theorem plays a fundamental role in subsequent discussions.

Now, let Z%n=(Z%, -+, Z%) be a k-dimensional normal random
variable distributed as N(I%w,, Law,), where
(3.11) So=,+, %)  with  B,=mn/n, i=1,---,k,
and

La(1=00)  La(1=130) -+ - L1 —120)
(8.12) L= t| BA—0)  Ba(L—T8) - - - a1 1)
n

-------------------------------
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Then, by using Lemma 2.4 it is easily seen that Z,,,~Z},, (B); as n—
oo, provided the condition (3.4) of the theorem. Hence the following
theorem is immediate from the above theorem.

THEOREM 3.2. If the condition (3.4) is satisfied, then it holds that
(3.13) U~ Zawy (B)a (n—o0) .
By these two theorems, we can see the following

COROLLARY 3.1. (a) If k is fized independently of m, then the
condition
(3.14) min (n,—n,_)—oo, (n—oo),

1sisk+1

implies (3.5) and (3.13).

(b) The mth order statistic, U,,, 18 asymptotically (B); mormally
distributed as N(m/(n+1), m(n—m+1)/(n+2)(n+1)), or as N(m/n,
m(n—m)[n’) according as m— oo, provided that m— co and n—m— oo.

It has been shown [3] that (Uu,---, Umn)'s (Uns---s Uprio-1) and
(Uun-mys1,*  +» Una)' constitute an asymptotically independent (B), set of
size 8 as n— oo, if m/n—0, myn—0, hin—2 and v/n—p for any given
2 and g such that 0<i<a+p<1. Hence, in the case where the spac-
ing of n,’s is such that

lnl,' ) lns_*o ’
(3'15) Télnc+l" ) I’nk—tél—r ’
lnk—l+1! oy lw—1,

as m— oo, for some positive number y independent of 7, s and ¢ being
allowable to depend on n, we may take the dispersion matrix of Z.,

in Theorem 3.1 to be of slightly different form: Let Z,, be a k-
dimensional normal random variable distributed as N(l,u, Lna,), Where

En(s)l 0

(3° 16) I/n(k) = Tlnm)z ’ (u =k—s— t) ,

0 Ln(t)3

Here, L., Lnuw: and L, are the dispersion matrices of the first s,
the second u and the last ¢ components of Z,,,, respectively. Then,
under the assumption (3.15), it holds that U,u,~Z.u, (B)s, a8 n— oo,
provided the condition (3.4). Analogous result is obtained with Theo-
rem 3.2, where the dispersion matrix LJ., may be replaced by L., ob-
tained analogously to (3.16).
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These will be summarized in the following

COROLLARY 3.2. Under the assumption (3.15), the condition (3.4)
implies that U, s asymptotically (B); mormally distributed as N(l,u,
I_/,,(k)), or as N(l‘,’,(k), I/?.(k)), as n— oo.

In the second half of this section, we shall consider the following
situation: Suppose that for each » we are given a positive integer k
=k(n) and a set of k spacings 0<2,;<4,;<:--<1x<l. Sample quantiles
corresponding to these ,’s are U, <Up,<:::<Uum,, where as usual

ne=[na.]+1, i=1,---, k. As before, let us denote by U, the joint
variable of U,,’s.

Let Z,uw>=(Zn,***, Zn) be a k-dimensional normal random variable
whose mean vector and dispersion matrix are given by

(3.17) 2n(h:) = (xnl 3ty lnk)’
and

lnl(l - znl) lnl(l - 2n2) trt an(l - 'znk)
(3, 18) An(k) — l— xnl(]- - an) Z1»2(]- - x132) st ln2(1 - lnk)
n

--------------------------------

respectively. Put 2,=0 and 2,,,=1.

Let Z,., be defined the same as in the beginning part of this sec-
tion with n,’s given above. Then, it is not so difficult to see that under
the condition (3.4) two variables, Z,,, distributed as N(l.w, Laay) and

Znio 88 N(Auws 4uay), are asymptotically equivalent (B); as n—oo; In-
deed, the condition (2.15) and (2.16) of Lemm 2.4 are easily seen to be
satisfied. Thus, we have the following theorem, in which the condition
(8.4) of Theorem 3.1 is rewritten as (3.19).

THEOREM 3.3. If k and 2,’s satisfy the condition

15isk+1

(3.19) k/{n min (Znt—'lnt-l)}_’o ) (n—o0),

then it holds that
(3.20) Unior~ Znao (B)a (m—c0) .

When k is fixed independently of =, the following corollary is an
immediate consequence of the above theorem.

COROLLARY 3.3. If k 1is fixed independently of n, then the condition

(3.21) n min (A,;—A,_)— 0 , (n— o),
1Sisk+1
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implies (3.20). If, moreover, A,,=2;,, i=1,---, k, are fized independently
of m, then U,,, ts asymptotically (B); mormally distributed according to
N, (1/n)Aq) as m— oo, where

(3.22) A=A, Ay +, X))

and

21(1"11) 11(1"‘12) v 11(1—11:)
(3.23) Ago=| AL—=2) 2(1—2) - - - (1—4)

............................

In the second half of this corollary, the condition (3.19) or (3.21)
is not necessary, because the condition is automatically satisfied.

4. The case of equal basic distributions

Let X,,<X,;<---<X,, be order statistics of a sample of size n
drawn from a real, continuous distribution whose pdf and cdf are given
by f(x) and F(x), respectively. If we define U, by U,=F(X,), i=1,
-++,n, then U,<U,<---<U,, are regarded as order statistics from a
uniform distribution over (0, 1), for which the asymptotic (B), normality
of sample quantiles has been discussed in the preceding section. In or-
der to treat the same problem for the case of general distributions in
the present and the subsequent section, we make use of Lemma 2.3.
For this, we need an assumption which guarantees the non-singularity
of probability integral transformation. v

To avoid the complexity of discussion, we make the following as-
sumption which is simple but fairly common to practical applications.

AssumPTION 4.1. D(f)={x: f(x)>0} is an open interval on the
real line.

"Under this assumption, F'~!(2) is a measurable and one-to-one trans-
formation from the interval (0, 1) onto the interval D(f).

Now, let us consider asymptotic (B), normality of the joint variable
Xoco=(Xonys Xonys+ ++» Xpn,)' of sample quantiles X8 with n,<n,<- -+
<m,, where k=Fk(n) and n,=n,(n) may in general be dependent on nu.
Let us put l,,=n,/(n+1), s,,=F"'(,;) and f,.=f(s.), 1=1,---, k.

Let Y,o=(Yn, -, Y.) be a k-dimensional normal random variable
with mean vector and dispersion matrix defined by
(4‘1) sn(k)z(snl »" %y Snk)’

and
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nl(l lnl)/.fnl nl(l - lnz)/.fnxfnZ ttt lnl(l - lnk)/fnlfnk
(4.2) S,,(k) = —+2— nl(l lnt)/fnlfnz lnz(l _an)/.fnax M lnz(l —lnlc)/.fnzfnk
n

respectively. Note that Diag (fu,: -+, fu)Sww Diag (fu,*+  fur) = Lo,

k 2
and hence | Luw|=|Suw! 1] £ul -

Now, let us define a random variable V,4=V,, -, Vo) by V=
F(Y,), t=1,-+-, k. Then, V,,, is distributed over the closure of a k-
dimensional open cube @,=(0,1)Xx---X(0,1), and is discontinuous on
the boundary of this set unless D(f)=(—o0, o). Over the domain Q,,
V. is absolutely continuous with respect to the Lebesgue measure over
the k-dimensional Euclidean space, and has the density

(43)  Pulaw) =) | Sy 2] SE )]

X exp [:2-1- (F~(2a>) — 8u) St (F' _I(Z(k))_sn(k))] ’

(Za> € Q)

where we have put F~'(2u)=(F "4z, -, F'(z)).
Since, under the condition (3.4),

1 (1A= \/‘“ 0
L n+2 < n,

\/l,‘,‘(l L) \/ T

as n—oo, there exist sequences of positive numbers {o,} (n=1,2,---)
and {p;} (n=1,2,---.) such that p,— o0, p,— o0 and

— ln (1_ln ) lnk(l k)
Op=p,, | ] 1-1
p\/ nte o and \/ ntz o

and

for all n, and further 6,—0 and 6,— o as n—oco. Hence, the set
(4'4) Qn,k == {z(k) : O<ln1_5n<zl< e <zk<lnk+51,:,<1}

is well defined for every =, provided (8.4), and by Theorem 3.1 and by
using the Chebycheff inequality, we can see easily that

(4.5) P7ax(Q, ;) —1, (n—o0) .

Hence, if the condition (8.4) is satisfied, Lemma 2.2 assures us that
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4.6)  I*(Zuw: V,.m)=8 9,10 (0s/Da} d2e—0,  (n—>00)
k

implies
- 4.7 Znir~ Vo (B (n—o0),

and consequently, by Lemma 2.8 it holds that X,u,~Y,u (B)s a8 n— oco.
We now derive conditions which guarantee the condition (4.6). For
this, we make the following

ASSUMPTION 4.2. f(x) is differentiable once and f’(x) is continuous
over D(f). Then, by (3.7) and (4.3) it is seen that
(48) 108 (g.2w)/Palear)} =33 ¢l (& —ld — (L/2Whew Lidlzcr—laco)
+ (18 )k Litncs

where

p(2)=[f"(F @) (F ) , (0<z<1),

$z; )=F(FANFEFR), (0<21<]),
(4.10) Wy =Wa1,** *» Wr)' »

W= (@R P2k L) (z—1w) ,  1=1,--0,k,

and zX* and z¥ are some functions of 2z, which lie between z; and [,
(denoted by zX*, zX € (2, l.;))) for each <.

Let us designate the integral operator S

(4.9)

9.4z, by E*[-]. Then,
&

n

we have

@) | B3 o) et | < 5 (BB el

and, by using the Cauchy-Schwarz inequality and its integral version,
(4.12) | E*[weo Lty (Zao —La)] | SV E {E*[Whoo Lty ]} -

Also,

(4.13)  E*[w/LndiyWaa]

k l —
<(n+2 ni+1™ bnt—1 EX[H 25 (%5 o) (2i—100)"
()3 ey P L) ]

k-1
125 L B p(et )o@ ) | 42k Lad@@hiens ais)

=1 lni+l_lni

X (2= 1)} (i1 — n£+1)2]} .
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It is difficult to evaluate the right-hand members of (4.11), (4.12)
and (4.13) in general situation. Hence, we shall consider here the sim-
plest case where the functions ¢ and ¢ are uniformly bounded over Q, .,
in which case we can show the following

THEOREM 4.1. Under the assumptions 4.1 and 4.2, assume that the
condition ‘

(4.14) sup max sup max {[e(z})], ¢(zF; L= M,
200 € @n,e 1S9k 2F € (21, Ing))

1s satisfied for some positive constant M uniformly for all n. Then, the
condition

(4.15) K/ min (n,—n,_,)—0, (n—o0) ,
1ik+1

implies that

(4.16) Xow~Yoa (B)a, (n—o0) .

PROOF. From (4.11) and (4.14) it follows that
| B[ £ o2 ()| | < MVRT D)
and from (4.13) and (4.14)
EXw) oo LatoWan) =12M*'k . ggg . (ni—my_y) .

Hence, by (4.6) and (4.8), we obtain

(4.17) IZp n(k))§M\/k—2+V 3 M’\/ _ K
n+2 min (n;—n,_;)
1Sisk+1

3 k
=M .
+ 2 min (n;—n,_,)
1Sisk+1

Thus, the condition (4.15) implies the condition (4.6), and consequently
(4.16), which proves the theorem.

It is not so easy in general to check whether the condition (4.14)
is fulfilled or not. We therefore consider three simpler cases for which
the condition (4.14) is satisfied.

Case 1. k is fixed independently of =, and [l,—2;, 1=1,---, k, as
n— oo for some fixed 0< 4, <+ <2, <1.

In this case, it is evident that the condition (4.14) is fulfilled, and
the condition (4.15) is automatically satisfied. Therefore, we can state
the following
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COROLLARY 4.1. If k is fixed independently of n, and l,—2;, i=
1,---,k, as n— oo, for some fixed 0< 4, < -+ <2, <1, then, under the as-
sumptions 4.1 and 4.2, X, 1s asymptotically (B); normally distributed
according to N(S,u>, Suw) a8 n—> oo,

Case II. 0<7<Z1,< <12 <1—y<1 for some fixed number y inde-
pendent of n.

In this case, since |¢(2)| and ¢(z;1) are uniformly bounded for all
z and I such that y/2<z, I<1—/2, the condition (4.14) is satisfied, pro-
vided (3.4). Thus, we have the following

COROLLARY 4.2. If the spacing of l,’s is such that
(4.18) 0<ySluy< + <lu=1—y<1,

for some fixzed number y independent of n, then the condition (4.15) im-
plies (4.16), provided the assumptions 4.1 and 4.2.

Case III. f(x)=M, and |f'(x)|<M, for some positive M; and M,
independent of =.

In this case, D(f) is necessarily bounded, and the situation is essen-
tially the same as in Case II. Thus, the following corollary is an im-
mediate consequence of the theorem.

COROLLARY 4.3. Suppose that there exist positive mumbers M, and
M, which are independent of m such that f(x)=M, and | f'(x)|=M; uni-
formly for all x in D(f), provided the assumptions 4.1 and 4.2. Then,
the condition (4.15) implies (4.16).

In the second half of this section, we shall consider the case where
spacings are chosen first and then the corresponding sample quantiles.
For this case, the argument is quite similar to that of the first half
of this section, and so we state the results briefly.

Let 0<iAy< -+ <4,<1 be a set of k spacings for each n, where k
and 1,’s may vary with increasing n. The corresponding sample quan-
tiles X, ,- -, Xon, are chosen in the usual manner as n;=[nd,]+1, i=
1,.--, k. As before, let X,,, be their joint variable.

On the other hand, let Y,u,=(Yu,---, Y.) be a normal random
variable whose mean vector and dispersion matrix are given respective-

ly by
(4.19) Caco =Gty +, Cut)’

and
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znl(l - an)/f’.:I lnl(l _ZnZ)/fnlfnZ ttt lnl(l _znk)/.fnlﬁlk

( 4'20) 3= l an(l - lnz)/f;llﬁﬂ an(]- - an)/f S 11:2(1 - xnk)/f: uzfnk
QUL e o e o oo eseetsecetsosscesescesossoscssosssssscssccas

where £, =F-Y(2,) and fu=7(), i=1,---, k.
Then, analogously to Theorem 4.1, we can state the following

THEOREM 4.2. Under the assumptions 4.1 and 4.2, suppose that the
condition

(4.21) sup max sup max {|(zF)|, ¢(zF; L)} =M,
2> € Quye 1<i<k 2F € (21, Ans)

18 satisfied for some positive number M independent of m, where
(4.22) Que = {200 1 0< A =8, <2y <+ + + <2< A +8< 1Y,

with 8, and &, defined analogously to 6, and 3, in (4.4) by changing l,’s
to 2,;’s. Then, the condition

(4.23) i / {n min (z,,,.—z,,i_,)}—»o . (n—ooo),
15isk+1

implies that

(4-24) X~ ~n(k) (B)a » (’n_’oo) .

Corresponding to the three cases mentioned before, we can state
the following

COROLLARY 4.4. (a) If k and 2,’s are fizred independently of m,
then, under the assumptions 4.1 and 4.2, the asymptotic equivalence (4.24)
always holds.

(b) If there exists a positive number y independent of n such that

(4.25) 0<yS A< <ApS1—p<l

uniformly for all m, then under the assumptions 4.1 and 4.2 the condi-
tion (4.23) implies (4.24).

(e) If f(x)=M, and | f'(x)| <M, uniformly for all = im D(f) for
some fived positive numbers M, and M,, then under the assumptions 4.1
and 4.2, the condition (4.23) implies (4.24).

It should be noted, in the final place, that there are many varia-
tions of the theorems 4.1 and 4.2, which are obtained from those the-
orems by slightly changing the mean vector and the dispersion matrix
of the asymptotic normal distribution of each theorem. Among those,
we shall merely state the following theorem, whose proof can be made
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in a quite analogous manner to that of Theorem 4.1.

THEOREM 4.3. Under the assumptions 4.1 and 4.2, suppose that the
condition
(4.26 sup max su max zH)|, o(zF; 1)} M,

) o up, | MAX z;"e((z},)l‘,’.t)) {lp(z)], o(z; L)}

18 satisfied for some positive M uniformly for all n. Then, the condi-
tion (4.15) implies that

(4.27) Xow~Yowy (B)e,  (n—o0),

where Q. 1is the set obtained by the same definition as (4.4) but using
Li=nin for L, i=1,--., k, and Y3, stands for a k-dimensional normal
random variable with mean vector s, and dispersion matrix Shu,, S
and Sy, being defined by

(4.28) Lo=(8%, %),  £=F'®), i=1,---,k,
and

(I=0)lfat (L =Bo)farSm + + - LU —La)/fr foe

4.29) Sin= l Q=D fm Ba(L=00)fa -+« La(L—=D)[foa S
M| vttt ittt rtterssstcsnrssensens

with fa=FFB), i=1,---, k.

5. The case of unequal basic distributions

In this final section, we consider the case of unequal basic distri-
butions. ,

Let X, <X,,<-+-<X,, be order statistics of a random sample of
size n from a continuous distribution over the real line, whose pdf and
cdf are given by f.(x) and F,(x) respectively. For any given n,<m,<
o<y, let X, be the joint random variable of X,, <X, <---<Xp,,
and let us put l,=n/(n+1), i=1,-.-, k, as before.

We shall make the following

AssuMPTION 5.1. D(f,)={x: f.(x)>0} is an open interval on the
real line, for each =.

AssuMPTION 5.2. For each =, f.(x) is differentiable once and f/(x)
is continuous over D(f,).

Under these two assumptions, let s,,=F;(l,;) and f.= fu(s.), 1=1,
«++, k. Further, let s,,, and S, be defined to be the same as (4.1)
and (4.2) with the definitions of l,’s, s,’s and f,’s given above, and
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Y. be a k-dimensional normal random variable distributed as N(8,u,
Sn(k))-

Then, the argument of the preceding section, through which Theo-
rem 4.1 was derived, is still valid in the present case, because the trans-
formation ¢, in Lemma 2.8 may be dependent on the underlying param-
eter s. Thus, we can state a result parallel to Theorem 4.1, for which
we need more definitions: Let Q,, be defined to be the same as (4.4)
with 1,;’s given above, and put

eu2)=FI(F@NFFT(?) (0<z<1),
$a(2; D=L FT(UDAFT(2),  (0<z, I<1),

(5.1)

for each n.

THEOREM 5.1. Under the assumptions 5.1 and 5.2, assume that the
condition
(5.2) sup max  sup max {|g.(F)], gu(zF; LI =M,
20 € Qnke 1595k 27 € (21, Int))

18 satisfied uniformly for all n, when M 1is some positive number inde-
pendent of n. Then, the condition (4.15) implies that

(5.3) Xowy~Yawy (B, (n—o0).

Corresponding to Theorem 4.3, we also have the following result:
Let Y%, be a k-dimensional normal random variable with mean vector
$%& and dispersion matrix Sb,, sha, and S5,, being defined to be the
same as in (4.28) and (4.29) with the definitions l);=n./n, s,,=F,'()
and f%=f.(s%), 1=1,---, k. Then, we can state the following

THEOREM 5.2. Under the assumptions 5.1 and 5.2, suppose that the
condition
(5.4) sup max  sup max {|e.¥)], (X LIS M
260 € Qnyx 1Si<k 2F € (20, 1)

18 satisfied for some positive M uniformly for all n. Then, the condition
(4.15) implies that

(5.5) Xioo~Yoty (B, (n—o0).

We can also have a result corresponding to Theorem 4.2, which will
be omitted. In general, it is quite difficult to check whether the con-
dition (5.2) or (5.4) is valid or not, except for the case where the fol-
lowing assumption is fulfilled.

ASSUMPTION 5.3. For some positive numbers M; and M,
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(5.6) inf fu(x)zM, and sup |fi(x)|=M;
reD(Sy) zeD(fy)

uniformly for all n.
Then, we have the following

COROLLARY 5.1. Under the assumptions 5.1, 5.2 and 5.3, the con-
dition (4.15) implies (5.3) and (5.5).

It should be noted that this result implies the Weiss’ [8]: Indeed,
under the assumptions 5.1, 5.2 and 5.8, if we put k=n'"—1 and n,=n’,
1=1,---, k, (assuming these are integers), for any given J such that
2/8<06<1, then these k and n=,s satisfy the condition (4.15), and con-
sequently, X,,,---, X, are jointly asymptotically (B), normally distri-
buted according to N(shu,, Siu,) as n— oo.

It is also remarked that, if the basic distributions are uniform dis-
tributions and satisfy the Assumption 5.3, then the condition (3.4) im-
plies (56.3) and (5.5).
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