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1. Introduction

Borel [2] defined the simply normal numbers and the normal num-
bers, and proved their metrical properties that almost all real numbers
are simply normal and also normal. Therefore the set of all non-normal
numbers has Lebesgue measure zero and in order to compare the sizes
of some subsets of it the Hausdorff dimension has been used. Volkmann
[6]-[9] considered the Hausdorff dimension of some sets characterized
number-theoretically. He mentioned in [9] that the set of all r-regular
numbers but not simply normal has Hausdorff dimension 1, where the
set of r-regular numbers is identical with My, -, v,_,) in this paper.
We also consider the Hausdorff dimension of some special subsets of
non-normal numbers in the unit interval.

In Section 2 we give a proof by using an application of the theorem
on entropies of Markov processes in [1] that the set of all non-normal
numbers has Hausdorff dimension 1 and the set of all simply normal
but not normal numbers has Hausdorff dimension 1.

For convenience we shall give the definition of Hausdorff dimension
[1]. Let M be a subset in a metric space. Then the a-dimensional outer
measure [.(M) is defined for positive a as following: A p-covering of
M is a countable covering of M by closed spheres S; of diameter less
than p. Let

1.(M, p)=inf 3} (diam S,)"

where the infimum extends over all p-coverings of M. As p decreases,
l.(M, p) increases. Therefore the limit (finite or infinite)

lL(M)= lir? l.(M, p)
pam

exists.

Clearly l,(-) is monotone and subadditive. For a fixed set M we
can consider [, (M) as a function of a and there exists the change-over
point «, of [ (M) such that [ (M)=oc0 if a<a, and L(M)=0 if a>a,.
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The uniquely defined number «, is the Hausdorff dimension of M. Now
we describe two fundamental properties of Hausdorff dimension.

ProPOSITION 1. dim M<dim M’ if McM'’

dim U M,=supdim M, .

PROPOSITION 2. If M is a Borel set in the unit interval of positive
Lebesgue measure, then dim M=1.

Let m,, n,,--- be a strictly monotone increasing sequence of positive
integers satisfying the condition

lim N.({rn}) —a
n

n—oo

where N,({n.}) denotes the number of n, less than or equal to n, and
let a,, a;,--- be a given sequence of {0,1,---,r—1}. We define the
set 2, by

‘le {(D; xnk(a’)za’k; k::]_, 21' M '}

where o is a real number in the unit interval and x,.(w) denotes the
nth digit of the decimal expansion to scale r of w. In Section 3 we show
that the set 2, has Hausdorff dimension 1—a.

In Section 4 we show that the set of all real numbers in the unit
interval which have not any run of length larger than ! in the decimal

expansion to scale r has Hausdorff dimension (i‘, {[r**Yr—-1)}/r}.
k=1
log (r‘—r"“))(l log r)7!, where the symbol [x] denotes the least integer

which is larger than or equal to z.

2. The set of non-normal numbers and the set of simply normal but
not normal numbers

Throughout this paper we consider any real number (mod1) as a
point in the unit interval I, and rational numbers shall have infinite
decimal expansions. Then we can uniquely represent a real number o
in the unit interval to scale » as

0=3 ”v;(:’) 0=a(0)<r—1.

The symbol N,(j, ») denotes the number of k satisfying z.(w)=j
and 1<k<n. A real number o is called simply normal to scale r if
N,(j, w)/n tends to 1/r as n— oo for j=0,1,--.,r—1. A real number
o is called normal to scale  if 7"w is simply normal to scale r™ for n=
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0,1,2,---, m=1,2,---. A real number o is called absolutely normal if
o is normal to any scale.

LEMMA 1. The set of all simply mormal numbers to scale r is a
Borel set.

PrOOF. The symbol SN, denotes the set of all simply normal num-
bers to scale . The set 6,(n, k)= {w; | N.(j, 0)/n—1/r|<1/k} is open and
according to the definition of simply normal numbers, we get

o r—1 oo ©
(1) SN,=N N U Ndmn,k).

k=1 j=0 s=1n=s

Therefore the set SN, is a third multiplicative Borel set of the type G,,.

LEMMA 2. The set of all normal numbers to scale r is a Borel set.

PrROOF. The symbol 4% denotes a string with length I of {0, 1,
..., r—1} and the symbol N,(4?, ) denotes the number of j such that
(®,(@), Z;11(@), - -5 By41-1(@)) =43, where m is an index of the strings with
length I. Then the set d.(n, k, [) = {o; | N.(4?, 0)/n—1/r*|<1/k} is open
and according to an equivalent condition of normal numbers [4], we get

l

<

Cs
D

(2) N,=

k

On(n, k,1) .

Uk
LD

i 18

Il
-

m n=§

Then the set N, is a fourth multiplicative Borel set of the type G-

COROLLARY. The set of all absolutely normal numbers N is a Borel
set.

Proor. It is obvious from N= F\ N,.
. r=3

THEOREM 1. To any scale 7,
(3) dim SN,=dim N,=dim N=1.
The proof is immediate from above two lemmas and Proposition 2.

THEOREM 2. The set of all mon-normal numbers has Hausdorff di-
mension 1.

ProOOF. Let M(vy, v, -+, v,_;) be the set of all real numbers such
that N,(j, w)/n tends to v; as m—oo for j=0,1,---,r—1, where the
sum of all v; is equal to 1. Then the set of all non-normal numbers
NN contains all M(v, v, ,v,_;) where at least one of »; is not equal
to 1/r. From the definition dim NN is less than or equal to 1. Eggles-
ton [3] showed that
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(4) dim My, v1,- -, v,)=——2— S logy, .
log r i=0

Then, by Proposition 1
1=dim NN =sup dim M(y,, v, -+, v,_)=1
where the supremum extends over all M(y,, v;,---, v,_,) contained in NN.

THEOREM 3. The set of all simply mormal but not mormal numbers
has Hausdorff dimension 1.

ProOOF. Let M be the set of all simply normal but not normal
numbers. Consider the number N,({ij}, w) of k<n for which z,(0)=1
and %, (0)=5. If :

(5) lim -:;Nn({ij}, w)=ry 14,§=0,1,--,7—1,

then (z,)== is an rXr matrix of nonnegative numbers such that if
»i=> my, then > p;=1.. Let p,=r,/p,; then (p,) is a stochastic ma-
7 i

trix with the p; as stationary probabilities. Let M(x) be the set of any
o satisfying (5). Then from an application of the same Theorem 14.1
[1], we get

(6) dim M(x)=——=— 3 ppy log p, -
ogr 7

Then the set M contains all M(z) where at least one of z,, is not equal
to 1/, Then

(7) 1=dim M =sup dim M(z)=1 .

3. The set of all w with partially prescribed digits

Let m,, n,,--- be a strictly monotone increasing sequence of positive
integers satisfying the condition

n—oo

(8) limﬂ;ﬁ"—}—)=a 0=<a=<1)

where the symbol N,({n.}) denotes the number of =, less than or equal
to n and let a be a given real number in the unit interval. We con-
sider the set 2, defined by

(9) Qi={wel; z,(0)=x(a) for k=1,2,...}

where I, is the unit interval.
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THEOREM 4. dim 2,=1—a.

ProoF. Let 2 be the set £, defined in (9) corresponding-to the
case (j) as follows:
Case (0). (I) ais a rational number (i.e. a=g/p, p and ¢ are inte-
gers with 0=¢=<p, p+0).
(II) For all I=1,2,---, N, ({n})=lg.
(II) A given point a® is periodic with period gq.
Case (1). We set the conditions (I) and (II) in the case (0).
Case (2). We set the condition (I) in the case (0).
Case (3). There are no conditions.
Consider the case (0): from the conditions (I) and (II), any @ of
2” has the decimal expansion to scale 7 in which z,(») can take the
r?~? values. Then from (4), we obtain

(10) dim go=1087"" _P—q_;_4q
log r? P P
Case (1): Let us define the interval u,(w) with length (1/7)*, by
{o'; o0)=m(0), k=1,---,n}. Let MO(m)= U u(w) and M (n)=

® €0

U %) and [,(-) be the a-dimensional outer measure [1]. Then by
w € QD

the sub-additivity of 1.(-), L. (M®(n))=l.(M¥(n)) for any n. Thus
11) dim 2 =dim 2" .

Case (2): Without loss of generality we can take the same point

a in the case (1) as a given point. Let M®(n)= U )u,,(w). From
w€ 0

the condition (I) and (6), for arbitrary small positive ¢, we get

12) | N.({n))/m—q/p|<e

for any m larger than fixed Ny). If N,({m})/n—gq/p=f(n) is non-
negative, then M®n)cM®(n). If f(n) is negative, then M®(n)C
M®(n).

Let ¢®(n)=M®(n)—M®(n) or M®(n)—M®P(n)=¢*(n) if f(n) is non-
negative or negative respectively and ¢ be the empty set. Then from
the definition of M“(n), ¢®(n)—¢ and ¢®(n)—¢. Therefore M=%,

Case (3): We can approximate a infinitely close by rational num-
ber. Let a, be a sequence of rational numbers which converges to a
and 2®(n) be the set defined by (9) corresponding to «,. From the
continuity of entropy we have dim 2=lim dim 2®#n)=1—a.

n—oo
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4. The set of all  without long rnn

When we consider Hausdorff dimension of M(y,, v, -, v,_;) or of
M(x), the value of Hausdorff dimension has no relevance whether v; or
7;; is equal to zero in the sense of relative frequency, or the symbol 4
or the string ij never appears in w. This is immediate from the The-
orem 14.1 [1]. Then we consider the set 2(l) of all ® without any run
whose length is larger than [. From the above remark we can calculate
the dimension of £2(l) as the dimension of I-fold Markov process corre-
sponding to 2(!). Generally an I-fold Markov process with finite  states
can be identified with simple Markov process with »* states. In virtue of
the monotone increasing property of Hausdorff dimension and convexity
of the function xlogx, we can assume that every element of 2(l) has
normality of order ! [3]. Then we can determine the transition prob-
abilities of the simple Markov process corresponding to 2(1) as follows;
Let (4,---,%) and (j,,---, J;) be two states of the process, where 1,,
<+, %, and jy,---, 7, are 0,1,..-.,r—1. By the above assumption the
stationary probability of each state is 1/7'. By the monotone increasing
property of Hausdorff dimension and convexity of the function zlog z,
the transition probability, Py .ooip,igyyonngp from (ig, -+, %) to (4i,- -, )
is given by

0 if the string {4,,---, %, J1,- -+, 7.} contains
any run with length larger than I,

1/L  otherwise, where L is the total number
Peiyy e iy p =1 of pairs {(i,,-- -, 3.), (j{,- - -, 50} such that
the pair {(7:1 ] il)! (j;’ M) ji)} does not
contain any run with length larger than
l.

We get from (6)

dim 2(1)
1 4 r[,’.z—k—l(,,._l)] (,’.l_,rk—l) (,rl_,rk—l)—l log (,,.l_,rk—l)-l
log r* #=1 rt

¢ L—k—1(pa__
Tl lolg r ,;.1 [r 'r’(: D] log (r'—7r*1)

where the symbol [x] denotes the least integer which is larger than or
equal to x.
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